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Abstract

A collection of simple closed Jordan curves in the plane ligeda family ofpseudo-circles
if any two of its members intersect at most twice. A closed/ewdomposed of two subarcs of
distinct pseudo-circles is said to be ampty lensf it does not intersect any other member of
the family. We establish a linear upper bound on the numbenydty lenses in an arrangement
of n pseudo-circles with the property that any two curves igtetrprecisely twice. This bound
implies that any collection af z-monotone pseudo-circles can be cut iGtm®/°) arcs so that
any two intersect at most once; this improves a previous t@fi®(n°/) due to Tamaki and
Tokuyama. If, in addition, the given collection admits agediraic representation by three real
parameters that satisfies some simple conditions, thernuthéer of cuts can be further reduced
to O(n?/?(logn)®(@" (™)), wherea(n) is the inverse Ackermann function, ards a constant
that depends on the the representation of the pseudo<cifabe arbitrary collections of pseudo-
circles, any two of which intersect exactly twice, the numbEnecessary cuts reduces still
further toO(n*/?). As applications, we obtain improved bounds for the numbaradences,
the complexity of a single level, and the complexity of maagds in arrangements of circles,
of pairwise intersecting pseudo-circles, of arbitrarynonotone pseudo-circles, of parabolas,
and of homothetic copies of any fixed simply-shaped convexecuWe also obtain a variant
of the Gallai-Sylvester theorem for arrangements of paievimtersecting pseudo-circles, and a
new lower bound on the number of distinct distances undematybehaved norm.
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1 Introduction

Thearrangemenbf a finite collectionC' of geometric curves ifi?, denoted agl(C), is the planar
subdivision induced bg', whose vertices are the intersection points of the curvés afhose edges
are the maximal connected portions of curvegimot containing a vertex, and whose faces are
maximal connected portions &f \ | C. Because of numerous applications and the rich geometric
structure that they possess, arrangements of curves,igbpet lines and segments, have been
widely studied [4].

A family of Jordan curves (resp., arcs) is called a familpséudo-linegresp. pseudo-segments
if every pair of curves intersect in at most one point and itre@gs at that point. A collectio@’ of
closed Jordan curves is called a familypskudo-circledf every pair of them intersect at most twice.
If the curves ofC' are graphs of continuous functions everywhere defined osethef real numbers,
such that every two intersect at most twice, we call tipsgudo-parabola$ Although many combi-
natorial results on arrangements of lines and segmentsdidgseudo-lines and pseudo-segments,
as they rely on the fact that any two curves intersect in at s point, they rarely extend to ar-
rangements of curves in which a pair intersect in more thaypaint. In the last few years, progress
has been made on analyzing arrangements of circles, ps#netis, or pseudo-parabolas by “cut-
ting” the curves into subarcs so that the resulting set isyaof pseudo-segments and by applying
results on pseudo-segments to the new arrangement; seeB[11T, 24, 27]. This paper continues
this line of study—it improves a number of previous resutisaorangements of pseudo-circles, and
extends a few of the recent results on arrangements of ifelg., those presented in [7, 8, 24]) to
arrangements of pseudo-circles.

Let C be a finite set of pseudo-circles in the plane. &@indc be two pseudo-circles ify,
intersecting at two points,v. A lens\ formed byc and¢’ is the union of two arcs, one efand
one ofc’, both delimited by andv. If X is a face ofA(C'), we callA anemptylens; ) is called a
lens-faceif it is contained in the interiors of both and¢d, and alune-faceif it is contained in the
interior of one of them and in the exterior of the other. Segufé 1. (We ignore the case where
lies in the exteriors of both pseudo-circles, because ttenebe only one such face #(C).) Let
w1(C) denote the number of empty lenses(in A family of lenses formed by the curves i is
calledpairwise nonoverlappingf the (relative interiors of the) arcs forming any two of thelo not
overlap. Letv(C') denote the maximum size of a family of nonoverlapping lemse&s. We define
the cutting numbeiof C, denoted byy (C'), as the minimum number of arcs into which the curves
of C' have to be cut so that any pair of resulting arcs intersectost wnce (i.e., these arcs form a
collection of pseudo-segments); thye”') = |C| when no cuts need to be made. In this paper, we
obtain improved bounds gn(C'), v(C'), andx(C') for several special classes of pseudo-circles, and
apply them to obtain bounds on various substructures(cf).

Previous results. Tamaki and Tokuyama [27] proved thatC)) = O(n®/?) for a family C' of n
pseudo-parabolas or pseudo-circles, and exhibited a lowerd ofQ2(n*/?). In fact, their construc-
tion gives a lower bound on the number of empty lenses in amgement of circles or parabolas.
Subsequently, improved bounds pC') andv(C) have been obtained for arrangements of circles.
Alon et al.[7] and Pinchasi [24] proved that(C) = ©(n) for a set ofn pairwise intersecting
circles. IfC' is an arbitrary collection of circles, the{C') = O(n?/2+%), for anye > 0, as shown

by Aronov and Sharir [8]. No better bound is known for the nembf empty lenses in an arbitrary

For simplicity, we assume that every tangency counts as mersections, i.e., if two pseudo-circles or pseudo-
parabolas are tangent at some point, but they do not properbg there, they do not have any other point in common.
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Figure 1. (i) A pseudo-circley supporting one lens-face and two lune-faces. (ii) A familysthaded) nonoverlapping
lenses.

lune-face

family of circles. However; (C) = O(n*/?) for a set ofn unit circles, though no superlinear lower
bound is known for this special case.

The analysis in [27] shows that the cutting numiéf’) is proportional ta/(C) for collections
of pseudo-parabolas or of pseudo-circles. Therefore ong (@) = O(n°/3) for pseudo-parabolas
and pseudo-circles [27], andC') = O(n3/2t%) for circles. Using this bound og(C), Aronov
and Sharir [8] proved that the maximum number of incidenags/éen a sef’ of n circles and a
setP of m points isO(m?/3n2/3 4 m8/11+3=p9/11- Ly 1 p), for anye > 0. Recently, following
a similar but more involved argument, Agarvetlal.[1] proved a similar bound on the complexity
of m distinct faces in an arrangementotircles in the plané. An interesting consequence of the
results in [7, 24] is the following generalization of the Bgter-Gallai theorem: In an arrangement
of pairwise intersecting circles, there always exists dexeincident upon at most three circles,
provided that the number of circles is sufficiently large anat they do not form a pencil. For
pairwise intersecting unit circles, the property holds wlitlee number of circles is at least five
[7, 24].

New results. In this paper we first obtain improved bounds @fC), v(C), and x(C) for var-
ious special classes of pseudo-circles, and then applg thesnds to several problems involving
arrangements of such pseudo-circles. L'déte a collection of, pseudo-parabolas such that any two
have at least one point in common. We show that the numbengétwies inC' is at mos2n — 4
(for n > 3). In fact, we prove the stronger result that the tangencplygfar such a collectior”’

is bipartite and planar. Using this result, we prove thaf') = ©(n) for a setC' of n pairwise
intersecting pseudo-circles. Next, we show théaf') = O(n*/?) for collectionsC' of n pairwise
intersecting pseudo-parabolas. We then go on to study therglecase, in which not every pair of
curves intersect. We first show, in Section 4, théf') = O(n®/®) for arbitrary collections ofn
pseudo-parabolas and for collectionsnof:-monotone pseudo-circles. This improves the general
bound of Tamaki and Tokuyama [27], and is based on a receauit rddinchasi and RadoiCi¢ [25]
on the size of graphs drawn in the plane so that any pair ofseitga cycle of length 4 intersect
an even number of times. In order to improve this bound furtlve need to make a few additional
assumptions on the geometric shape of the given curvesifisply, we assume, in Section 5, that,
in addition toz-monotonicity, then given curves admit a 3-parameter algebraic representtitain
satisfies some simple conditions (a notion defined more g@lscin Section 5). Three important

2pactually, the paper [1], having been written alongside viftl present paper, already exploits the slightly improved
bound derived here.



classes of curves that satisfy these assumptions are seeslaf circles, vertical parabolas (of the
form y = axz? + bx + ¢), and of homothetic copies of any fixed simply-shaped comaxe. We
show that, in the case of such a representatid@(i}) = O(n?/2(log n)?(@* (")), wherea(n) is the
inverse Ackermann function andis a constant depending on the algebraic parametrizatien?

for circles and vertical parabolas. This bound gives a #iigmproved bound ory(C'), compared
to the bound proved in [8], for a family of circles.

In Section 6, we apply the above results to several probldre.better bounds on the cutting
numbery(C) lead to improved bounds on the complexity of levels, on thealmer of incidences
between points and curves, and on the complexity of mangfacarrangements of several classes
of pseudo-circles, including the cases of circles, paehgbairwise-intersecting pseudo-circles,
homothetic copies of a fixed convex curve, and general pspadabolas anad-monotone pseudo-
circles. The exact bounds are stated in Section 6. We alsinodbigeneralized Gallai-Sylvester re-
sult for arrangements of pairwise-intersecting pseuddes, and a new lower bound for the number
of distinct distances determined hypoints in the plane and induced by an arbitrary well-behaved
norm.

2 Pairwise I ntersecting Pseudo-Circles

Let C be a set ofr pseudo-circles, any two of which intersect in two points. Mave thatu(C),

the number of empty lenses #(C), is O(n). The proof proceeds in three stages: First, we reduce
the problem ta)(1) instances of counting the number of empty lenses in an araagt of at most

n pairwise intersecting pseudo-circles, all of whose intsriare star shaped with respect to a fixed
point o. Next, we reduce the latter problem to counting the numbdagencies in a family of
pairwise intersecting pseudo-parabolas. Finally, we @rinat the number of such tangencies is
O(n). For simplicity, we provide the proof in the reverse ordeect®n 2.1 proves a bound on the
number of tangencies in a family of pairwise intersectingua-parabolas; this provides the main
geometric insight of this paper, on which all other resuftslauilt. Section 2.2 proves a bounds on
wu(C) for a family C' of pairwise-intersecting star-shaped pseudo-circleggiyg the result in the
previous subsection; Section 2.3 supplies the final redmiciind shows that the number of empty
lenses in a family of arbitrary pairwise-intersecting piegircles can be counted using the result
obtained in Section 2.2.

2.1 Tangencies of pseudo-parabolas

LetI" be a set oh pairwise intersectingseudo-parabolas.e., graphs of totally defined continuous
functions, each pair of which intersect, either in exactiyp trossing points or in exactly one point

of tangency, where no crossing occéiréve also assume that no three of these curves have a point
in common. This general position assumption is made in dasimplify our analysis. Later on,

we will show how to extend our analysis to sets of curves thatnat in general position. Note
also that considering tangencies, rather than empty leissest another simplifying step: Since no
three curves are concurrent, any tangency can be deforrted gmall empty lens and vice versa.
Let T denote the set of all tangencies between pairs of curvEs @ur goal is to bound the size of

3The requirement that the number of intersections of eveirygeexactly two can be relaxed to that of requiring that
every pair intersect at least once: A family satisfying theelr condition can easily be extended to a family that Basis
the former condition.



T.

We associate a graph with 7', whose vertices are the curveslofand whose edges connect
pairs of tangent curves. A pseudo-parabold' is calledlower (resp.,uppe) if it forms a tangency
with another curve that lies above (resp., below) it. We pleséhat a curvey € T' cannot be both
upper and lower because the two other curves forming thectsp tangencies with would have
to be disjoint, contrary to assumption. Hen€gis bipartite. In the remainder of this subsection we
show that(7 is planar, and this will establish a linear upper bound orsthe ofT".

The drawing rule. Let ¢ be a vertical line that lies to the left of all the verticesAfT"). We
draw G in the plane as follows. Each € T is represented by the point = v N ¢. Each edge
(71,72) € G is drawn as @-monotone curve that connects the poinfsv;. We use(vj, ;) to
denote the arc drawn fdry,v2). The arc has to navigate to the left or to the right of each ef th
intermediate vertice§* betweeny; and~; along/.

We use the following rule for drawing an ed@e , v2): Assume that lies below~; along/.
Let W (1, v2) denote thdeft wedgeformed by~; and~s, consisting of all points that lie above
and below~y, and to the left of the tangency between them. &det T" be a curve so that* lies
on ¢ betweeny; and~;. The curves has to exithV (v, y2). If its first exit point (i.e., its leftmost
intersection witbdW (1, v2)) lies on+; then we draw(v;, v2) to pass to the right of*. Otherwise
we draw it to pass to the left @f; see Figure 2(i). Note that a tangency also counts as an@rit p
(with immediate re-entry back into the wedge). Except festhrequirements, the edgg, 72) can
be drawn in an arbitrary-monotone manner.

(ii)

Figure 2. (i) lllustrating the drawing rule. (ii) Drawing the grapgh for an arrangement of five pairwise intersecting
pseudo-parabolas with three tangencies.

Lemma 2.1 Suppose that the following conditions hold for each qualdragp, v-, v3, v4 of distinct
curves inl*, whose intercepts withappear in thisy-increasing order:

(@) If (y1,74) and (2,73) are edges of7, then bothy; and 3 lie on the same side of the arc
(v 7i)-

(b) If (v1,73) and (y2,74) are edges of7 and the arc(v;,~3) passes to the left (resp., right) of
vs, then the arq~y;, v;) passes to the right (resp., left) of.

Thend is planar.

Proof: Figure 3 shows the configurations allowed and forbidden Inglitmns (a) and (b). We show
that the drawings of each pair of edges(dfvithout a common endpoint cross an even number of
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times. (With additional care, this property can also be m&d for pairs of edges with a common
endpoint, as will be shown later. This extension is not ndddethe main result, Theorem 2.4, but
is needed for the analysis in Section 4 involving generalgsgarabolas aneg-monotone pseudo-
circles.) This, combined with Hanani-Tutte’s theorem [283e also [16] and [22]), implies thét

is planar. Clearly, it suffices to check this for pairs of exl¢&ith distinct endpoints) for which the
y-projections of their drawings have a nonempty intersectio this case, the projections are either
nestedas in case (a) of the condition in the lemmapartially overlapping as in case (b).

S1IRY:

allowed forbidden

Figure 3. The allowed and forbidden configurations in conditions (&) ).

Consider first a pair of edges= (v1,v4) ande’ = (2, 73), with nested projections, as in case
(a). Regard the drawing afas the graph of a continuous partial functien= e(y), defined over
the interval[~;, ~v;], and similarly fore’. Part (a) of the condition implies that eithers to the left
of ¢’ at bothv; and~3, or e is to the right ofe’ at both these points. Sineeande’ correspond to
graphs of functions that are defined and continuous jp¥ery;], it follows thate ande’ intersect in
an even number of points.

