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Introduction 2Ottmann [7] described an algorithm for this problem with O((n + k) log n) running time,where k is the number of intersecting pairs of segments. Since then much research has beendone on this problem, culminating in optimal|that is, with O(n logn+ k) running time|deterministic algorithms by Chazelle and Edelsbrunner [12] and Balaban [5], and simplerrandomized algorithms by Clarkson and Shor [14] and Mulmuley [19].Another well-studied variant of the problem is the red-blue intersection problem. Hereone is given a set of red segments and a set of blue segments, and the goal is to reportall bichromatic intersections. If there are no monochromatic intersections, then the prob-lem can be solved in O(n logn + k) time by applying an optimal standard line-segmentintersection algorithm; when the red segments and the blue segments both form simplyconnected subdivisions, then the problem can even be solved in O(n + k) time [15]. Thesituation becomes considerably more complicated when there are monochromatic inter-sections. Applying a standard line-segment intersection algorithm will not lead to anoutput-sensitive algorithm because it may report a quadratic number of monochromaticintersections even when there are no bichromatic intersections. Somehow one has to avoidprocessing all the monochromatic intersections. Agarwal and Sharir [3] showed that one candetect whether the two sets intersect in O(n4=3+") time.1 Later Agarwal [1] and Chazelle [9]gave O(n4=3 logO(1) n + k)-time algorithm to report all k red-blue intersections. Basch etal. [6] presented a deterministic O(�t+2(n+k) log3(n)) algorithm for the case where the setof red segments is connected and the set of blue segments is connected; this algorithm alsoworks for the case of Jordan arcs, each pair of which intersect at most t times. Its runningtime is O(�t+2(n + k) log3(n)), where �s(n), the maximum length of an (n; s) Davenport-Schinzel sequence, is an almost linear function of n for any �xed s. This bound was laterimproved for the case of segments to O((n + k) log2(n) log log n) by Brodal and Jacob [8].Har-Peled and Sharir [17] give a randomized algorithm with O(�t+2(n + k) log n) runningtime for the case of Jordan arcs, as above.We are interested in the case in which the input consists of convex polygons in theplane. We want to compute all intersecting pairs of polygons. More formally, we are givena set P = fP1; : : : ; Pmg of m convex polygons in R2 with a total of n vertices, and wewant to report all k pairs of indices i; j such that Pi intersects Pj . (The polygons areconsidered to be 2-dimensional regions, so two polygons intersect also in the case that oneof them is fully contained inside the other.) If each polygon Pi has constant complexity,then the number of intersections between pairs of edges will not exceed the total number ofintersecting pairs of polygons by more than a constant factor, and one can solve the problemin O(n log n+k) time, by a straightforward modi�cation of the algorithms mentioned abovefor reporting segment intersections. If the given polygons do not have constant complexity,then the problem becomes considerably harder because the intersection of a pair of thegiven polygons can have many vertices. Regarding each input polygon as a collection ofsegments will thus not lead to an output-sensitive algorithm in this case.Gupta et al. [16] nevertheless managed to develop an output-sensitive algorithm for1The meaning of a bound like this is that for any " > 0 there exists a constant c = c(") that depends on", so that the bound holds with c as the constant of proportionality.



The Planar Case 3this case that runs in time O(n4=3+" + k). The algorithm �rst computes a trapezoidaldecomposition for each polygon. Then it computes, using a multi-level partition tree, thosepairs of intersecting trapezoids such that the leftmost intersection point of the trapezoids isalso the leftmost intersection point of the corresponding polygons. This way it is ensuredthat each intersecting pair of polygons is reported exactly once.We develop two new algorithms for this problem. The �rst algorithm is randomized andcombines hereditary segment trees [13] with the above mentioned red-blue intersection algo-rithm of Har-Peled and Sharir [17]. Its expected running time is O((n logm+ k)�(n) log n)and it is signi�cantly faster than the algorithm of Gupta et al. when k = o(n4=3). In addi-tion, the algorithm also works for convex splinegons (that is, convex shapes whose boundaryis composed of Jordan arcs) with only a minor increase in running time; this is not the casefor the algorithm of Gupta et al. Our algorithm can be made deterministic at the expenseof an additional polylogarithmic factor.Our second algorithm has O(n4=3 log n + k) running time, and is thus slightly fasterthan our �rst algorithm for k = 
(n4=3). It is related to the algorithm of Gupta et al.|ituses partition trees and similar techniques to search for the rightmost intersection pointsof intersecting pairs of polygons|but it is conceptually simpler and it has a slightly betterrunning time.The main advantage of our approach over Gupta et al.'s is that it generalizes to the3-dimensional version of the problem: Given a set P = fP1; : : : ; Pmg of m convex polytopesin R3 with a total of n vertices, report all k pairs of indices (i; j) such that Pi intersectsPj . For this problem, no subquadratic algorithm was known. We generalize our second2-dimensional algorithm, and obtain an algorithm with running time O(n8=5+"+k), for any" > 0. Such a generalization seems hard for the algorithm of Gupta et al., as the verticaldecomposition of a convex polytope can have quadratic complexity. Note that our algorithmfor the 3-dimensional case has the same running time as the best known algorithm for themuch simpler problem of reporting all intersecting pairs in a set of triangles in R3 [2].2 The Planar CaseLet P = fP1; : : : ; Pmg be a set of m convex polygons in the plane, with a total of n vertices.For simplicity, we assume that none of the polygons has a vertical edge and that all thevertex coordinates are distinct; we can enforce this in O(n logn) time by applying a suitablerotation. For a polygon Pi, we de�ne `i to be the leftmost point of Pi and ri to be therightmost point of Pi (since there are no vertical edges, `i and ri are uniquely de�ned).They partition the boundary of Pi into two convex chains: the upper chain, denoted Ui,and the lower chain, denoted Li.We �rst describe an algorithm whose running time is near-linear in n and k, andthen a worst-case optimal algorithm for the case of large k; its worst-case running timeis O(n4=3 log n+ k).



The Planar Case 42.1 A near-linear randomized algorithmWe present a randomized algorithm that reports, in O((n logm + k)�(n) log n) expectedtime, all k intersecting pairs of polygons in P. For each polygon Pi, we de�ne si to be thesegment connecting `i to ri; we call si the spine of Pi. Let SP denote the set of all thespines.Our algorithm starts by constructing a hereditary segment tree T on (the x-projectionsof) the spines of SP [13]. Each node v of T is associated with a vertical strip Wv andwith a subset SP(v) of spines. A spine si intersecting Wv is short at v if at least one ofits endpoints lies in the interior of Wv, otherwise it is long. The set SP(v) is the subset ofspines that intersect Wv and are short at the parent of v. If v is the root, then SP(v) = SP.Let P(v) = fPi j si 2 SP(v)g. A polygon is short (resp., long) at v if its spine is short (resp.,long) at v. As shown in [13], Pv jP(v)j = O(m logm).We assume that SP(v) and P(v) are clipped to within Wv. At each node v of the tree,we will report all pairs (i; j) such that(?) the rightmost intersection point of Pi and Pj lies inside Wv and Pi is longat v.The following lemma is straightforward from the structure of hereditary segment trees.Lemma 2.1 For every pair of intersecting polygons Pi and Pj, there is exactly one node vof T at which property (?) holds.Let kv be the number of pairs that satisfy property (?) at a node v. Then Pv kv = k.Our procedure will ensure that a pair (i; j) is reported only once, at the node where (?) issatis�ed, but it will spend roughly O(log n) time for each