Consider next a pair of edges= (1, 7v3) ande’ = (v2,v4), with partially overlapping projec-
tions, as in case (b). Here, too, part (b) of the conditionligspthat either is to the left ofe’ at
both~; and~j, or e is to the right ofe’ at both these points. This implies, as above, thatde’
intersect in an even number of points.

This completes the proof of the lemma. O

We next show that the conditions in Lemma 2.1 do indeed halddio drawing ofG.

Lemma2.2 Let~q, 9, 3,7v4 be four curves if’, whose intercepts withappear in this increasing
order, and suppose thaty;,v4) and (72, v3) are tangent pairs. Then it is impossible that the first
exit points ofy, and~s from the wedgé’ (v, v4) are at opposite sides of the wedge.

Proof: Suppose to the contrary that such a configuration existsn,Tdsecept for the respective
points of tangencyys always lies aboves, and~y, always lies abovey;. This implies that if the
first exit point ofy, from W (v1,74) lies on+y, then the first exit point ofj; also has to lie ony,
contrary to assumption. Hence, the first exit pointgfies on+y; and, by symmetric reasoning, the
first exit point of~3 lies onv,. See Figure 4. Let;4 denote the point of tangency of and~,. We
distinguish between two cases:

(a) 2 passes below, 4 andvs passes above ,: See Figure 4 (i). In this case, the second intersec-
tion point ofy; and~y, must lie to the right of 4, for otherwisey, could not have passed beloy,.
Similarly, the second intersection point ®f and~, also lies to the right of14. This also implies



that~s and~, do not intersect to the left afj4, and thaty; and~; also do not intersect to the left
of v14. Letuys (resp.,us4) denote the leftmost intersection point-afand-~ys (resp., ofy, and-,),
both lying to the right ofv14. Suppose, without loss of generality, thag lies to the left ofus,.
In this case, the second intersectiomgfand~, must lie to the right ofs;3. Indeed, otherwises
would become “trapped” inside the wedBdé(~,v3) becausey, cannot cross; and it has already
crossedy; at two points. The second intersectionygfand~, occurs to the left ofi13. Now, v
and-y, cannot intersect to the left af5: v does not interseeyy to the left of its first exitw,o from
W(~1,7v4). To the right ofw5 and to the left ofu;3, 72 remains belowy;, which lies belowy,.
Finally, to the right ofu,3, - lies belowys, which lies belowy, (since it has already intersected
twice). This implies that, cannot intersect, at all, a contradiction, which shows that case (a) is
impossible.

Y4

Y3 3
V14 Vig
Y2 u13 Yo
w12
71 71

0] (ii)

Figure 4. Edges ofG with nested projections: ()2 passes below;s4 and~ys passes above, 4; (ii) both v» and~ys pass
on the same side afi4.

(b) Both~, and~s pass on the same side«wgf;: Without loss of generality, assume that they pass
abovev4. See Figure 4 (ii). Then, must cross; again and then cross, both withindW (v, v4).

In this case;y; cannot cross; to the left ofvy4, because to do so it must first crogsagain, and
then it would get “trapped” inside the wed§€ (-, v4). But theny; and~; cannot intersect at all:
We have argued that they cannot intersect to the left of To the right of this point;y; lies above

~9, Which lies abovey,. This contradiction rules out case (b), and thus complétegtoof of the
lemma. O

Lemma?2.3 Letyy, 2,73, v4 be four curves if’, whose intercepts withappear in this increasing
order, and suppose thaty;,v3) and (v2,v4) are tangent pairs. Then it is impossible that the first
exit point ofy, from the wedgéV (v1,~3) and the first exit point of;3 from the wedgéV (v2, v4)
both lie on the bottom sides of the respective wedges, orligotim the top sides.

Proof: Suppose to the contrary that such a configuration exists. yByreetry, we may assume,
without loss of generality, that both exit points lie on thetbm sides. That is, the exit points of
v from W (~1,v3) lies on+y; and the exit pointizz of 3 from W (2, v4) lies on~,. See Figure 5.
By definition,~y» and~s; do not intersect to the left af1,. So,us3 occurs to the right ofi,» and, in
fact, also to the right of the second intersection poin{;ofind~s. Again, by assumptionys and~,
do not intersect to the left afy3. Hencey; andy4 also do not intersect to the left af3, because
~1 lies below~s. But theny; andy, cannot intersect at all, because to the right£f, v4 lies above
~9, Which lies abovey;. This contradiction completes the proof of the lemma. O

Lemmas 2.2 and 2.3 show that the conditions in Lemma 2.1 kold; is planar and bipartite
and thus has at mo8t — 4 edges, fom > 3. Hence, we obtain the following.



Figure5. Edges ofG with partially overlapping projections.

Theorem 2.4 LetT be a family ofr pairwise intersecting pseudo-parabolas in the plane, each
pair intersect either in exactly two crossing points or iraetty one point of noncrossing tangency.
Assume also that no three curvesiofmeet at a common point. Then there are at ntost- 4
tangencies between pairs of curvedifor n. > 3.

2.2 Empty lensesin star-shaped pseudo-circles

The main result of this subsection is:

Theorem 2.5 The number of empty lenses in an arrangement of 3 pairwise intersecting
pseudo-circles, no pair of whicch are tangent and no thregcoaent, so that all their interiors
are star shaped with respect to a pointis at most2n — 3. This number is 3 fon = 2. Both

bounds are tight in the worst case.

The lower bound, for, = 5, is illustrated in Figure 6. It is easy to generalize thisstauction
for anyn > 3. The casen = 2 is trivial: A pair of intersecting circles form three empgnises
(ignoring the unbounded face), of which two are lune-facebane is a lens-face, containing

Figure 6. Lower-bound construction: Five circles with a common iittepoint forming seven empty lenses.

Assume then that > 3. At most one empty lens contains We will show that the number of
empty lenses not containingis at most2n — 4. By definition, each of these lenses is a lune-face
(whereas the empty lens containingf any, is a lens-face).

We deform the pseudo-circles 6f, so as to turn each lune-face intdaagencybetween the
two corresponding pseudo-circles. This is easy to do, byrdehg the two pseudo-circles bounding
such an empty lens, using the facts that no two empty lense@es ah arc or a vertex; see Figure 7 for

8
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Figure7. Transforming an empty lens into a tangency.

an illustration. We can deform the pseudo-circles in thismnea without losing the star-shapedness
property.

Draw a generic ray that emanates from and does not pass through any vertexAql”');
in particular, it does not pass through any empty lens, eaghneduced to a point of tangency
between the respective pseudo-circles. Without loss ofrgdity, assume that has orientation 0,
i.e., it points to the direction of the positiveaxis. Regard each curve 6fas the graph of a function
in polar coordinates, and map the open intef¥gR~) of orientations onto the real line (e.g., by
x = —cot 0/2). This transformg” into a collectionl” of pairwise intersectingseudo-parabolas
that is, graphs of totally defined continuous functions heaair of which intersect exactly twice.
The rayp is mapped to the vertical lines at= +oc.

The problem has thus been reduced to that of bounding the emuofltangencies among
pairwise intersecting pseudo-parabolas, no three of warehconcurrent. By Theorem 2.4, the
number of tangencies is at mast — 4, for n > 3, so the number of lune-faces is at m@st— 4.
This completes the overall inductive proof of the theorem.

2.3 Reduction to pairwiseintersecting star-shaped pseudo-circles

Let C be a family ofn pseudo-circles, any two of which intersect each other inpiaiats. We refer

to the interiors of these pseudo-circlespagudo-disksWe bound.(C') by reducing the problem to

a constant number of subproblems, each of which is ultimaggluced to counting the number of
empty lenses in a family of pairwise intersecting star-gldgpseudo-circles. We continue to assume
that the curves i’ are in general position, as in the preceding subsection.

We need the following easy observation.

Lemma2.6 Among any five pseudo-disks bounded by the elemeidts thiere are at least three
that have a point in common.

Proof: Indeed, if this were false, then there would exist five psedidis such that any two of them
intersect in an empty lens (in the arrangement of the fiveesponding boundary curves), which
would give rise to a forbidden planar drawing &f, the complete graph with five vertices.

O

The following topological variant of Helly's theorem [18]as found by Molnar [23]. It can be
proved by a fairly straightforward induction.

Lemma 2.7 Any finite family of at least three simply connected regiorthé plane has a nonempty
simply connected intersection, provided that any two afigsnbers have a connected intersection
and any three have a nonempty intersection. Consequeh#lyintersection of any subfamily of
pseudo-disks bounded by element§'dd either empty or simply connected and hence contractible.



Letp > ¢q > 2 be integers. We say that a famifyof sets has thép, ¢) propertyif among every
p members off’ there are; that have a point in common. We say that a family of geis pierced
by a setT" if every member ofF' contains at least one elementBf The setT is often called a
transversalof F'. Fixp > ¢ > d + 1. Alon and Kleitman [6] proved that there exists a transversa
of size at mosk = k(p, ¢, d) for any finite family of convex sets ii? with the (p, ¢)-property.
Recently, Alonet al.[5] extended this result to any finite family of open regions irl-space with
the property that the intersection of every subfamilyFois either empty or contractible. Their
result, combined with Lemmas 2.6 and 2.7, implies the faihgw

Corollary 2.8 There is an absolute constahtsuch that any family of pseudo-disks bounded by
pairwise intersecting pseudo-circles can be pierced by @t points.

FixasetO = {01, 09, ... ,0;} Of k points that pierces all pseudo-disks bounded by the element
of C'. LetC; consist of all elements @f' that contairp; in their interior, fori = 1,2,... | k.

It suffices to derive an upper bound on the number of emptyekefamed by pairs of pseudo-
circles belonging to the same clagg, and on the number of empty lenses formed by pairs of
pseudo-circles belonging to two fixed clasggs C;. We begin by considering the first case and
then reduce the second case to the first one.

Let C be a family of pseudo-circles, so that any two of them intgtraad each of them contains
the origino in its interior. We wish to boung:(C'). Obviously, there exists at most one empty
lens-face formed by elements 6f, namely, the face containing Therefore, it is sufficient to
bound the number of lune-faces determined(hyThe combinatorial structureof an arrangement
is its face lattice. We call two arrangemetsmbinatorially equivalent if the face lattices of their
arrangements are isomorphic. For a fggeve say that an edgebounding f is pointing inside
(resp.,outsidg if f isin the interior (resp., the exterior) of the pseudo-disioge boundary includes
€.

We need the following technical lemma to prove the main tesul

Lemma2.9 Let C' be a family of pseudo-circles such that all of them have aerimt point o
in common. Then the union of any set of pseudo-disks boundéukbelements of' is simply
connected.

Proof: For anyy; € C, let D; denote the pseudo-disk bounded-y Using stereographic projec-
tion, we can map each); into a simply connected regiaR; of a spherés? touching the plane at,
where the center of projection is the pointe S? antipodal too. Clearly, we have

s?\ J pi= () (8*\ D).

1<i<k 1<i<k

The setsD] = S?\ D] form a collection of pseudo-disks in the “punctured” sphgfe\ {o},
isomorphic to the plane, and they all containThus, applying Lemma 2.7 (clearly, the intersection
of two pseudo-disks is always connected), we obtain thatighe-hand side of the above equation
is simply connected. Thereforg?2 \ Ui <;<x D} s also simply connected, which implies that the
union of C'is simply connected. - O

By Lemma 2.9,R? \ |J; D; consists of only one (unbounded) cell #{C). An immediate
corollary of the above lemma is the following.
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Corollary 2.10 Every bounded face of(C) has an edge that points inside.

Proof: Let f be a bounded face af(C). Denoting bys; andD;, fori = 1,2, ... , k, the edges of
and the respective pseudo-disks whose boundaries cohtga edges, and assuming that evgry

is pointing outside, we obtain thdtlies in the exterior of all pseudo-disk3;, for: = 1,2,... , k.
However, this would imply thaf is a bounded cell of the complementl|df _, ., D;, contradicting
Lemma 2.9, which states thig}; ., D; is a simply connected bounded set. 0

We now prove the main technical result of this subsection.

Lemma?2.11 Let C be a finite family of pseudo-circles in general position,tstitat all of them
have an interior poino in common. Then there exists a combinatorially equivalantilyy C’ of
pseudo-circles, all of which are star-shaped with respeet t

0 @

Figure 8. ConvertingC' into a star-shaped family by a counterclockwise topoldgseaeep: (i) The original curves; (ii)
The transformed curvesI = (123, 213, 231, 321, 312, 132, 123).

Proof: We perform an “angular” topological sweep.AfC') with respect ta by a semi-infinite arc

7 that haso as an endpoint, and intersects, at any time, each pseude-offC’ exactly once. The
ordering of the intersections ofwith the members of’ gives a permutation of’, and the sweep
produces a circular sequenideof permutations, each differing from the preceding one byapsof
two adjacent elements. We then construct a faiflpf pseudo-circles, all of which are star-shaped
with respect tw, so that the angular sweep.4fC’) by aray emanating fron» produces the same
sequencél; this will imply that C” is combinatorially equivalent t6'.

First we show how to construct an initial instance of the eutv Let f; be the cell ofA(C)
containingo. Clearly, all edges of; point inside. Start drawing a curvefrom o so that it first
crosses an edgg of fq, pointing insidef,. Let f, denote the cell on the other sideqf and let
es be an edge of this cell pointing inside; cleady, # e;. Extends through fo until it crossese,.
Proceeding in this way, we reach, afteisteps, the unique unbounded cgll,,; see Figure 8(i).
This follows by noting that at each step we exit a differergyso-disk, and never enter into any
pseudo-disk. Let; € C denote the pseudo-circle whose boundary contain<learly, the se-
quencer; = (v1,--- ,7n), Wherey; is the curve containing the edgg is a permutation of'.

The following claim shows that there always exists a “locabbve that advances the sweep of
the curver aroundo. It is reminiscent of a similar result given in [20].
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Claim A There exist two consecutive edggse;,; that are crossed by and have a common
endpoint counterclockwise tg i.e., the triangular region enclosed Iy, ¢; 1, and+ is contained
in a face ofA(C) and lies (locally) on the counterclockwise siderof

F

@ (i)

Figure?. (i) e; ande;, have a common endpoint counterclockwise t@ii) advancing the sweep curve.

Proof: Let j(i), for eachl < i < n, denote the index of the first element Gfthat intersects
7; counterclockwise t@. Let7; denote the triangular region bounded fy~;(;), and+. We say
that7; is positive(resp.,negative, if j(i) < i (resp.,j(i) > 7). Letk be the smallest integer for
which Ty, is positive, and put = j(k); see Figure 9(i). Observe tha}, is positive, sok is well
defined. No curve whose index is greater tharan intersecf;, because such a curve would have
to intersecty; at more than two points (it has to “enter” and “leav®.’ through-;, but to reach the
entry point it has to cross; once more, counterclockwise ). Sincej(l) > [, it follows that if

I = k — 1 thene; ande,, satisfy the property in the claim. The proof is completed bting that
this is the only possible case: If< k& — 1 thenv;_; cannot exitT}. at all, which is impossible.
Indeed,v;_1 cannot intersect any curve ¢f in the interior of Ty, because theff;,_; would be
positive, as the index of any curve intersecting the intesfdl, is smaller thark. If v, | exits Ty
by intersectingy;, then agairil},_; would be positive. Finallyy;_; cannot exitT; by crossingyx
because: — 1 # [ = j(k). This contradiction implies thdt= k — 1, and the claim holds with
€l, k. O

Assume thae; ande;; share an endpoint counterclockwise t@. Now fix a pair of points
u,v € 7, close to the points wherecrosses)T; and lying outsidel;, and continuously sweep the
portion of the curve® betweenu andwv, keeping the other parts fixed, pushing the crossing points
with 9T; towardsw, and finally pull it throughw, so that* no longer intersects;; see Figure 9(ii).

In this new positionj meetsy; 1 before it meets;. We obtain a new permutatiary, which is the
same asr; except that the positions of and~; are swapped.

We repeat the above procedure for the new cutve€ontinuing in this manner, we obtain a
sequencdl = (m,ms,...) of permutations of the elements 6f, corresponding to the different
orders in whichr crosses the curves.

We now construct a family of pseudo-circles that realize g¢hme sequencH if we sweep
their arrangement by a ray aroundThis is done similar to the procedure described by Goodman
and Pollack [17] for realizing aallowable sequence by an arrangement of pseudo-lines. Roughly
speaking, we draw concentric circlesr, o9, ... , o, aroundoe, and draw a ray; from o for each
permutationr; in IL. If 7,1, is obtained fromr; by swappingy; and~;., we erase small arcs of
oj andoj near their intersection points wity,; and connect the endpoints of the two erased
arcs by two crossing segments; see Figure 8(ii). Cetenote the set of curves, obtained by

12



modifying the circlesry, ... , o, in this manner. By construction, each curve(ihis star-shaped
with respect tw andC’ produces the sequentEif we sweep it around with a ray. By induction
on the length ofT, one can show that’ andC’ are combinatorially equivalent, which implies that
(" is a family of pseudo-circles, any pair of which intersecexactly two points. O

Lemma 2.11 implies that the number of empty lenseS'iis the same as that ifi’. Hence, by
Theorem 2.5, we obtain the following.

Corollary 2.12 LetC be a family of» > 3 pairwise-intersecting pseudo-circles in general positio
whose common interior is not empty. Theit') < 2n — 3. Forn = 2, u(C) = 3.

We are now ready to prove the main result of this section.

Theorem 2.13 Let C' be a family ofn pairwise-intersecting pseudo-circles in general positio
Thenu(C) = O(n).

Proof: By Corollary 2.8, there exists a partitidy, . .. , Cy} of C into O(1) subsets, so that all
the pseudo-circles i@; contain a poinb; in their common interior, fof = 1, ... , k. Corollary 2.12
implies that the number of empty lenses induced by two pseirdtes within the same familg;

is at mos®|C;| — 1, for a total of at mos2n — k. It thus remains to consider the case in which the
given family of pairwise intersecting pseudo-circles is tmion of two subfamilies’, C’, such that
the interiors of all pseudo-circles i (resp., inC") contain a common point (resp.,o’). We wish
to bound the number of “bichromatic” empty lenses, i.e., gnignses inA(C' U C’) formed by a
pseudo-circle irC' and a pseudo-circle i@’. We may assume that none of the pseudo-circles’ of
containso in its interior. Indeed, each pseudo-circle@fwhose interior contains can be added
to C', and every bichromatic empty lens it determines is countedrg the empty lenses ia(C'),
using Theorem 2.5. Similarly, we may assume that none of $eego-circles of” containso’ in
its interior. Any bichromatic lune-face iA(C' U C') must contain eithes or o', so there can be at
most two such faces. Thus, it suffices to bound the numbercbfdmaticlens-faces

Apply an inversion of the plane with respectdo Then each bichromatic lens-face is mapped
into a lune-face, which lies outside the incident pseudcteiof C' and inside the incident pseudo-
circle of C’. Moreover, all the pseudo-circles of both families now eimd’ in their interior. Hence,
by Theorem 2.5, the number of these lune-faces (that is,rigmal lens-faces) is at mo&h — 4,
forn > 3;itis 2 forn = 2. Summing this bound over all pairs of sets in the partitibe, theorem
follows. O

2.4 Pairwise nonoverlapping lenses

Let C be a family ofn pairwise-intersecting pseudo-parabolas or pseudoesiiolgeneral position,
and letL be a family of pairwise nonoverlapping lenses4fC'). In this subsection, we obtain the
following bound for the size of..

Theorem 2.14 LetC' be a family ofn pairwise-intersecting pseudo-parabolas or pseudo-esadh
general position. Then the maximum size of a family of pagwionoverlapping lenses #(C) is
O(n*/3).
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We begin by considering the case of pseudo-parabolas; westimv that the other case can be
reduced to this case, using the analysis given in the pnegedlibsections. We first prove several
lemmas.

Lemma 2.15 Let C' and L be as above, and assume further that the lenses rave pairwise
disjoint interiors. ThenL| = O(n).

Proof: For each lens € L, let o denote the number of edges.A{C') that lie in the interior of\
(i.e., the region bounded by), and setrr, = ), ox. We prove the lemma by induction on the
value ofoy. If o, = 0, i.e., all lenses irl. are empty, then the lemma follows from Theorem 2.13.
Supposery, > 1.

Let Ao be a lens inL with o), > 1, and letK| be the interior of\,. Let~,~" € C be the
pseudo-parabolas forming, and letd C v andd’ C +' be the two arcs forming,. Let{ € C be
a curve that intersect&; clearly,( € C' cannot be fully contained in the interior &f;, so it must
crossAg. Up to symmetry, there are two possible kinds of intersedtietweer{ and\:

(i) |¢Nd'|=2,and¢ Nd = 0.

(i) ¢ intersects botl andd’. In this case, eithef intersects each of, ¢’ at a single point, or it
intersects each of them at two points.

SupposeK is crossed by a curve € C of type (i). Let\; be the lens formed by and~’.
We replace\ with \; in L. See Figure 10(i). The new sét still consists of lenses with pairwise
disjoint interiors, so in particular the lenseslihare still pairwise nonoverlapping. Moreover, the
interior of A, is strictly contained in, and contains fewer edges 4{C) than Ky, soo; < or.
The lemma now holds by the induction hypothesis. We may tksarae that no curve of type (i)
crosses(, so all these curves are of type (ii). In this case, we defpiny/, thereby shrinking<
to an empty lens betweenandy’. For example, we can replaéeby an arc that proceeds parallel
to 4 and outsidek, and connects two points oyl close to the endpoints of, except for a small
region where the neW crosses twice, forming a small empty lens; see Figure 10(ii). Sinog/o
curves of type (ii) cross(y, it is easy to check thaf' is still a collection of pairwise-intersecting
pseudo-parabolas. Moreover, since the lensdsdre pairwise nonoverlapping and no pair of them
share an endpoint, the deformationib€an be done in such a way that no other lens is affected.
The lens) is replaced by the new lens formed between and the modified’. Sinceo), = 0,
we have reduced the size @f , and the claim follows by the induction hypothesis. This ptates
the proof of the lemma. O

A pair (A, \') of lenses inL is calledcrossingif an arc of \ intersects an arc of’. (Note that
a pair of lenses may be nonoverlapping and yet crossing.)irA(pa\’) of lenses inL is said to be
nestedf both arcs of\" are fully contained in the interior of. Let X be the number of crossing
pairs of lenses i, and letY” be the number of nested pairs of lenseg.in

Lemma2.16 LetC, L, X andY be as above. Then
IL|=0(n+ X +Y). 1)

Proof: If L contains a pair of crossing or nested lenses, remove onemffitom . This decreases
|L| by 1 andX + Y by at least 1, so if (1) holds for the nely, it also holds for the original set.
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( (i)

Figure 10. (i) Replacing\o by a “smaller” lens if it intersects a type (i) curve. (ii) $fking Ao to an empty lens when
itis crossed only by type (ii) curves.

Repeat this step until has no pair of crossing or nested lenses. Every pair of lengése new)L
must have disjoint interiors. The lemma is then an immediatessequence of Lemma 2.15. O

We next derive upper bounds f&F andY. The first bound is easy:
Lemma2.17 X = O(n?).

Proof: We charge each crossing pair of lengas)\’) in L to an intersection point of some arc
bounding\ and some arc bounding. Since the lenses df are pairwise nonoverlapping, it easily
follows that such an intersection point can be charged at Mgl times (it is charged at most once
if the crossing occurs at a point in the relative interior afsaof both lenses), and this implies the
lemma. O

We next derive an upper bound fbr, with the following twist:

Lemma 2.18 Letk < n be some threshold integer parameter, and suppose that eashofL is
crossed by at mogt curves ofC. ThenY = O(k|L|).

Proof: Fix alens\’ € L. Let\ € L be a lens that contains in its interior, i.e.,(\, ') is a nested
pair. Pick any poing on \’ (e.g., its left vertex), and draw an upward vertical pefyom ¢; p must
cross the upper boundary &f It cannot cross more thanother curves before hitting because any
such curve has to crogg(as mentioned in the proof of Lemma 2.15, no curve can be fahtained
in the interior of a lens of.). Because of the nonoverlap of the lensed @hd the general position
assumption, the crossing point A uniquely identifies\. This implies that at mogD (%) lenses in
L can contain\’, thereby implying that the number of nested pairs of lensdsis O (k|L|). O

Proof of Theorem 2.14: Continue to assume thétis a collection of pseudo-parabolas, andllet
be a family of pairwise nonoverlapping lensesAfC'). Let k be any fixed threshold parameter,
which will be determined later. First, remove fromall lenses which are intersected by at lefast
curves ofC'. Any such lens contains points of intersection of at léagairs of curves of”'. Since
these lenses are pairwise nonoverlapping, and there(are 1) intersection points, the number of
such “heavily intersected” lenses is at me%th?/k). So, we may assume that each remaining lens
in L is crossed by at mogtcurves ofC'.
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Draw a random sampl& of curves fromC, where each curve is chosen independently with
probability p, to be determined shortly. The expected number of curvésignp, and the expected
size|L'| of the subsef.’ of lenses ofL that survive inR (i.e., both curves bounding the lens are
chosen inR) is | L|p?. HereL refers to the set after removal, withit(C), of the heavily intersected
lenses. The expected numbérof nested pairg), \') in L' is Y p* (any such pair must be counted
in Y for the whole arrangement, and its probability of survivingR is p*). Similarly, the expected
numberX’ of crossing pair§\, \') in L' is Xp*. By Lemmas 2.16 (applied td(R)), 2.17, and
2.18, we have

|LIp* < c(np + n’p* + K| L|p*),

for an appropriate constant That is, we have
IL|(1 — ckp?) < ¢ (g + n2p2> .

Choosep = 1/(2ck)'/?, to obtain|L| = O(nk'/? + n?/k). Adding the bound on the number of
heavy lenses, we conclude that the size of the widke

2
IL| = O <nk1/2 + ”—) .
k
By choosingk = n?/?, we obtain|L| = O(n*/?), thereby completing the proof of the theorem for
the case of pseudo-parabolas.

Suppose next thaf' is a collection of pairwise intersecting pseudo-circlese &pply the se-
guence of reductions used in Section 2, and keep track offtétie”“of each lens in’,, ensuring
that they remain pairwise nonoverlapping. The transfoionateffected by Lemma 2.11 and The-
orem 2.13 clearly do not violate this property. Moreoverewhve pass to the subcollectioi or
C; U Cj, the remaining lenses continue to be pairwise nonoventgppiinally, “opening-up” the
pseudo-circles into pseudo-parabolas by cutting them avitty may destroy some lensesigfbut
the number of lenses df that are cut by the ray is clearly onfy(n), so we can remove them from
L and consider only the surviving lenses, to which the ansliysit presented can be applied. O

2.5 Cutting pairwiseinter secting pseudo-circles into pseudo-segments

Let C' be a family ofn pairwise intersecting pseudo-parabolas or pseudo-sithkg are not neces-
sarily in general position. (This is the first time that weatrdegenerate situations as well.) Recall
thaty (C') denotes the minimum number of subarcs into which the curvésrieed to be cut so that
any two arcs intersect at most once. As noted, the analysiarobki and Tokuyama [27] implies
thatx(C) = O(v(C)). Hence, if the curves i’ are in general position, Theorem 2.14 implies that
X(C) = O(n'/3).

Remark. For the analysis of [27] to apply, one has to assume that tiepties ofC' that are needed
for the derivation of a bound om(C') also hold for any (random) sample 6f For example, here
we assume that every pair of curves@nintersect, and this clearly holds for any subsetofin
later applications similar hereditary behavior also hasawerified, but we will not do it explicitly,
as it will trivially hold in all cases.

Handling degeneracies. Suppose that the curves @ are in degenerate position. For technical
reasons, we assume that, for the case of pseudo-circlesuihes arex-monotone. We will first
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deform them into a collection of curves in general positithen apply Theorem 2.14 to obtain the
boundO(n*/3) on v (C"), for the deformed collectiod”, then apply the analysis of Tamaki and
Tokuyama to cut the curves 6F into O(n*/3) pseudo-segments, and finally deform the cut curves
of C’, together with the cutting points, back to their originakjpion.

In more detail, we proceed as follows. Lebe a point at which at least three curvesCoare
incident or at least two curves @f are tangent; any number of pairs of curves incident toay
be tangent to each other af Draw a small axis-parallel rectangle= ~, centered ap, so that
(i) the interior ofy does not contain any vertex #f(C') except forp; (ii) each curve incident tp
intersectsy in exactly two points, which lie on the left and right edgesypfind (iii) no curve that
is not incident tgp intersectsy. The x-monotonicity and continuity of the curves 6f are easily
seen to imply that such-aexists. For each curvethat is incident tg, we replace the (connected)
portion of ¢ inside-y by the pair of straight segments connecting the two points oft: N v. See
Figure 11(i).

Tp

@ (i)

Figure 11. Perturbing arrangements in degenerate position: (i) @ttaning the curves in the vicinity of a degenerate
pointp. (ii) Deforming the curves near. (Note thatc, andcs cross ap, while every other pair is tangent at)

For each curve; € C passing through, let \; (resp.,p;) denote the intersection of with the
left (resp., right) edge of. Order the curves incident fpasc, ... ,c;, So that\,... , \; appear
in this increasingy-order along the left edge of. Replacep by a sequence of distinct points
p1,--- ,pj lying on the vertical line passing through and arranged along it in this decreasing
y-order. For each = 1,..., 7, replace the portion of; within v by the two straight segments
connecting\; andp; to p;; see Figure 11(ii).