intersecting pair.Fix a node v. Let PL � P(v) denote the subset of long polygons at v, and let PS � P(v)denote the subset of short polygons at v. Denote the set of spines of PL by SPL, the setof their upper chains by UL, and the set of their lower chains by LL. The sets SPS , US ,and LS are de�ned analogously for the short polygons. Again, all these objects are clippedto within Wv. Let nv denote the total number of edges in (the clipped) PL and PS. Asabove, the structure of hereditary segment trees implies that Pv nv = O(n logm). Finally,we de�ne RS to be the set of right endpoints of the spines in SP(v) that lie in the interiorof Wv. Note that every point in RS is the right endpoint of an (unclipped) original spine inSP. Let �v be the number of intersection points between SPL and SP(v) [ @P(v) plus thenumber of intersection points between the upper (resp. lower) chains of PL and the lower(resp. upper) chains of P(v), where @P(v) = n@P ���P 2 P(v)o.Lemma 2.2 Pv2T �v = O(k).Proof: Let � be an intersection point of a spine si 2 SPL(v) and another spine sj 2 SP(v);� is one of the intersection points counted by �v. We claim that v is the only node at which� is counted by �v. It is obvious that � cannot be counted by a node w other than anancestor or a descendent of v, as the vertical strip Ww associated with w has to contain



The Planar Case 5the intersection point �. Since neither si nor sj belongs to SPL(w) for any ancestor wof v, � will not by counted by �w. On the other hand, si does not belong to SP(u) forany descendent u of v, so � will not be counted by any descendent of v either. Hence vis the only node at which � is counted. A similar claim holds for an intersection point ofSPL(v) and @P(v) or of upper (resp. lower) chains of PL(v) and lower (resp. upper) chainsof P(v). Since there are O(k) intersection points between two spines, between a spine anda polygonal chain, and between upper and lower polygonal chains, the lemma follows. 2Since all the vertex coordinates are distinct, there exists at most one spine in SP(v)whose right endpoint ri lies on the right boundary of Wv. We can easily compute in O(nv)time all polygons of P(v) that contain ri. We now describe how we report all the otherpairs that satisfy (?) at v.We construct, in O(nv lognv + �v) time, the arrangement A = A(SPL) of the spinesof the long polygons [12]. We also add the vertical lines bounding Wv to A. Each facef of A is a convex polygon, so we can compute the intersections between a line and @fin O(lognv) time. We preprocess A, in O((nv + �v) log nv) time, for planar point-locationqueries [20]. For each edge e of P(v), we locate its left endpoint in A and then trace itthrough A, spending O(log nv) time at each face of A that e intersects.For each face f 2 A, we report the pairs (i; j) that satisfy (?) and for which the rightmostpoint of Pi \ Pj lies inside f . This is accomplished in the following three stages.(a) Report all pairs (i; j) such that Pi 2 PL contains the right endpoint rj 2 RS andrj 2 f .(b) Report all pairs (i; j) such that the lower chain of Pi 2 PL intersects the upper chainof Pj 2 P(v) and the rightmost point of their intersection lies inside f .(c) Report all pairs (i; j) such that the upper chain of Pi 2 PL intersects the lower chainof Pj 2 P(v) and the rightmost point of their intersection lies inside f .It is easily veri�ed that stages (a){(c) indeed report all the desired intersections. Since(b) and (c) are symmetric, we omit the description of (c).Containments of rightmost points. Let R(f) � RS be the subset of right endpointsthat lie inside f . We wish to report all pairs (i; j) such that rj 2 R(f) lies inside Pi 2 PL.Let P(f) � PL denote the set of long polygons that contain f in their interior (i.e., for apolygon P 2 P(f), we have f � P ), and let Q(f) � PL denote the set of polygons whoseboundaries intersect f . Let nf denote the number of vertices of the polygons in Q(f) that lieinside f , and let n0f denote the number of edges in Q(f) that intersect f but their endpointsdo not lie inside f . Then Xf nf � nv and Xf n0f � �v: (1)