It is easily verified that (i) each pair of original curvesttigere tangent ap are replaced by
a pair of curves that cross twice withinand (ii) each pair of original curves that crossea aire
replaced by a pair of curves that cross once withinThis implies that the resulting curves are
still a family of pairwise-intersecting pseudo-parabotasz-monotone pseudo-circles, and, with
an appropriate choice of the poinis, . .. , p;, the portions of these curves withinare in general
position.

We repeat this perturbation in the neighborhood of eachtbat is incident to at least three
curves or to at least one tangent pair. The final perturbddatmn C’ is still a family of pairwise
intersecting pseudo-parabolaszemonotone pseudo-circles, and they are now in generaliposit
Applying, as above, the analysis of Tamaki and Tokuyama dmabiiem 2.14, we can cut the curves
in ¢’ into O(n*/?) pseudo-segments. Moreover, the cuts can be made in such thatafor any
curvec incident to a degenerate poipt its perturbed versior’ is cut within the corresponding

“Note that it may be the case that , co) and(c1, c3) are two pairs of tangent curves @tbut ¢, andcs arenot
tangent; see Figure 11(i).
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surrounding rectangle, only if ¢ participates in a lens that is fully contained 4, which is
equivalent to the original curvebeing tangent to some other curve(spat

Finally, after having cut the perturbed curves, we deforemttback to their original positions.
If a perturbed curve’ was cut within some rectangtg,, we cut the original curve at the centep
itself. It is easily verified that the resulting collectiohawcs is indeed a family of pseudo-segments.
No two arcs are tangent to each other (in their relative imtg), but an endpoint of an arc may lie
on (the relative interior of) another arc. We summarize #éimalysis in the following theorem.

Theorem 2.19 Let C be a collection of: pairwise intersecting pseudo-parabolas :oimonotone
pseudo-circles, not necessarily in general position. Thef) = O(n*/?). (z-monotonicity need
not be assumed for pseudo-circles in general position.)

3 Bichromatic Lensesin Pseudo-Parabolas and Their Elimination

In this section we consider the followirtgjchromaticextension of the problems involving empty
and pairwise-nonoverlapping lenses, which is required msia technical tool in the analysis of
the general case, treated in Section 5, where not all paitiseofjiven pseudo-circles necessarily
intersect.

We consider in this section only the case of pseudo-parapwalaich is simpler to handle. The
case of pseudo-circles will be treated indirectly in Satto Moreover, we return to our initial
assumption that the given curves are in general positioigeBerate cases will be treated later on.
LetT' = A U B be a family ofn pseudo-parabolas in general position, whérel B = () and
each pseudo-parabola dfintersects every pseudo-parabolaibtwice; a pair of pseudo-parabolas
within A (or B) may be disjoint. A lens formed by a pseudo-parabola betangp A and another
belonging toB is calledbichromatic

We first extend Theorem 2.4 to the bichromatic case, and dimatttte number of empty bichro-
matic lenses, in the setup assumed abov@(is). Then we obtain a bound 6(n*/?) on the max-
imum size of a family of bichromatic pairwise nonoverlapgpilenses. These results are obtained
by pruning away some curves fraii so that the remaining curves are pairwise intersecting nan
lens in the family under consideration is lost. More speaifjc we proceed as follows.

Theorem 3.1 Letl’ = AU B be a family of» pseudo-parabolas in general position, whera B =
() and each pseudo-parabola dfintersects every pseudo-parabolam®twice. Then the number of
empty bichromatic lenses ia(T") is O(n).

Proof: It suffices to estimate the number of empty bichromatic Isrisemed by some € A and
by someh € B so thata lies aboveh within the lens. The complementary set of empty bichromatic
lenses is analyzed in a fully symmetric manner.

We apply the following pruning process to the curved'ofLet a, a’ be two disjoint curves in
A so thata' lies fully belowa. Then no empty bichromatic lens of the kind under considarat
can be formed betweem and any pseudo-parabaobac B, because then’ andb would have to
be disjoint; see Figure 12(i). Hence, we may remavieom A without affecting the number of
empty bichromatic lenses under consideration. Similafrly,andd’ are two disjoint curves i3,
with b lying fully below ', then, for similar reasons, no empty bichromatic lens ofkine under
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consideration can be formed betwdeand any pseudo-parabalac A; see Figure 12 (ii). Hence,
b may be removed fron® without affecting the number of lenses that we are after.

@ (ii)

Figure 12. Discarding one of the nested pseudo-parabolas: if)discarded, (iip is discarded.

We keep applying this pruning process until all pairs of reimg curves inA U B intersect
each other. By Theorem 2.4, the number of empty lenség iU B) is O(n). As discussed above,
this completes the proof of the theorem. O

In order to bound the maximum number of bichromatic pairwisaoverlapping lenses i,
we need the following lemma.

Lemma 3.2 Letl’ = AUB be afamily of» pseudo-parabolas in general position, whei@ B = ()
and each pseudo-parabola dfintersects every pseudo-parabola®ftwice. Letl be a family of
pairwise-nonoverlapping lenses #(I") that have pairwise disjoint interiors. Theh| = O(n).

Figure 13. Transforming a lens into an empty lens.

Proof: As earlier, it suffices to estimate the number of lenses that are formed by some e A
and by someé € B so thata lies aboveh within the lens. As in the proof of Theorem 3.1, we argue
that if there are two disjoint curvesa’ € A so thata’ lies fully belowa, thena can be pruned away.
Let\ € L be alensformed by and by some curvee B. Letd C bbe the arc ob forming\. Since

b\ d lies fully abovea and thus above’, the curver’ must interseci at two points. Replacg by the
lens )\, formed betweem’ andb. Since the lenses ih have disjoint interiors)’ is not a member
of I, and, after the replacement, is still a family of bichromatic lenses with pairwise-digjo
interiors (and thus pairwise nonoverlapping), of the saixe $1ence, by applying this replacement
rule to each lens i formed alonga, we construct a family of pairwise-nonoverlapping lenses i
which no lens is bounded by, so we delete: from A. Hence, we can assume that all pairs of
curves inA intersect. By applying a symmetric rule for pruning the esnof B, we can assume
that every pair inB also intersect. Since every two curvedinntersect, the lemma follows from
Theorem 2.4. O

By proceeding as in Section 2.4 but using the above lemmeadsif Lemma 2.15, we obtain
the following result.
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Lemma 3.3 Letl’ = AUB be a family of» pseudo-parabolas in general position, wher@ B = ()
and each pseudo-parabola dfintersects every pseudo-parabola®ftwice. LetL be a family of
pairwise-nonoverlapping bichromatic lensesArT"). Then the size df is O(n*/?3).

As a result, we obtain the main result of this section.

Theorem 3.4 Letl’ = AUB be afamily of» pseudo-parabolas, not necessarily in general position,
whereA N B = () and each pseudo-parabola df intersects every pseudo-parabola Bftwice.
Then one can cut the curveslirinto O(n*/?) arcs, so that each arc lying on a curve dfintersects
every arc lying on a curve @8 at most once.

Proof: If the curves are in general position, this is an immediatelary of the analysis of [27],
in a similar manner to the application in Section 2.5. (Asaekad there, we need to verify that the
conditions assumed in the theorem also hold for subsets @&f, which is clearly the case.) I
and B are in degenerate position, we apply the perturbation sehes®d in Section 2.5. It is easily
checked that this scheme maintains the property that eawgh tud intersects every curve i, so
the bound on the number of cuts remaing:*/?) in this case too. O

4 Improving the Tamaki-Tokuyama Bound

In this section we improve the bound of Tamaki and TokuyanT {@ arbitrary collections”' of
pseudo-parabolas @rmonotone pseudo-circles, and show thaf) = O(n®/%) in these cases.

4.1 The case of pseudo-parabolas

Theorem 4.1 LetI" be a family ofn pseudo-parabolas (not necessarily in general positioterT
x(T) = 0(®).

Proof: Let us first assume that the given collection is in generaitipos and handle the degenerate
case towards the end of the proof, as in the preceding secti@iIl" be a collection of, pseudo-
parabolas in general position, andielbe a family of pairwise honoverlapping lenseg'inConsider
the graphG = (T', L) as in Section 2.1. We dra@ in the plane using the same drawing rule
described in Section 22 We partitionT into two subsetd’;, ', of size at mostn/2] each so
that for all (y1,72) € T'1 x 'y, 77 lies abovey;. Let G' be the bipartite subgraph ¢f in which
E(G")y = E(G) N (T'y xT3). Then|L| < v(T1) + v(T2) + |E(G")].

By refining the rule described in Section 2.1 we dr@vso that the drawings of every pair of
edges inG’ that belong to a cycle of length intersect an even number of times. By a result of
Pinchasi and Radoiti¢ [25], a graph overtices with this property has at ma3tn®/®) edges. Put
v(n) = maxr v(I"), where the maximum is taken over all s€tsf n pseudo-parabolas in general
position. Sincal'y|, |T'2| < [n/2], we obtain the recurrence

v(n) <2v ({g-D +0(n?"),
whose solution ig(n) = O(n®/%). This implies thatL| = O(n®/%). This, plus the analysis in [27]
implies thaty(T') = O(n®/%).

*We make a small technical modification in the statement offtiee the wedgéV (v1, ~2) is now defined to terminate
on the right at the left intersection point of and~- (rather than at their tangency, as in Section 2.1).
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Figure 14. lllustrating the refined drawing rule for the plane embeddifi G'. The lenses of. all appear along the
bottommost curve, and each empty circle designates theridfioint of a lens, and the apex of the corresponding wedge.

We first describe how to refine the drawing@f. The drawing rule of Section 2.1 only specifies
how the edges ofi’ have to “navigate” around intermediate vertices along tical line?, but
the rule does not specify the order in which edges emanate dreertex. Letf* be a vertex of the
drawn graphG’. Letgj,... ,g; be all the vertices abovg* that are connected to it by an edge.
For eachl < i < k, letz; be thex-coordinate of the leftmost intersection point betwgeandg;.
Order they;’s so thatr; < z; whenever < j. We then draw the edgé€g, g1),... , (f, gx) So that
they emanate fronf* upward in this clockwise order. See Figure®14.

Symmetrically, for any given vertex* let by, ..., h;, denote all the vertices beloW* that
are connected to it by an edge. Order them, as above, in thgafht order of the leftmost
intersection points betweén, ... , h,, andf. We draw the edge&/, h1), ... , (f, hm) SO that they
emanate fromf* downward in this counterclockwise order. We call two edges/oadjacentif
they share an endpoint.

Claim A The drawings of every pair of adjacent edgesincross an even number of times.

Proof: We prove this only for two adjacent edges whose drawings g@tghfrom a common vertex
f/*; the argument for edges that go downward is fully symmettiet the other endpoints of these
edges bg* andh*, and assume, without loss of generality, thaties abovey*.

If the arc(f*, h*) passes to the left af*, then the leftmost intersectian,, betweer, andg is
to the left of the leftmost intersectiony;, betweenh and f (clearly, both intersections exist); see
Figure 15(i). We claim that in this caseg,, lies to the left of the leftmost intersectiary, between
f andg. Indeed, assume to the contrary that lies to the right ofv;,. Theng must intersect,
twice to the left ofv, and then intersedt at least once to the left af;,. Moreover, since the lenses
(f,g) and(f, h) are nonoverlapping, the rightmost intersecti% of f andg must also lie to the
left of vy, see Figure 15(i). But then, immediately to the righ'w%, the curveg is “trapped” in
the wedgdV (f, h), since it has already intersected each of these curves.tWide contradiction
implies thatv, lies to the left ofv¢,, and our modified drawing rule thus implies ti#t, ¢*) lies
clockwise to(f*, h*) nearf*. Regarding the two edges as graphs of functiong, @ind using the
mean-value theorem, as in Section 2.1, we conclude(fiay*) and (f*,h*) intersect an even
number of times.

If the arc(f*, h*) passes to the right gf* then the leftmost intersectiary, of f andg lies to
the left of the leftmost intersectiony;, of f andh. See Figure 15(ii). Then our modified drawing
rule implies that(f*, g*) lies counterclockwise tof*, h*) nearf*. Arguing as above, this implies
that these two edges intersect an even number of times, dnusleting the proof of our claim.O

Note that in this figure, unlike Figure 2(ii), we do not drave fienses as tangencies, since they need not be empty.
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@ (i)

Figure 15. lllustrating the proof that adjacent edgeg#fintersect an even number of times. (i) The case whgteh*)
passes to the left gf*. (i) The case wheréf*, h*) passes to the right of".

ClamB If (f,p,g,q) is a cycle of length four ir’, then the curved, p, g, and ¢ are pairwise
intersecting.

Proof: This clearly holds for each pair of curves whose correspupdlertices are adjacent in the
cycle, so the only pairs that need to be analyzed are thefpaiand the paip, q. We show that
f,g must intersect each other, and the argumenpfqris similar. Assume to the contrary that
and g are disjoint and, without loss of generality, théties always above. Trace the curve
from left to right. It starts above, g and it creates a lens with each pfandg. Clearly, p must
first intersectf, but then it cannot intersegtbefore it intersectg again, for otherwise the lenses
(p, f) and(p, g) would be overlapping. However, aftgrintersectsf for the second time, it cannot
intersectg anymore, sincg’ now separates these two curves. See Figure 16 (i). Thisazbeiion

implies thatf, p, g, ¢ are pairwise intersecting. |
p* p*
I g*
g [

(i) (ii)

Figure 16. (i) All the pairs of curves that correspond to the given 4teyuoust intersect. (ii) The lenses that correspond
to the 4-cycle are all empty relative to the four curyep, g, q.

Claim C If (f,p, g, q) is a cycle of length four id’, then the four lenses corresponding to the cycle
are empty with respect to the arrangement of these four surve

Proof: Consider any of these four lenses, $dyp), and assume that eithgor ¢ intersects it. Since
the two cases are similar, we only consider the case whitersectq f, p). g cannot intersect the
arc of(f, p) that belongs t, for then(f, p) and(g, p) would be overlapping. It follows that must
intersect twice the arc dff, p) that belongs tg; see Figure 16 (ii). In this case, singstarts below
p, g must intersecp once to the left of the lenéf, p) and once to its right, in which case the two
lenseq f, p) and(g, p) are overlapping, a contradiction that implies the claim. O
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Finally, let (f,p, g,q) be a cycle of length four ii7’. By Claim A, the drawings of each of
the four pairs of adjacent edges intersect an even numbane$t By Claims B and C, the lenses
(f,p) and(g, q) are empty in the family of the four pairwise intersectingymd@parabolag, p, g, q.

It now follows from the analysis of Section 2.1 that the dags of (f, p) and(g, ¢) intersect an
even number of times. Similarly, we can argue that the drgsviof (f, ¢) and (g, p) intersect an
even number of times, thereby implying that the drawingsvef pair of edges in the above cycle
intersect in an even number of times. Hend&(G")| = O(n®/®), by the result in [25].

This completes the proof of the theorem for curves in geraltion. In the degenerate case
we proceed exactly as in Section 2.5, concluding tH&) = O(n%/%) in these cases too. O

4.2 The case of pseudo-circles

We next extend Theorem 4.1 to the caserahonotonepseudo-circles. The corresponding exten-
sion to the case of arbitrary pseudo-circles remains an ppasem, although we expect it to hold
just as well. LetC' be a family ofn z-monotone pseudo-circles. For any closed and bounded
monotone Jordan curvein the plane, denote by, (resp.,p.) the leftmost (resp., rightmost) point
of ¢, assuming these points to be well defined. The polpts, partition ¢ into two 2z-monotone
arcs, calledupperandlower arcs and denoted as, ¢, respectively; see Figure 17 (i).

c TI
OPc .
.o p T‘J:'
Bs -

( (i)

Figure 17. Converting a pseudo-circle into two pseudo-parabolas.

We convertC' into a family of pseudo-parabolas. For eack C, we extend its upper arc"
to anz-monotone curvey,” by adding a downward (almost vertical) réy(resp.,rb of sufficiently
large positive (resp., negative) slope frap(resp. o.); all rays emanating from the left (resp., right)
endpoints of the pseudo-circles are parallel. Similarlyextend every:— to anz-monotone curve
v, by attaching upward (almost vertical) re&sandri to \. andp,, respectively. We assume that
the rays are chosen sufficiently steep so that a downward. (r@sward) ray intersects a pseudo-
disk of C' only if it lies vertically below (resp., above) the apex okthay. If z-coordinates of
the left (or right) endpoints are are not all distinct, thea dvaw the rays as earlier, but they have
slightly different slopes. For example, we draw the raﬁms follows. We sort the left endpoints of
all the curves inC' in nondecreasing order of theircoordinates. If two endpoints have the same
x-coordinates, then we sort them in nonincreasing orderaif thcoordinates. If two curves have
the same left endpoint, i.e., they are tangent at their tefpeints and one of the curves lies inside
the other, then the left endpoint of the outer curve appeats fiet A~ be the resulting sequence of
left endpoints. We choose a sufficiently large slepes above, and a sufficiently small parameter
0. For theith left endpoint\. in A, we draw a downward raéi of slopes + ie. The interiors of
these rays are pairwise disjoint, and they are parallellf@ractical purposes. We do the same for
the other three types of rays to handle degeneracies. We rowe that the resulting curves form a
family of pseudo-parabolas.
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Lemma 4.2 LetC be a finite family ofc-monotone pseudo-circles. ThEn= {y},v, | c € C}is
a family of pseudo-parabolas.

Proof: For simplcity we prove the lemma for the case in which theoordinates of the extremal
points on the curves af' are all distinct. With a little care, the proof can be extahttethe general
case. Let: andb be two pseudo-circles i¥. We first prove that, andy,;F intersect in at most two
points. For simplicity, for a curve € C, we will usel., r. to denote the ray& andri, respectively.
Without loss of generality assume thatlies to the left of\;; then the ray, does not interseoﬁj .
There are three cases to consider:

Case (A):)\, lies to the right ofp,: In this case the only intersection betwegh and 7,;* is
between the rayg andr, (see Figure 18 (A)).

b+
(B.2)
bt + at ot
oy m m
(B.3) (C1) (C2) (C.3)

Figure 18. Two extended upper arcs intersect at most twice: gA)ies to the left of\s; (B) X, lies abovea™: (B.1)
a™, bT intersect at two points or they intersect at one pointduies to the right ofp..; (B.2) a* andb™ intersect at one
point andp, lies to the left ofp,; (B.3) a™ andb™ do not intersect. (C), lies belowa™: (C.1)a™ andb™ intersect at
two points andps lies to the left ofp..; (C.2)a™ andb™ intersect at one point; (C.38)" andb™ do not intersect.

Case (B):)\, lies abovea™. In this casd,, intersectsa™, so we show that there is at most one
additional intersection point betweeg and~,". If «™ andb™ intersect at two points or if ™ and
b™ intersect at one point but, lies to the right ofp,, thena andb intersect in at least four points
(see Figure 18 (B.1)), contradicting the assumption €& a family of pseudo-circles. ™ and
b™ intersect at one point ang, lies to the left ofp, (and, necessarily, below"), then neither,
intersectsy,” (r, lies to the right ob™) norr, intersectsy;” (r, lies belowa™); see Figure 18 (B.2).
Hence, there are only two intersection points betw&,;érandyj.

If «™ andb™ do not intersect, then, cannot intersect,", as it lies belows™. Hence, onlyr,
may intersecty;” (if p, lies to the right ofp), thereby showing that there are at most two intersection
points between,; andyj; see Figure 18 (B.3).

Case (C):)\, lies belowa™. In this casd, does not interseat™. If a™ intersectsh™ at two
points andpy, lies to the right ofp,, thena andb intersect in at least four points, a contradiction (the
situation is similar to that shown in Figure 18 (B.1)). If yhiatersect at two points but, lies to
the left of p,, then neither, intersect$™ norr, intersects:™, so there are at most two intersection
points between, 7;; see Figure 18 (C.1).

a

If ™ andb™ intersect at one point, thern, cannot intersec*ls/b+ (see Figure 18 (C.2)), so the
number of intersection points betweepi and fy,f is easily seen to be at most two. Finallyaif
andb™ do not intersect, then there is at most one intersectionetmmg and7+, namely between
rqo andb™ (if p, lies to the right ofp,); see Figure 18 (C.3).

Hence, in all cases, there are at most two intersection pbetiveeny; andyj . A symmetric
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argument shows that, and~, also intersect at most twice. Finally, a similar case anslyde-
picted in Figure 19, shows thaj andyj also intersect at most twice. We leave it to the reader to
fill in the fairly straightforward details, similar to thoggven above. |

(€1 (C.2) (C.3)

Figure 19. An extended upper arc and an extended lower arc interseabstttmice: (A)p. lies to the left of\;; (B)
Xy lies aboven™: (B.1) o™, b~ intersect at two points; (B.2)" andb™ intersect at one point; (B.3)" andb™ do not
intersect. (C)\, lies belowa™: (C.1)a™ andb™ intersect at two points (an impossible configuration); @2 andb™
intersect at one point; (C.3)" andb™ do not intersect.

Theorem 4.3 Let C' be an arbitrary family ofn. 2-monotone pseudo-circles in the plane. Then
X(C) = 0(n®").

Proof: Assume first that the curves (@i are in general position. Lat be a family of pairwise-
nonoverlapping lenses i@. We convertC' into a familyT' = {v,~. | ¢ € C} of 2n pseudo-
parabolas, as described above. There are at 2ndsinses inl. that contain\., p. of a curvec € C

on its boundary, as the lenseslirare nonoverlapping. Any remaining lens lies on the uppeher t
lower arc of a pseudo-circle i@, and therefore it lies in the transformed collectibrof pseudo-
parabolas. By Theorem 4.1, the number of such lens€5is/®). Hence,|L| = O(n®/%), which
implies the claim for curves in general position. The casdegfenerate position is handled exactly
as in Section 2.5. O

5 Curveswith 3-Parameter Algebraic Representation

In this section we further improve the bound obtained in ttevipus section, and derive a bound
close ton3/2 for a few important special cases, in which the curves psssémt we term as a
3-parameter algebraic representatioAs in Sections 2 and 4, we first prove the bound for pseudo-
parabolas and then reduce the case of pseudo-circles tof thetudo-parabolas.

5.1 The case of pseudo-parabolas

LetT be a family ofn pseudo-parabolas. We say thabas a3-parameter algebraic representation
if " is a finite subset of some infinite family of curves so that each curgec P can be represented
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by a triple of real parameters, n, ¢), which we regard as a point' € R?, so that the following
three conditions are satisfied.

(AP1) For each poing in the plane, the locus of all curves I that pass through is, under the
assumed parametrization, a 2-dimensional surface pat@h,iwhich is a semialgebraic set
of constant description complexjtie., it is defined as a Boolean combination of a constant
number of polynomial equations and inequalities of coristaaximum degree. For any two
distinct pointsp and ¢ in the plane, the locus of all curves I that pass through both
andq is, under the assumed parametrizatioih;ddimensional semialgebraic curve of constant
description complexity.

(AP2) For each curve € P, the set of all curveg € P that intersecty maps to &-dimensional
semialgebraic sek’, of constant description complexity. The boundaryFof, denoted by
7,, is the locus of all curves i that are tangent tg (and, being pseudo-parabolas, do not
meety at any other point)r,, partitionsR? into two regions, one of which &, and the other
consists of points representing curves that are disjoimh fy.

(AP3) Each curve irP is a semialgebraic set of constant description complerithé plane, and
the family P is closed under translations.

We remark that condition (AP1) is not needed for obtainingriats onv(T") and x(T"). Itis
used for obtaining improved bounds for the number of inal@srbetween points and the curves in
", and for the complexity of many faces #(T"); see Section 6 for details. The classveftical
parabolas, given by equations of the fogm= az? + bz + ¢, is an example of pseudo-parabolas
having a3-parameter algebraic representation, where each parasbapresented by the triple of
its coefficients.

Suppose then th& is a fixed collection of pseudo-parabolas that have a 3-peteamalgebraic
representation, and I€t C P be a family ofn pseudo-parabolas.

Our plan of attack, similar to those employed in [7, 8], isé@dmpose thtersection graphd
of I (whose edges represent all intersecting pairs of curvE$ into a union of complete bipartite
graphs{4; x B;};, so that, for eacla € A;, b € B;, a intersects. We then use Theorem 3.4 to
derive an upper bound on the number of cuts needed to elienatidbichromatic lenses id; x B;.
We repeat this process for each complete bipartite grgph B;, and add up the numbers of cuts
to derive the overall bound op(T").

In more detail, we proceed as follows. L&t = {y* | v € T}, andl’ = {7, | v € T}. We
describe arecursive scheme to generate the desired t@metiomposition of the intersection graph
of I'. At each step, we have two families B C T, of sizem andn, respectively. Let(A, B)
denote the minimum number of cuts needed to eliminate dfirbioatic lenses it (A U B). Set
x(m,n) = max Y(A, B) where the maximum is taken over all families xf and n pseudo-
parabolas oP, respectively. Set(m) = x(m,m). We need to introduce a few concepts before
beginning with the analysis of(m).

For any constant integey, let \,(r) denote the maximum length of Davenport-Schinzel se-
quences of ordeg composed of- symbols [26]. Puts,(r) = X,(r)/r. In what follows, we
sometimes drop the parametgrand write, (r) simply asj3(r). Assumingg to be even, we have
By(r) = 200 ™") \wherea(r) is the extremely slowly growing inverse Ackermann function
See [26] for more details. Let C R? be a simply connected region of constant description com-
plexity. For a seti' of surfaces inR?, we define the conflict list, C G with respect ta7 to be
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the set of surfaces that intersecbut do not contairr. Each surface iid7- either crosses, or it is
tangent tor.

Lemma5.1 For anym, n and for any given parametdr < r < min{m'/3,n},

m n

x(m,n) < cr3B,(r) [X ( —) + O((m —|-n)4/3)] , 2

whereq is a constant that depends on the fanilyandc is an absolute constant.

Proof: Let A, B ¢ P be two families ofm andn pseudo-parabolas, respectively. It= {7 |

b € B}. For a parameter < r < n, a(1/r)-cutting = of the arrangemend (B) is a decomposition
of R3 into relatively open and simply connected cells of dimensih 1,2, 3, each having constant
description complexity, so that the size of the conflict éifeach cell with respect t& is at most
n/r. Since eachy, is a two-dimensional algebraic set of constant descripgt@mplexity, it follows
from the results in [2, 3] that there exist{§/r)-cutting = of size O(r*3,(r)), wheregq is 2 plus
the maximum numbes’ = s'(vy1,72,73,74), over all quadruples of curves, y2,73,v4 in P, of
vertical lines? that pass through both intersection curvesn 7,, and ., N 7, in R3. More
precisely,s’(v1, 72,73, 74) is the number of connected components of the union of alethesgtical
lines; equivalently, it is the number of connected comptmei the intersection of the vertical
projections ofr,, N ,, andr,, N 7,,.

We construct such 6l /r)-cutting = of B. For each cel\ € =, let Ax = {y € A | v* € A}.
If |[Ax| > m/r3, we cutA further into subcells (e.g., by planes parallel to some gemniirection),
each containing at mom/r points. The number of cells remain asymptotlcaﬂlyf?’ﬁq( )). For
each (new) cellA, let Ba = {b € B| A C K}, i.e., anycurve i3 A intersects all curves ol A
(if A C 0Ky, thenb is tangent to all curves idA), and letBa be the set of curves corresponding
to the conflict list ofA with respect taB.

It follows by construction that

X(4,B) < Y " [x(Aa, Ba) + x(Aa, Ba)l.
Acz

Since every pair of pseudo-parabolasAn, x Ba intersect, by Theorem S.Q(AA,BA) =
O((JAa| + |Ba))¥?) = O((m + n)*/3). Since|Aa| < m/r and|Ba| < n/r (the latter in-
equality holds for the original cells &, before any cell with two many points of* has been split,
and it thus also holds for each split cell), we havela, Ba) < x(m/r®,n/r). This completes the
proof of the lemma. O

Flipping the roles ofd and B, i.e., mappingB to a set of points andl to a set of surfaces in
R3, and applying the same decomposition scheme, we obtain

m n
x(m,m) < er®B,(r) [x (555 ) + O((m +m)")]. (3)
Substituting (3) into the right-hand side of (2), we obtain
m
x(m) < OB (57) + Om* 08 ().
Choosingr = m!/3%, we obtain

x(m) < erm'®32(m)) - x(m®*?) + c;m®? B2 (m) (4)
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for an appropriate constant > 1. We claim that the solution of this recurrence is
x(m) < m®? (log m) 108 Fa(m) (5)

wherecd > 1 is a sufficiently large constant. This can be proved by indnabnm, as follows. We
may assume that (5) holds for all < m, wheremy is a sufficiently large constant that satisfies
(log ) o8 Ba(m) > 2¢, 82(m) for all m > my. Plugging (5) into (4), we obtain, for > my,

c'log Bq(m)

IA

clml/G,Bg(m)m4/3 (log(m8/9)> + 01m3/2,82(m)

, g\ € 108 B (m)
Clm3/2(10g m)c log ﬁq(m)ﬁg (m) <§>

x(m)

IN

+ clm?’/?ﬁg(m)

IA

m3/2 (log m)c’ log B4(m) (61,82+d log(8/9) (m) + %)

S clm3/2(10g m)cl log ﬁq(m),

provided that the constanrt is chosen sufficiently large. This establishes the induactitep and
thus proves (5). Recall tha (n) = 20(¢*() wherea(n) is the inverse Ackermann function and
s = [(q — 2)/2] is a constant. Putting

rs(n) = (logn) "W

and using the fact that, initiallyA|, | B| < n, we obtain the following main result of this section:

Theorem 5.2 LetP be a collection of pseudo-parabolas that admits a 3-paramedebraic repre-
sentation. The (') = O(n?/%k,(n)), for any subser of n elements oP, and for some constant
parameters that depends on the algebraic representation of the cumves i

Remark. In what follows, we will sometimes raise;(n) to some fixed power, or multiply it by
a polylogarithmic factor, or replace by some fixed power ofi. These operations do not change
the asymptotic form of the expression—they merely affeet¢bnstant of proportionality in the
exponent. For the sake of simplicity, we use the notatigm ) to denote these modified expressions
as well. We allow ourselves this freedom because we strdmgjigve that the factog,(n) is just

an esoteric artifact of our analysis, and has nothing to db thie real bound, which we conjecture
to beo(n?/?).