The Planar Case 6Obviously, jQ(f)j � nf + n0f . Since we have already traced the edges of PL(v) through A,we have Q(f) at our disposal. However, we do not store P(f) explicitly for each face fbecause the resulting storage could be quite large.Note that every point in R(f) lies inside every polygon in P(f), so we report every pairin P(f)�R(f). In order to compute the polygons of P(f), we perform a plane sweep overA and the collection of long polygons. The events of the sweep are (i) all the vertices ofA; (ii) left and right endpoints of polygons in PL; and (iii) intersections of boundaries ofpolygons in PL with the edges of A. The number of events is O(nv+�v+kv). The algorithmmaintains the intersection of the sweep line � with long spines and with polygons in PL.More precisely, the intersection of � with the spines in SPL partitions � into intervals, eachof which is the intersection of � with a face of A. The algorithm maintains a segment tree onthese intervals. The intersection of � with a polygon in PL is also an interval. We store theset of intervals fP \ � j P 2 PLg into this segment tree. The structure of the segment treedoes not change between two consecutive event points, and it can be updated in O(log n)time at each event point. When the sweep line reaches a point rj 2 RS , the algorithmsimply reports all �j pairs (i; j) such that the interval Pi \ � contains rj. This can beaccomplished in time O(�j + lognv). In total, this step takes time O((nv +�v + kv) log nv).Next, for every point rj 2 R(f), we report the polygons in Q(f) that contain rj . Webuild a union tree 	 on the polygons in Q(f), which is a minimum-height binary tree whoseleaves store the polygons of Q(f). Each node � of 	 is associated with the subset Q� � Q(f)of polygons that are stored at the leaves of the subtree rooted at �. Let �� be the totalnumber of vertices of the polygons in Q� that lie in the interior of f , and let � 0� be the numberof edges of the polygons in Q� that intersect f but whose endpoints do not lie inside f ; wehave P� �� = O(nf log nv) and P� � 0� = O(n0f log nv). Let L� (resp., U�) denote the setof maximal connected portions of the lower (resp., upper) chains of the set of intersectionpolygons fP \ f j P 2 Q�g. For a polygon P 2 Q�, the boundary of P \ f alternatesbetween the portions of @P and @f . We store only those portions of @(P \ f) which lieon @P . At each node �, we compute the lower envelope L� of L� and the upper envelopeU� of U�. Again we store only those portions of the envelopes which lie in the interiorof f . These portions have O((�� + � 0�)�(nv)) breakpoints. If we have already computedthe lower and upper envelopes of the children of �, then L�;U� can be computed in anadditional O((�� + � 0�)�(nv)) time. We store the sequences of breakpoints of L� (and U�) inan array, sorted from left to right. For each breakpoint, we store the segment that appearson the envelope immediately to its left if the envelope lies in the interior of f to the leftof the breakpoint; otherwise we mark that the envelope appears on @f to the left of thebreakpoint. We also apply fractional cascading [10] so that if we know the breakpoint of L�(resp. U�) that lies immediately to the right of a given x-coordinate x0, we can compute,in O(1) time, the corresponding breakpoints at the children of �. The total time spent inpreprocessing 	 is O((nf + n0f )�(nv) log nv).For each point rj 2 R(f), we �nd all polygons in Q(f) containing rj by traversing theunion tree in a top-down manner. Suppose we are at a node � of 	. Since f is not crossedby any spine, rj does not lie in any polygon of Q� if and only if rj lies below all the chains



The Planar Case 7
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Figure 1: A face f of A, the associated sets U(f), L(f), and SP(f), and an added verticalsegment.in L� (i.e., lies below L�) and above all the chains in U� (i.e., lies above U�). We thus �ndthe breakpoints of L�;U� that lie immediately to the right of rj . If either of the envelopeslies on the boundary of f at the x-coordinate of rj , then we can conclude that rj lies inall polygons of Q�, and therefore report all pairs (i; j) such that Pi 2 Q�. Otherwise, wedetermine in O(1) time whether rj lies below L� and above U�. If the answer is yes, weconclude that rj does not lie in any polygon of Q�, and we stop. If � is a leaf and rj liesinside the only polygon, say Pi, in Q�, then we return the pair (i; j). If � is not a leaf andrj lies inside a polygon of Q�, we recursively visit the children of �. Suppose rj lies insidekj polygons of Q(f), then the query procedure visits O(1 + kj log nv) nodes of 	. It spendsO(log nv) time at the root and O(1) at any other node, so the time spent in processing rjis O((1 + kj) log nv). Hence, the algorithm spendsO��(nf + n0f )�(nv) + Xrj2R(f)(1 + kj)� log nv�time at face f . Summing over all the faces of A and using (1), we obtain that the totaltime spent in reporting the pairs that satisfy condition (a), over all faces f of A, is O((nv+�v + kv)�(nv) log nv).Intersections between long lower chains and upper chains. For a face f of A, letL(f) denote the set of maximal connected portions of the chains in LL that lie inside f ,let U(f) denote the set of maximal connected portions of upper chains of (short and long)polygons in P(v) that lie inside f , and let SP(f) denote the set of portions of short spinesinside f . Since we have traced the edges of P(v) through A, the sets L(f) and U(f) arealready available for all faces f . We will report all pairs (i; j) that satisfy (?) and whoserightmost intersection points lie inside f . See Figure 1 for an illustration.The endpoints of all chains in L(f) lie on @f because they are portions of long chains.Let Af be the set of edges that constitute L(f) and @f ; set af = jAf j. The union of Af is