5.2 Thecaseof vertical parabolas

As a first application of Theorem 5.2, consider the fariVilyof vertical parabolas, each of which is
given by an equation of the form= ax?+bxz+c. Every vertical parabola has a natural 3-parameter
representation, by the triple, b, ¢) of its coefficients, and/ trivially satisfies (AP3).

For a fixed pointp = (o, 3) € R?, the set of vertical parabolas = ¢x? + nx + ¢ passing
throughp is the plane

&+ an+ ¢ =P,

which is obviously a two-dimensional semialgebraic setafatant description complexity. Sim-
ilarly, the locus of parabolas that pass through two distpmints p, ¢ is either empty or a 1-
dimensional curve of constant description complexity. §AP1) is satisfied.
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Finally, for a fixed parabolg : y = ax? + bz + ¢, another vertical parabola= ¢2? + nz + ¢
is tangent toy if and only if

(n—b)*=4(6 —a)(¢ —¢) = 0.
Hence, the surface, is given by the equation
(n? — 4£¢) — 2by + 4cf + 4a + (b? — 4ac) =0, (6)

which is a quadric iR?, and thus (AP2) is also satisfied. In order to estimate theevaf s =
[s'/2], recall thats’ satisfies the following condition: Given any four curves... ,y4 € P,
there are at most intersection points between tii@-projections of the intersection curves, =
Ty, N Ty ANA034 = Ty, N Ty

It follows from (6) that the intersection curve, of two surfaces.,, andr,, is a planar curve,
whose projection on thé&n-plane ¢ = 0) is a quadric. Hence, the projectionsaf, andos4 on the
¢n-plane intersect in at most four points, implying thak 4 ands < 2. (These bounds also apply
in case of partial overlap between the projections.) Lgttin

k(n) = fia(n) = (logn) "),

we obtain the following.

Theorem 5.3 LetI be a set of, vertical parabolas in the plane; thep(I') = O(n3/?k(n)).

5.3 The case of pseudo-circles

We now prove a neat®/2-bound on the maximum number of pairwise-nonoverlappimgés for

a few special classes of pseudo-circles. In addition to dmelition of 3-parameter algebraic rep-
resentation, which we define in a slightly different manneg, also require, as in Section 4, that
the pseudo-circles be-monotone We say that an infinite famil{C of z-monotone pseudo-circles
has a3-parameter algebraic representatiohevery curvec can be represented by a triple of real
parameters¢, i, ¢), which we regard as a point € R?, so that the following three conditions are
satisfied.

(AC1) For each poing in the plane, the locus of all curves @ that pass through is, under the
assumed parametrization, a 2-dimensional semialgebetic, ®f constant description com-
plexity. For any two distinct pointg andq in the plane, the locus of all curves @ that pass
through bothp andq is, under the assumed parametrizatiori;@mensional semialgebraic
curve of constant description complexity.

(AC2) For each curve € C, the locus of all curveg € C whose upper (resp., lower) arc intersects
the upper are™ of ¢ at two points is &-dimensional semialgebraic sﬁt&i (resp.,K ) of
constant description complexity. The same also holds ftdver arce™ of c.

(AC3) Each curve inC is a semialgebraic set of constant description complerithée plane, and
the family C is closed under translations.

Let C be a family ofz-monotone pseudo-circles having a 3-parameter algel@piesentation,
and letC' C C be a subset of, pseudo-circles. We replacg by the collectionl’ = {c¢*,c™ |

29



¢ € C}, which by Lemma 4.2, is a collection of pseudo-parabolas. TBgorem 5.2, (T") =
O(n?/%k4(n)), for an appropriate constant parametetVe now cut the curves if’ at the same
points where their top or bottom boundaries have been ciif end, in addition, cut each curve
¢ € C atthe two extreme points., p.. It follows trivially that the resulting subarcs form a aattion
of pseudo-segments. We thus have:

Theorem 5.4 Let C be a collection of pseudo-circles that satisfies (AC1)—(ACheny(C) =
O(n?/%k,4(n)), for any subse€’ of n elements o€, and for some constant parametethat depends
onC.

5.4 Thecaseof circles

The most obvious application of Theorem 5.4 is to the fan@ilyof all circles in the plane.C
trivially satisfies condition (AC3). We map each cirele (z — )2 + (y — n)? = ¢? to the point
c* = (£,1,¢) € R3. The set of points* = (£,7,¢) € R? corresponding to circles that pass
through a fixed poinp = («, 3) is the region

op={(&n Q) | (€= a)*+ (n-B)7 =,

which is a 2-dimensional cone in 3-space. Moreover, usingradard transformation [14], we can
map these surfaces into planes, without changing the inc@pattern between points and surfaces.
Similarly, the locus of circles that pass through two distipointsp, ¢ is, in the new representation,
the line of intersection of the two corresponding planesndde (AC1) is satisfied.

Concerning condition (AC2), it is straightforward to verihat the set of (points iR? repre-
senting) circles that satisfy the condition that their upge, say, intersect the upper arc of a fixed
given circle at two points, is a semialgebraic set of coriaiascription complexity (an explicit ex-
pression for this set is given in Appendix A). However, mafalculations that exploit this condition
to derive a recurrence similar to that in Lemma 5.1, yieldufims on the) constants ands that
are somewhat high. Using a more sophisticated, but someedttiaus, analysis, one can lower the
constants ta’ = 4 ands = 2. The details of this analysis are given in Appendix A.

Writing, as aboves (n) for ko (n), we thus obtain:

Theorem 5.5 LetC be a set of. circles in the plane; ther (C) = O(n?/?k(n)).

5.5 Thecase of homothetic copies of a strictly convex curve

Theorem 5.4 can also be applied to the fanfilpf homothetic copies of a fixed strictly convex curve
~o having constant description complexity. First, as alreaoted in [21],C is indeed a family of
pseudo-circles (this does not necessarily hotgifs not strictly convex). Clearly, condition (AC3)
is satisfied. Each homothetic copy-af has the form

(&m) + Mo ={(&n) + A=, y) | (2,y) € 1},

for some triple of real parametefsn € R, A € R". We represent each copy by the corresponding
triple (¢£,m7,\) € R®. Condition (AC1) is easy to establish: For a fixed pgintthe condition

p € (§,m) + Ay is equivalent to% (p — (&,1)) € v, which clearly defines a semialgebraic surface
patch of constant description complexity.
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For a paim, ¢ of distinct points, each homothetic copy-afthat passes throughandq satisfies
$(p—(&n)) € 70, +(g— (& n)) € v0. Hence(p—q) /A is a chord ofyy. Since), is strictly convex,
for each fixed\ there is auniquechord equal tdp — ¢)/\, so&, n are also uniquely determined.
Hence the locus of copies of that pass through andgq is a 1-dimensional curves, which clearly
has constant description complexity.

Figure 20. Upper arcs of two homothetic copies-af intersecting at two points.

Establishing condition (AC2) is a bit more technical. Foxadfi homothetic copy; = (o, 3, )
of 7o, the condition that another homothetic copy-= (¢, 7, A) be such that, say, its upper arc meets
the upper arc of;; at two points, can be expressed by the following predicate:

There existw, w’ € R? such that{w, w'} = ~; N~ and each ofv, w' lies above both
lines ¢, and /¢, where/; (resp.,t) is the line connecting the leftmost and rightmost
points ofy; (resp.,y).

See Figure 20. Using the fact that is a semialgebraic set of constant description compleitity,
follows that the above predicate also defines a semialgebetiof constant description complexity;
see [9, 10] for properties of real semialgebraic sets thptyithis claim. Theorem 5.4 thus implies
the following.

Theorem 5.6 Let~, be a convex curve of constant description complexity, an@'lee a set of
homothetic copies ofy. Theny(C) = O(n?2k,(n)), for some constant that depends on.

6 Applications

The preceding results have numerous applications to prablavolving incidences, many faces,
levels, distinct distances, and results of the Gallai-Sster type, which extend (and also slightly
improve) similar applications obtained for the case oflesdn [1, 7, 8].

6.1 Leves

Given a collectiornC of curves, théevelof a pointp € R? is defined to be the number of intersection
points between the relatively-open downward vertical napaeating fromp and the curves of’.
Thekth levelof A(C), for a fixed parametek, is the (closure of the) locus of all points on the curves
of C, whose level is exactly. Thek-level consists of portions of edges.4{C'), delimited either
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at vertices ofA(C) or at points that lie above arrextremal point of some curve. The complexity
of the k-level is the number of edge portions that constitute thellev

The main tool for establishing bounds on the complexity eélg in arrangements of curves is
an upper bound, given by Chan [11, Theorem 2.1], on the coditplef a level in an arrangement
of extendiblepseudo-segments, which is a collectiorzefonotone bounded curves, each of which
is contained in some unboundedmonotone curve, so that the collection of these extens®ns
family of pseudo-lines (in particular, each pair of the or& curves intersect at most once).

Chan showed that the complexity of a level in an arrangemfemt extendible pseudo-segments
with ¢ intersecting pairs i€ (m +m?/3¢'/3). Chan also showed that a collectionofz-monotone
pseudo-segments can be turned, by further cutting the gisendo-segments into subsegments,
into a collection ofO(m log m) extendible pseudo-segments.

Thus, the bounds og(n) lead to the following result (where, in part (b), the extrgddthmic
factor incurred in turning our pseudo-segments into extdadoseudo-segments, as well as the
power2/3 to which we raise the number of pseudo-segments, are alosiorbige factorss(n)).

Theorem 6.1 (a) LetC be a set ol pseudo-parabolas ot z-monotone pseudo-circles. Then the
maximum complexity of a level i#y(C) is O (n26/15 10g2/3 n).

(b) If, in addition, C' admits a 3-parameter algebraic representation that s&ssfAP1)—(AP3)
for the case of pseudo-parabolas, or (AC1)—(AC3) for the adgpseudo-circles, then the maximum
complexity of a single level ©(n*/?k4(n)), wheres is a constant that depends on the algebraic
representation of the curves @, s = 2 for circles and vertical parabolas.

(c) If all curves inC' are pairwise intersecting, then the bound improveia'*/° log?/3 n)
(with no further assumption on these curves).

Remark. Recently, Chan [11] has studied the complexity of levelsriarsgements of graphs of
polynomials of constant maximum degree> 3. His bound relies on cutting the given graphs into
subarcs that constitute a collection of pseudo-segmeritishwis achieved by repeated differenti-
ation of the given polynomials, eventually reducing to thelyem of cutting an arrangement of
pseudo-parabolas (actually, of pseudo-parabolic arts)pseudo-segments. In the earlier confer-
ence version of his paper, the bound on the number of theedesuts was obtained by applying
the Tamaki-Tokuyama result as a “black box.” In the new wr<than uses a more sophisticated
variant of the Tamaki-Tokuyama technique, which leads farovied bounds on the number of cuts.
It is not clear whether our new bounds can be used to furthprawe his new bounds.

The above theorem implies the following result in the aremdtic geometry, which improves
upon an earlier bound given in [27]. This problem was one eftiotivations for the initial study
of Tamaki and Tokuyama [27].

Corollary 6.2 Let P be a set of. points in the plane, each moving along some line with a fixed
velocity. For each time, let p(¢) and¢(t) be the pair of points o whose distance is the median
distance at time. The number of times in which this median pair changeS(is'®/?«(n)). The
same bound applies to any fixed quantile.
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6.2 Incidences and marked faces

LetC be a set of curves in the plane, and I€tbe a set ofn. points in the plane. Two closely related
and widely studied problems concern two kinds of interacbetweenC and P: (i) Assuming that
the points ofP lie on curves ofC, let I(C, P) denote the number d@fcidencesbetweenP andC,
i.e., the number of pair, p) € C x P such thap € c. (ii) Assuming that no point of’ lies on
any curve ofC, let K (C, P) denote the sum of the complexities of the facesl6f’) that contain
at least one point oP; the complexity of a face is the number of edgesAdt”) on its boundary.
The results in [1, 8] imply the following bounds.

Lemma 6.3 Let C be a set ofr curves in the plane, and Idt be a set ofn points in the plane.
Then

I(C,P) = O(m**n®3 + m+x(C)),  K(C,P)=0(m**n*3 4+ x(C)log*n).
Hence, Theorems 3.4, 4.3, 5.2, and 5.4 imply the following.

Theorem 6.4 (a) LetC' be a set oh pairwise-intersecting pseudo-circles, afda set ofm points
in the plane. Then

I(C, P) = O(m?/*n?3 + m + n'/?), K(C,P) = 0(m*?n?? + n*/31og?n).

(b) LetC be a set oh pseudo-parabolas at z-monotone pseudo-circles, atitla set ofm points
in the plane. Then

I(C,P) = O(m?*n?3 + m +n8P),  K(C,P)=0m*3n?® 4+ n8/°log?n).

We note that these bounds are worst-case tight when theefinstdominates the last term, which is
the case whem: is larger tham or nlog® n in part (a), and larger tham’/> or n7/> log® n in part

(b).

Similarly, if C is a set ofn pseudo-parabolas ar x-monotone pseudo-circles that are not
pairwise intersecting but admit a 3-parameter algebrgicesentation with corresponding param-
eters, as above, then we can obtain the following bounds by plugdimeorems 3.4 and 4.3 into
Lemma 6.3.

I1(C,P) = O(m?*n3 + m 4+ n3%k,(n)),  K(C,P)=0m**n??+n3%k,n)). (7

As above, these bounds are worst-case tight whes sufficiently large (larger than roughly’/4)

[1, 8]. We can improve these bounds for smaller valuegwpby exploiting properties (AP1) or
(AC1) of the definition of 3-parameter algebraic represona following the approaches in [1, 8].
We describe the argument for the case of incidences andybdistuss how to handle the case of
marked faces.

We map the pseudo-circlese C' to pointsy* in R, and the points i to surfaces, in R?,
so that incidences between points and curves correspomgtittences between the dual surfaces
and points, and so that one halfspace bounded by the surfam@responds to pseudo-circles that
contain the poinp in their interior. LetP* be the resulting set of surfaceslii, and letC* be the
resulting set of points ifR3.

We fix a parameter > 1. Roughly speaking, as in [1, 8], we wish to computéd Ar)-cutting
of P*. However, since we are dealing with an arrangement of sesfatstead an arrangement of
planes, g1/r)-cutting for P* is not a cell complex and the incidence structure betweéeand P*
is more involved. Consequently we rely on a random-sam@iggment similar to the one in [13].
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Sampling lenma. For a subseR C P*, we define a partitiorE = Z(R) of R? into relatively
open and simply connectdd, 1-, 2-, and3-dimensional cells, which is very similar to the verti-
cal decomposition ofi(R) [13, 15]. Specifically, we add all vertices and edgesA¢R) into =.
For each (open2-face f of A(R), we compute the vertical decompositighi of f, as described
in [13], and add the relatively open edges and pseudo-toigiez0=. (The newly created vertices,
which lie on the edges of, are not added t&.) Finally, for each (open3-face ¢ of A(R), we
compute its vertical decomposition as described in [13],w&a add the vertical edgexfaces, and
3-dimensional pseudo-prisms &) none of these cells lie in any surface Bf Let=4 C = be the
set of vertices and edges 4{ R), which were added t&, let =z C = be the set of -dimensional
cells that lie in exactly one surface &f and let=5 C = be the set of vertical edges that were added
to = in the last step. Foreachcell € Z, letCa = {c € C | ¢ € A}, PA ={p € P | p* € Pr},
where Py is the conflict list of A (with respect toP*), andPa = {p € P | A C p*}. Set
na = |Cal,ma = |Pal, andima = |Pa|. The result in [15] implies thdE| = O(r35,(r)), where
B,(r) is the function defined in Section 5.1.

Lemma6.5 For a given parameter > 1, there exists a seR C P* of O(r) surfaces with the
following properties:

() E ni/?’ =nandma < m logr, foranyA € =.
r
A€E

(i) YoAez, Mma = O(mr?).

~ m —_ —_
(i) ma < — logr, foranyA € =g U =n.

Proof: We choose a random subdetC P* of sizecr, for a sufficiently large constant parameter
¢, where each subset is chosen with equal probability. Sihigea partition ofR3, 3~ na = n.

By the theory ofz-nets, an appropriate choice efgyuarantees that, with high probability;n <
(m/r)logr, for any A € = [19]. This proves part (i). As for (i), observe thatjife Pa, for a
vertex or edge\ in A(R), thenA is also a vertex or an edge, respectively, in the arrangeai¢né
intersection curve$p* N r* | r* € R}. Since this arrangement h&¥r?) vertices and edges, the
bound in part (ii) follows. A vertical edgé& € =g does not lie in any surface @, therefore by the
theory ofs-nets and with an appropriate choicepina < (m/r)logr with high probability, for
all suchA’s. Similarly, one can argue thain < (m/r)logr for each cellA € =g, as such a cell
lies in exactly one surface @t. See [13, 19] for details. This completes the proof of thentemO

Bounding incidences. Let R be a subset of* satisfying the conditions of Lemma 6.5. We
compute= as defined above. Then

I(C,P) =Y I(Ca,Pa) +1(Ca,Px).
A€E

Since each point iPA lies on every curve irC’x and two curves irC' intersect in at most two
points,ma > 2 implies thatna < 1. Hence,

I(CA, PA) = O(TLA + ﬁLA),
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Note that) ", na = n, ma = 0 for any 3-dimensional cellA € =, andma < 1 for any 2-
dimensional cellA € = because, by conditions (AC1) and (AP1), two surfaces iat¢ralong a
1-dimensional curve. Hence,

Z I(Ca, Pa) = O(n + ma?B,(r) log 7).
A€E

In order to boundy_ 5 I(Ca, Pa), we refine the cells o as follows. Ifna > n/(r383,(r)) for
acellA € =, we split it further so that each new cell contains at mo&tr®3,(r)) points. The
number of refined cells in the resulting partiti@his still O(r33,(r)). Therefore, using the bound
(7) for I(Ca, Pp), we obtain

Z I(Ca,PA) = Z O(77”L2A/37”L2A/3 +ma + n?’Aﬂ/@S(nA))
AEE! A€E!

0@ 8(r)) ((mlfgr>2/3<%m>2/3+ ml;)gr n <T3;L(T)>3/Zs (%>>

= O(m2/3n2/37"1/361/3(7“) log2/3 r+ mTQ,B(r) log r + (n/r)?’/?ns(n/r?’)).

Hence,
1(C, P) = O(m2PPn?3r 3813 (1) 1og?3 r + mr2B(r) log r + (n/r)* ks (n/r3) +n).

We chooser = [n®/11/m*/117, which is in the rangd < r < m whenn!'/? < m < n/4. If
m > n®/* we taker = 1, and ifm < n'/3 we taker = m. It follows easily, as in [8], that

1(C, P) = O(m2Pn23 4+ mS/M Mg (m? n) + m + n),

wheres is a constant depending on the representatiofi.of

Bounding the complexity of marked faces. We use the approach in [1] to prove an improved
bound on the complexity of marked faces. There is one sigmifidifference in the proof for this
case compared with the case of incidences. Here we niiedeachical cutting of A(R). The best
known algorithm for computing such a hierarchi¢afr)-cutting returns a cutting of siz@ (r3*¢),

for anye > 0. Plugging this weaker bound on the size of hierarchicairggstin the analysis of [1],
the bound on the marked faces increases by a f@etor®). We refer the reader to the papers just
cited for further details, and omit the description of thedifioations of the analyses given there
that need to be performed.

Putting everything together, we obtain the following résoh the number of incidences and the
complexity of marked faces.

Theorem 6.6 Let C' be a set o, pseudo-parabolas o z-monotone pseudo-circles that admit a
3-parameter algebraic representation, and Iebe a set ofn points in the plane.

(i) I(C, P) = O(m?*3n23 4 mSMn% 1k (m?/n) + m + n), wheres is a constant depending
on the representation, and

"For a sefl” of surfaces, 41/r)-cutting = of T is calledhierarchical if there exist a constant, and a sequence of
cuttings=o, =1, ... ,Eu = &, foru = [log, r], whereZ; is a(1/rg)-cutting of I and each cell oE; lies inside a cell
of Eio1.
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(i) K(C, P) = O(m?3n?/3 4+ mS/1+ep9/1 4 plogn), for anye > 0.

If the pseudo-parabolas or pseudo-circleirare also pairwise intersecting, then (we do not need
to require that the pseudo-circles bemonotone in this case)

(iiy 1(C, P) = O(m?/*n?/3 4+ m'/?n>3(n/m) + m + n), and

(iv) K(C, P) = O(m?*n?/® 4+ mY/2+ep5/6 10g'/2 n + nlogn), for anye > 0.

For the cases of circles and of vertical parabolas, theastesurfaces are (or can be transformed
into) planes, so there is no extpdr) factor, and efficient hierarchical cuttings can be consgaic
(for the analysis of many faces). Hence, the analysis in][{tigdds the following improved bounds.
(The bound in Theorem 6.7(ii) has actually been proven inf¢ilthe case of circles; we state it
here for the sake of completeness.)

Theorem 6.7 Let C be a set ofn circles orn vertical parabolas andP a set ofm points in the
plane. Then

(i) I(C, P) = O(m?3n2/3 4 mSM ' n2 "k (m3 /n) + m 4 n), and

(i) K(C, P) = O(m?3n23 4 mS/" 09 k(m?/n) + nlogn).
In addition, if the curves i are pairwise intersecting, then

(iiy 1(C, P) = O(m?*/*n?/® + m'/?n>/% 4 m + n), and

(iv) K(C, P) = O(m?3n2/3 + m2/2n%/610g"? n + nlogn).

Remark. Using a standard sampling technique, such as the one uséd & 11], we can also
obtain versions of these bounds that are sensitive to théeuof intersecting pairs of the given
curves (for parts (i) and (ii) of both theorems).

6.3 Distinct distances under arbitrary norms

An interesting application of Theorem 6.6(i) is the follogiresult.

Theorem 6.8 Let( be a compact strictly convex centrally symmetric semitaigje region in the
plane, of constant description complexity, which we regarthe unit ball of a nornjj- ||o. Then any
set P of n distinct points in the plane determines at le@t."/? /r5(n)) distinct || - ||o-distances,
where s is a constant that depends a@p. (If () is not centrally symmetric, it defines a convex
distance function, and the same lower bound applies in #é& ¢oo.) This is also a lower bound
on the number of distindf - ||-distances that can be attained from a single poinfof

Proof: The proof proceeds by considerimg homothetic copies of), shifted to each point oP
and scaled by the possible distinct| - ||o-distances that the points iR determine. There are?
incidences between these curves and the point8.ofJsing Theorem 6.6(i), the bound follows
easily (here too the constant in the exponent of the exmnessr «4(n) is changed). O
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Remarks. (1) The proof technique is identical to an older proof fortidist distances under the
Euclidean metric, given in [13, Section 5.4]. Meanwhiles Hound for the Euclidean case has been
substantially improved (see [28] for the current “recordiiit, as far as we know, the problem has
not been considered at all for more general metrics.

(2) Theorem 6.8 is false if) is not strictly convex. For example, 1€t be the unit ball of the.; -
norm, and letP be the set of vertices of thgn x /n integer lattice. There are onf{/n distinct
L-distances among the points Bf

6.4 A generalized Gallai-Sylvester theorem

Similar to Theorem 4.1 in [7], the following theorem is a cegsence of Theorem 2.13.

Theorem 6.9 Let C' be a family ofn pairwise intersecting pseudo-circles in the plane.nlfs
sufficiently large and” is not a pencil, then there exists an intersection pointdent to at most
three pseudo-circles @f.

7 Conclusion and Open Problems

In this paper we obtained a variety of results involving &g arrangements of pseudo-circles,
with numerous applications to incidences, levels, and dexity of many faces in arrangements of
circles, vertical parabolas, homothetic copies of a fixat/er curve, pairwise intersecting pseudo-
circles, and arbitrary pseudo-parabolas afndonotone pseudo-circles. We also obtained a Gallai-
Sylvester result for arrangements of pairwise-intersgcfiseudo-circles, and a new lower bound
on the number of distinct distances in the plane under fairbitrary norms. The main tool that
facilitated the derivation of all these results is the soima&surprising property that the tangency
graph in a family of pairwise intersecting pseudo-parab@gplanar (Theorem 2.4).

The paper leaves many problems unanswered. We mention & fee more significant ones:

(i) Obtain tight (or improved) bounds for the number of paggvnonoverlapping lenses in an
arrangement of pairwise intersecting pseudo-circles. We conjecturetti@tipper bound of
O(n*3), given in Theorem 2.14, is not tight, and that the correctiodaO(n) or near-linear.

(i) Obtain tight (or improved) bounds for the number of egnfEnses in an arrangement of
arbitrary circles or more general classes of pseudo-sircldere is a gap between the lower
boundQ(n*/3), which follows from the construction &t(n*/?) incidences between points
andn lines, and which can be realized by circles, and the uppendotiO (n?/x(n)), given
in Theorem 5.2 and Corollary 5.5. Even improving the upperrintIoO(n3/2), for the case
of circles, seems a challenging open problem. A related amdehn problem is to obtain
an improved bound for the number of pairwise nonoverlappémges (and for the cutting
number) in an arrangement ofarbitrary circles.

(iii) One annoying aspect of our analysis is the differeneéMeen the analysis of pairwise in-
tersecting pseudo-circles, which is purely topological aequires no further assumptions
concerning the shape of the pseudo-circles, and the asafshe general case, in which
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we requirez-monotonicity and 3-parameter algebraic representat{éw.least for pseudo-
parabolas, the weaker bound@(n8/5) holds in general.) It would be interesting and instruc-
tive to find a purely topological way of tackling the generadiem involving pseudo-circles.
For example, can one obtain a bound clos®ta?/2), or even any bound smaller than the
general bounaD(n5/3) of [27] (whichis purely topological), for the number of empty lenses
in an arbitrary arrangement of pseudo-circles, withouirgaw make any assumption con-
cerning their shape? Assumingmonotonicity, can the boun@(n8/5) in Theorem 4.1 be
further improved?
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Appendix A: Analysis of the Case of Circles

In this appendix, we show how to refine the upper boung @), in the case of circles, so that
the associated constasitis 4, and thug = 2 andq = 4.
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LemmaA.l Letc; andc, be two circles in the plane, withf = (a1,b1,r1) andc = (ag, b, r2)
andr; > ro. The upper arcaajr andcéF intersect at two points if and only if the following conditio
holds (see Figure 21 (i)):

(UU) b2 > by, A¢, andp,, lie insidec;, andc; intersectses.

Proof: If ¢ andc; intersect at two points, v then both centers lie below the lidgassing through

u andv. Moreover, the portion of the smaller disk (the disk bougdihe smaller circle) below

is contained in the corresponding portion of the bigger ,disid the center of the smaller disk is
closer tof. This is easily seen to imply (UU). Conversely, if (UU) holtteen both intersection
points lie oncj or both lie onc; (because the endpoints of both arcs lie insige Translatec,
vertically downward until its center has the sagreoordinate as that ef,. In this position)., and

Pe, Continue to lie inside;, and the two circles must be disjoint (any intersection poimc, must
have a matching symmetric point o‘gﬁ, which would produce at least 4 intersection points). This
is easily seen to imply that the originaJ is also disjoint frome;, so the two intersection points
must lie oncy , and, sinceéh, > by, they must also lie on;. 0

)\52 (a2,.b2) Pco

(al,bl) (al,_?)l)
[0) (i)

Figure 21. (i) lllustration of condition (UU). (ii) lllustration of cadition (UL).

LemmaA.2 Letc; andey be two circles in the plane, wittf = (ay, b1, 71) andcs = (ag, ba, r2).
The arcse]” and ¢, intersect at two points if and only if the following condititiolds (see Fig-
ure 21 (ii)):

(UL) bg > by, Ac, @andp,, lie outsidec;, A\, and p,, lie outsidecy, andc; intersectses.