The Planar Case 8connected. If both endpoints of a chain 
 2 U(f) lie in the interior of f , then 
 is the entireupper chain of a short polygon Pj . In this case, we add a vertical segment �j from the rightendpoint rj of Pj downwards until it meets @f . Let Bf denote the union of the set of edgesthat constitute U(f) and @f , and the set of vertical segments that we have just added; setbf = jBf j. By construction, the union of Bf is also connected because all the upper chainsin U(f) are connected to @f after introducing the vertical segments. Since the unions ofAf and of Bf are both connected, we can use the randomized algorithm of Har-Peled andSharir [17] to compute all If intersection points between the segments of Af and of Bf thatlie in the interior of f , in O((af + bf + If )�(nv) log nv) expected time.The total expected running time spent in reporting the pairs that satisfy property (b)is Pf O((af + bf + If )�(nv) log nv). Each endpoint of a segment of Af or of Bf is eithera vertex of P(v), or an intersection point of a long spine and an edge of P(v), or the lowerendpoint of a vertical segment �j. Therefore, Pf (af + bf ) = O(nv + �v). The expectedrunning time is thus O((nv + �v +Pf If )�(nv) log nv).We call an intersection point of e 2 Af and e0 2 Bf real if e is an edge of a lower chainin L(f) and e0 is an edge of an upper chain in U(f); otherwise we call the intersection pointvirtual. We report a pair (i; j) if there exists an edge ei of Pi in Af and an edge ej of Pj inBf such that the intersection point of ei and ej is the rightmost vertex of Pi \ Pj .Each real intersection point is an intersection point of LL and the upper chains ofP(v), so the total number of real intersection points, summed over all faces of A, is O(�v).Since @f does not intersect the relative interior of any segment in U(f) or L(f), a virtualintersection point is an intersection point e \ e0, where e is an edge of the lower chain ofa long polygon Pi and e0 is the vertical segment �j emanating from the right endpoint rjof (the upper chain of) a short polygon Pj . We can ignore intersections on @f becausethey correspond to degenerate intersections between Af and Bf , and, in any case, theirnumber is only O(�v). Since Pi is a long polygon, its spine si is in SPL. Therefore, si liesabove the interior of the face f and thus above rj. The intersection of e and �j impliesthat rj is inside Pi. We charge the intersection point e \ e0 to the pair (i; j). Each pair(i; j) is charged by at most one virtual intersection point and the pair (i; j) is reported atv, therefore the total number of virtual intersection points, summed over all faces of A, isat most kv. Hence, Pf If = O(kv + �v), and the total expected time spent in executingstage (b) is O((nv + kv + �v)�(nv) log nv).We have thus described procedures for reporting all intersecting pairs that satisfy prop-erties (a){(c) at a node v of T . The total expected time we spend at v is O((nv + kv +�v)�(nv) log nv). Since Pv nv = O(n logm), Pv kv = k, and Pv �v = O(k) (Lemma 2.2),we obtain the following result.Theorem 2.3 Let P = fP1; : : : ; Pmg be m convex polygons in the plane with a total of nvertices. All k pairs of indices (i; j) such that Pi intersects Pj can be reported in O((n logm+k)�(n) log n) expected time.Remark 2.4 (i) To get a worst-case time bound instead of an expected time bound, we canreplace the algorithm of Har-Peled and Sharir [17] used in the second part of the algorithm