Proof: Suppose that andc, intersect at two points, v. Then the portion of; between. andv

lies insidecsy, and the portion of; betweern: andw lies insidec;. This is easily seen to imply that
each of thec-extreme points\.,, p., , A, @ndp,, lies outside the other circle. Moreover, the center
of ¢; (resp.,c2) lies below (resp., above) the line passing througdndv, implying thatb, > by.
Hence (UL) holds. Conversely, if (UL) holds then both ingmtson points must lie on the same arc
(upper or lower) of;, and on the same arc (upper or lower}of However, in view of Lemma A.1,

it cannot be the case that both arcs are upper or that botlusrdswer. Hence one arc is upper and
one is lower, and the conditioiy > b; is easily seen to imply that the upper arc iscpfand the
lower arc is ofcs. O

Fixacirclec : (z —a)® + (y — b)? = r>. Then by Lemma A.1, the locus ", of circles whose
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upper arc intersects” at two points is given by, = Kj+7> U Kct’<, wheré
KL = {EnO 1<) AmZ0)A[E£C—a)* + (=) <A
(€ =a)*+(n=0)>(r =0}
KL = {EnO 1€z Am<hAE—axr)’+ (-0 <A
(€ —a)’+ (n=0)*>(r— ()]}

This implies thatKj+ is a semialgebraic set of constant description complex@ymmetrically,

it follows that K and the corresponding regions for are also semialgebraic sets of constant
description complexity. We thus conclude thdt”) = O(n?/?r,(n)) for some integes. However,

the surfaces bounding these regions are quadrics, sortteriséction curves are in general of degree
four, and a naive bound on the number of intersection poietiwden then-projections of a pair of
such curves is; < 42 = 16, yielding s = 8. For mostly aesthetic reasons, we set out to improve
this bound toy (C') = O(n*/?k(n)), wherek(n) = ky(n).

Let ¢/(A, B) denote the minimum number of cuts needed to eliminate afirbioatic upper-
upper lenses il U B (lenses formed by the upper arcs of one circledimnd one inB). Put
Y(A) = (A, A). Fork = 0,1,2, sety®) (u,v) = max (A, B), where the maximum is taken
over all pairs of families of circlesl and B of sizes at most andwv, respectively, so that

e for k£ = 0, no constraint is imposed ath and B,

e for k = 1, we require that the radius of each circledrbe greater than or equal to the radius
of each circle inB; and

e for £ = 2, we require the same condition on the radii as o= 1, and also that the-
coordinate of the center of each circleArbe smaller than or equal to theecoordinate of the
center of each circle .

We setyy®) (m) = ¢*)(m, m), and our task is to bound(®) (n).

Sort the circles irC' in increasing order of their radii, and l€Y, Cs be the subsets of the circles
with then /2 smallest andh/2 largest radii, respectively. We clearly have

Y(C) < P(Cr) +(C2) +9(Ca, C1),

from which we deduce the recurrence

©) (1) < 2@ (™ n(rnnr
$Om) <29 (3) +4 (3,7)- (8)
Next we estimate)(1). Let A and B be two sets ofn andn circles, respectively, so that the radius
of each circle inA is greater than or equal to the radius of every circld3in Sort the circles in
C = A U B inincreasing order of thg-coordinate of their centers, and splitinto two subsets
C~,C™, consisting respectively of the circles with the +n) /2 lowest and thém +n) /2 highest

8The condition for the intersection of two circles is that tlistance between their centers be larger than the differenc
between the radii and smaller than their sum. In what follows only use the first inequality, because the second is
implied by the additional condition that one circle contapoints of the other in its interior. This simplification dosot
hold, though, when we consider intersections between lawdrupper arcs.
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y-coordinates. Pul~ = ANC—, AT =ANC*, B~ =BNC,andB" = BNC™". We clearly
have
U(A, B) <9(A7,B7) + (AT, BT) + (A7, BT);

the fourth termgs(A™, B™), is 0, because all pairs of circles ittt x B~ violate condition (UU).
Putk = |A~|, ¢ = |B™|. Hence, we obtain the recurrence

¢@(m,n) < max {W (k mn k) + 0 (m;“ - —u) +¢<2>(k,e)}, (©)
Regmn

. —_m-—n
k—l="5—

where the conditions oh and/ follow from the construction.

We next bound/(?), where a more complex recurrence is needed. A.eind B be two sets
of m andn circles, respectively, so that for arffy;,c2) € A x B, with ¢; = (a1,b1,71) and
¢y = (az, b, r2), the following condition holds:

(CO) r1 > ro andby > by.

If the upper arc of a circle; = (ay,b1,71) € Aintersects the upper arcof = (az, be,72) € B
at two points, then by Lemma A.1, the following two conditaaiso hold:

(Cl) )\02 = (ag — o, bg) andp@ = (LZQ + 79, bQ) lie insidec;;

(C2) ¢ andcsy intersect.

Fix a circlec = (a, b, r) in A. The locusK; (¢) of all circles(¢,n, () € B that satisfy (C1) with
c is the region

{&n, Q) (€=¢—a)+ (-0 <r* and (£ +( —a)’ + (n - b)* <7},
which is bounded by the pair of surfaces

mi(e): (€= 40> —2a(—C¢) —2n+a’>+ b —r? =0, (10)

mo(e) s (E+ )24+ n* —2a(6+¢) —2n+a* +b* —r? = 0. (11)

On the other hand, if we fix a circlé = (a,b,r) in B, then the locusk (') of all circles
(&,7n,¢) € Athat satisfy (C1) with' is the region

{E&n,Q) [ (€= (a=r)?+(n-b)?< ¢ and (€ - (a+7))* + (n—b)* < P},
which is bounded by the pair of surfaces
Ti(d) €+ 0> = 2 =2(a—r)E =20+ (a —7)* + 6> =0, (12)
Fo(d) 1 €+ 0> = = 2(a+7)E = 2m+ (a+7)° +b* = 0. (13)

Finally, for a fixed circlec = (a,b,r) in A or B, the locusK,(c) of all circles (&,n,¢) that
satisfy (C2) withe, given that they already satisfy (C1), is bounded by theaserf(as already
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remarked, only one of the two inequalities that represetarsection between circles need to be
considered)

(E—a’+(-b>=(-r? or
m3(c) : €2+ % — (% — 2a€ — 2bn +2r( + a® + 0> —r? = 0. (24)

An important observation is that the bound on the paramei®farge because we consider in-
tersection curves of “mixed” pairs of surfaces from amorgygbssible types (10)—(14). However, if
we only consider pairs of surfaces of the same type, say efi4), the corresponding intersection
curves arglane quadricsso the number of intersection points between the projestid two such
curves is at most 4, as in the case of vertical parabolasi¢@ex2). Our approach is thus to enforce
the conditions (C1)—(C2) in two stages, where the first seaderces (C1) and the second enforces
(C2). This will suffice to reduce to 2.

In more detail, we proceed as follows. Hoe= 3, 4, sety¥) (u,v) = max (A, B), where the
maximum is taken over all pairs of families of circldsand B of sizes at most andv, respectively,
that satisfy (CO)—(0 — 2)). We sety)®)(m) = 4*)(m,m). Recall that our task is to bound

@ (m).

Bounding ¢»(*) (m). We first observe thap®) (m) = O(m*/?). Indeed, if every pair of circles in
A x B satisfy (C0)—(C2), i.e., the upper arcs of every pair irgerst two points, then the bound
follows by considering the collection of extended uppesartthe circles inA U B, and applying
Lemma 4.2 and Theorem 3.4, as argued in Section 5.3.

Bounding 4(*) (m). Next, we apply the analysis in the proof of Lemma 5.1 to tharagement
of the surfacesrs(c), for c € A orc € B. Choosing a parametér < r < m'/*, we obtain the
recurrence

¥ m) < 87 ) [¢9 (5) + 9O m)] < er820) [0 (5) + 0],

with ¢ = 4. Indeed, the overhead term bounds the minimum number ofraéded to eliminate

all bichromatic upper-upper lenses between pairs of subéof circles that satisfy (C2) (where
one subfamily corresponds to all circles in, sdy,whose representing points lie in some c&ll

of the relevant cutting, and the other subfamily corresgaiodall circlesc € B whose associated
surfacers(c) fully enclosesA), in addition to (C0)—(C1) which are satisfied, by assumptlay all
pairs of circles inA x B. Hereq = 4, because we are dealing here only with surfaces of the form
m3(c), and, as already remarked, the intersection curve of twh sudaces is a plane quadric, so,
as argued in Section 5.2, the projections of two such intémsecurves on thén-plane intersect in

at most four points, thereby implying that= 4 and 3,(r) = 2°(¢*(")), The same analysis as in
Section 5.1 now shows that

P (m) = O(m??k(m)). (15)

Bounding «(?)(m). This is achieved by a similar process of interleaved reonrsin which we
keep flipping the roles afl and B. However, this can be done so that one of the two recursips ste
is performed in the plane (and only one in three dimensidBggcifically, we have:
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LemmaA.3 For anym,n and for any parametet < r; < min{m,n'/?},

m n n
¢ (m,n) < exrfy® (;, 72) + cariy? (m 72) ! (16)

1 1

for some positive constant.

Proof: Let A and B be two families of circles of sizen andn, respectively, so that every pair
in A x B satisfy condition (C0). We need to “enforce” condition (Cagmely, that the leftmost
and rightmost points of a circle iB lie inside a circle ind. This can be done via the following
cutting-based partitioning in the plane, where each cigcte (¢,7,() € B is mapped to the two
respective points, = (£ — ¢,n), pg = (£ + ¢,n), and the circles off remain as they are.

We compute 1/r;)-cutting = of A of sizeO(r?). ForeachA € Z,letBa = {g € B | A\, €
Aorp, € A} If |Ba| > n/r}, we partitionA into subcells, each of which contains at mogt?
points. The number of new cells remaifiér?). For each new celh, let Ax = {c € A | eNA # (0}
andAx = {c € A| A Cint(c)}. SinceZ is a cutting, we hav@d | < m/r; for eachA.

To boundy (A, B), we first sum up the recursive terms, ¢/(Aa, Ba). Let (¢, g) be a pair
that needs to be countedif( A, B) but has not been counted in this recursive manner.Aek’
be the cells of the cutting that contaly, p,, respectively. Then both cells, A" are fully contained
in the interior ofc. This suggests the following approach to completing thentotliake each pair
(A, A') of cells of the cutting, and puBa oy = {g € B | Ay € Aandp, € A'}, Aa any = {c €
A | A, A" Cint(e)}. The number of remaining pairs that need to be counted isttbusded by

> ¥ (A@aan Baa)-

(A,A7)

However, every pair of sets in this sum also satisfy (C1)hesum is at mosD (r*4)3) (m, n/r?)).
This completes the proof of the lemma. a

We also need a dual partitioning scheme for the “flipped” ieer®f the recursion, in which
the circles ofA are mapped into points and those Bfinto surfaces. Here, unlike the preceding
partition, we need to use the 3-dimensional representafitime circles:

LemmaA.4 For anym,n and for any parametet < ry < min{m'/3,n},

B0 m ) < card(r) |62 (5. 22) 400 (T )] a7)

3
Ty T2 2

for some integer constagtand some positive constan.

Proof: Let A andB be two families of circles of sizex andn, respectively, which satisfy condition
(C0). We now map each circle € A to the pointg* = (£,71,¢) € R3, using the 3-parameter
representation of. LetY = {7(c), T2(c) | ¢ € B}. We compute 41/ry)-cutting = of ¥ of size
O(r3B,(r2)), for some appropriate constant For each celr € =, setA, = {c € A | ¢* € 7} and
partition further, as needed, to ensure that, for any resulting subceh./| < m/r3; this does not

®Curiously, ¢ = 4 for the collection of surfaces; (c), @2 (c), which follows by the same reasoning used for the
surfacesrs(c). However, this extra property is not needed in this step ofbmalysis.
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change the asymptotic bound on the number of cells55et {c € B | (71 (c) U T2(c)) N7 # 0}
andB, = {c € B| T C K;(c)}. Hence, we obtain the following recurrence

7!’(1473) = ZW’(A'MB'F) + "/}(A”raé’r)]

TED

By construction, every pafiei, c2) € A, x B, satisfies (C0)—(C1), which implies that A, B,) <
vO)(|A,|,|B;|). Since|A,| < m/r3 and|B,| < 2n/r, for eachr, we thus obtain, summing over
all cells of the cutting,

171)(2) (mvn) < 037’3611(7"2) |:,(/}(2) (Ega 2_n> +¢(3) <TE3,TL>:| )

ry T2 2

as asserted. O

Combining (16) and (17), choosing = r andr; = 22 for an appropriate parameter >
1, and substituting the bound (15) cdrﬁ?’)(-), we obtain the recurrence for appropriate values of
constants:, ¢’

O (m) < ey ()@ (55

95
Since the overhead term in the recurrence dominates its ¢p@neous solution, it can be shown
(by induction onm) that if we choose to be a sufficiently large constant, then the solution to the
recurrence is

) + 3 m3k(m).

v (m) = O(m*?k(m)).

Bounding ") (m) and 49 (m). We now return to the first two stages of divide and conquer.
Substituting the bound fap() (+) in (9), we obtain a recurrence in which each instance inngha
total of m +n circles is replaced by two instances, each involving a twftéh + n) /2 circles. This
readily implies that the recurrence solves to

¥ (m) = O(m??k(m)).

Substituting this bound into (8), we again obtain a simptairence fOﬁ/J(O)(-) which also solves
to

PO (m) = O(m*?k(m)).

We have thus shown that the minimum number of cuts needednate all upper-upper lenses
in a set ofn circles isO(n3?k(n)). A fully symmetric argument yields the same bound for the
number of cuts needed to eliminate all lower-lower lensed,iaremains to bound the number of
cuts needed to eliminate upper-lower lenses. For this we tweearry out a similar analysis, based
on the condition (UL) in Lemma A.2. The analysis is indeedheatsimilar, and we do not spell it
out in detail. We only comment on several technical diffeemnthat arise:

(1) Atthe bottommost recursive stage, we enforce the cimdibat a pair of circles = (a, b, r)
andd = (&,m,¢) intersect. Here we need to enforce both inequalities, tmatdistance
between the centers be at least the difference betweendheana at most their sum. The
corresponding surfaces, wittfixed andc’ varying, are

7'['3(6); 52_"772_(2_206_2b77+27’<+02+b2—7’2:0
Ta() s € 4n? — (2 —2€ —2bn — 2 (+a? + b2 =2 =0,
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Fortunately, the intersection curve of any pair of thesdases is still a plane quadric, and
the preceding analysis can be easily adapted to keep theetg equal to 4 (and to 2) in
this case too.

(2) We now need only one stage of a simple divide-and-condgoienforce the conditiot, > by,
but we need two stages to enforce the conditions concerhagdints\.,, pc,, Ac, andp.,,
one stage enforcing that, , p., lie outsidecy, and the other stage enforcing thas, p., lie
outsidec;. Both stages are carried out exactly as above.

The modified analysis thus yields a bound®fn?/2x(n)) for the minimum number of cuts
needed to eliminate all upper-lower lenses in asef n circles, showing, at long last, thgtC') =
O(n3/%k(n)).
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