The Planar Case 9by an algorithm of Basch et al. [6]. This will increase the time bound by a polylogarithmicfactor.(ii) The algorithm also works when the boundaries of the polygons are composed ofJordan arcs instead of straight edges, provided the polygons are still convex. If t is themaximum number of times any pair of Jordan arcs intersect, the running time of the algo-rithm becomes O((�t+2(n) logm+ �t+2(k)) log n).2.2 An alternative deterministic algorithmLet Pi and Pj be two intersecting polygons of P. As above, the rightmost vertex of Pi \Pjis either ri, or rj , or an intersection point of the upper chain of Pi with the lower chain ofPj , or an intersection point of the lower chain of Pi with the upper chain of Pj . Using thisobservation, we can report the intersecting pairs of polygons as follows.Let V = fri j 1 � i � mg. We �rst report all intersecting pairs of polygons for whichthe rightmost vertex of the intersection polygon is the rightmost vertex of one of the twopolygons. A vertex ri is the rightmost vertex of Pi \ Pj if and only if ri 2 Pj . For each Pi,we therefore report Pi \ V . Using the range-searching data structure of Matou�sek [18], wepreprocess V , in time O((m2=3n2=3+n) logn), into a data structure of size O(m2=3n2=3+n),and query it with each Pi. For a polygon Pi, all �i points of Pi \V can be reported in timeO(jPij(m2=3=n1=3) log n+�i). Hence, the total time spent in this step is O(m2=3n2=3 log n+n logn+ �) where � =Pmi=1 jPi \ V j � k.Next, we report the pairs (i; j) such that the rightmost vertex of Pi\Pj is an intersectionpoint of an edge of Pi with an edge of Pj. Let U be the set of segments in the upper chains ofthe polygons in P, and let L be the set of segments in the lower chains of these polygons. Wecompute all � intersecting pairs of segments between U and L. This can be accomplishedin O(n4=3 log2=3 n + �) time [1, 9]. Suppose that an edge e of the upper chain of Pi andan edge e0 of the lower chain of Pj intersect. We check in O(1) time whether e \ e0 is therightmost vertex of Pi\Pj, and, if so, report the pair (i; j). Since an upper chain intersectsa lower chain in at most two points, the number of intersections between U and L is atmost 2k, where k is the number of intersecting pairs of polygons in P .Hence, we obtain the following result.Theorem 2.5 Let P be a set of m convex polygons in the plane with a total of n vertices.All k pairs of indices (i; j) such that Pi intersects Pj can be reported in O(n4=3 logn + k)time.Remark 2.6 As in Agarwal and Sharir [4], we can use a more sophisticated data structureto improve the running time of the algorithm to O(m2=3n2=3 logc n+ k), for an appropriateconstant c.The data structure in [18] can count the number of points lying inside a k-gon in timeO(k(m2=3=n1=3) log n) time using O((m2=3n2=3+m) log n) preprocessing. Moreover, a minorvariant of the algorithm by Chazelle [9] can count in O(n4=3 logn) time the number of



The Three-Dimensional Case 10intersection points between L and U that correspond to the rightmost intersection pointsof the corresponding polygons. Hence, we obtain the following.Theorem 2.7 Let P be a set of convex polygons in the plane with a total of n vertices. Allpairs of indices (i; j) such that Pi intersects Pj can be counted in O(n4=3 log n) time.3 The Three-Dimensional CaseLet P = fP1; : : : ; Pmg be a set of m convex polytopes in R3 with a total of n vertices.We present an algorithm, with running time O(n8=5+" + k), for any " > 0, which reportsall k pairs of indices (i; j) such that Pi intersects Pj . Our approach is similar to thealgorithm described in Section 2.2. We compute the bottom vertex, i.e., the vertex with theminimum z-coordinate, of each nonempty intersection polytope Pij = Pi \ Pj , and reportthe corresponding pairs (i; j). The bottom vertex of an intersection polytope Pij is eitherthe bottom vertex of Pi, or the bottom vertex of Pj , or the intersection point of an edge ofPi and a face of Pj , or the intersection point of a face of Pi and an edge of Pj . In the twolatter cases, the intersection has to satisfy some additional properties, which we describeand exploit below.Let bi be the bottom vertex of Pi, and let V = fbi j 1 � i � mg. We �rst reportall pairs (i; j) such that the bottom vertex of Pij is the bottom vertex of Pi or of Pj . Avertex bi 2 V is the bottom vertex of Pij if and only bi 2 Pj . Therefore, for each Pj 2 P,we need to compute and report Pj \ V . As in Section 2.2, we can accomplish this intime O(m3=4n3=4 logc n+ �), for some constant c, where � =Pmi=1 jPj \ V j � k, using therange-searching algorithm of Matou�sek [18].Next, we report all pairs (i; j) such that the bottom vertex of (the nonempty) Pij is anedge-face intersection. Let E and F denote the sets of edges and of faces, respectively, ofthe polytopes in P. Using the data structure of Agarwal and Matou�sek [2], we can compute,in O(n8=5+") time, for any " > 0, a family of pairs F = f(E1; F1); : : : ; (Er; Fr)g, such that(i) Ei � E and Fi � F , for all 1 6 i 6 r;(ii) every edge in Ei crosses every face of Fi, for all 1 6 i 6 r;(iii) for every crossing edge-face pair (e; f) 2 E � F , there is an i so that e 2 Ei andf 2 Fi; and(iv) Pui=1(jEij+ jFij) = O(n8=5+").We will describe an algorithm that, for a given pair (Ei; Fi), computes, in time O((jEij+jFij) log2 n + �i), all �i pairs (e; f) 2 Ei � Fi such that e \ f is the bottom vertex of thecorresponding intersection polytope. Repeating this procedure for all pairs of F , we report,in time O(n8=5+" + �) (for a slightly larger, but still arbitrarily small " > 0), all � pairs(i; j) such that the bottom vertex of Pij is the intersection of an edge-face pair.Consider a pair (Ei; Fi) from the family F . For each edge e 2 Ei (resp., each facef 2 Fi), let Pe 2 P (resp., Pf 2 P) be the polytope containing e (resp., f). Let S2 be the



The Three-Dimensional Case 11
r p q
pq4pqr�Figure 2: An arc 
pq and a spherical triangle 4pqr.unit sphere of directions in R3 , and let � = (0; 0;�1) be the south pole of S2. For twopoints p; q 2 S2 that are not antipodal, let 
pq � S2 be the shorter arc of the great circlepassing through p and q. For three points p; q; r 2 S2 no two of which are antipodal, let4pqr be the smaller spherical triangle formed by the arcs 
pq; 
qr, and 
pr. See Figure 2.Let nf denote the outward unit normal of the face f . For an edge e, let 
e be thegreat circular arc representing all outward normals to the planes supporting Pe at e. Theendpoints � and � of 
e are the outward normals of the faces of Pe incident upon e, and
e = 
��. For an edge e 2 Ei and a face f 2 Fi, let �ef = 4��nf be the spherical triangleformed by 
e, 
�nf , and 
�nf ; �ef is the set of outward normals supporting Pe \ Pf at thevertex e \ f . The following lemma is straightforward but crucial to our analysis.Lemma 3.1 For a pair (e; f) 2 Ei � Fi, the intersection point e \ f is the bottom vertexof Pe \ Pf if and only if � 2 �ef .In order to �nd the edge-face pairs with the above property, we de�ne a spherical triangle�e for each edge e 2 Ei as follows. Let p and q be the antipodal points of the endpointsof 
e, and let 
e be the antipodal arc of 
e, i.e., the set of points that are antipodal to thepoints on 
e. We de�ne 4e to be the spherical triangle 4pq�, which is bounded by thearcs 
e; 
p�, and 
q�. We also de�ne We to be the spherical wedge that contains the arc 
eand is formed by the meridians passing through p and q. Finally, let He be the hemispherecontaining 4e and bounded by the great circle containing 
e and 
e (this circle is the setof normals to the planes passing through the edge e). Then 4e = He \We.It can be easily checked that � 2 �ef if and only if nf 2 4e, which implies the followinglemma.Lemma 3.2 For a given pair (e; f) 2 Ei � Fi, the intersection point e \ f is the bottomvertex of Pe \ Pf if and only if nf 2 4e.Let � = f4e j e 2 Eig and N = fnf j f 2 Fig. For each 4e 2 �, we wish toreport 4e \ N . Recall that 4e = We \ He. We thus preprocess N into a two-level datastructure|the �rst level reports, for any query 4e, all points of We \ N as the union ofO(log jFij) canonical subsets, and the second level reports all points of the canonical subsetsthat lie inside He. More precisely, we proceed as follows. We sort the points in N by their



Conclusions 12longitudes and construct a minimum-height binary tree T on the sorted point set (we omitthe easy details concerning the handling of the circularity of this order). Each node u of Tis associated with the subset Nu � N of points that are stored at the leaves of the subtreerooted at u. We preprocess Nu for hemisphere reporting queries, where each query reportsall points of Nu lying inside a query hemisphere H � S2. By using a halfplane reportingstructure [11], we can preprocess Nu, in O(jNuj log jNuj) time, into a data structure of sizeO(jNuj), so that a hemisphere query can be answered in O(log jNuj+ t) time, where t is theoutput size. We attach this structure at u as its secondary structure. The total time spentin preprocessing N is O(jFij log2 jFij). For an edge e 2 A, we report 4e \N as follows. Bysearching with the longitudes of the endpoints of 
e, we �rst �nd, in O(log jFij) time, a setUe of O(log jFij) nodes of T , so that Su2Ue Nu =We \N . For each node u 2 Ue, we reportall tu points of Nu \ 4e in O(log jFij + tu) time, by searching with He in the secondarystructure attached to u. Therefore the total time spent in reporting all te points of 4e \Nis O(log2 jFij + te). Hence, the overall time spent in reporting all � pairs of Ei � Fi suchthat e \ f is the bottom vertex of Pe \ Pf is O((jEij+ jFij) log2 jFij+ �).Summing up all the bounds, and replacing " by a slightly larger, but still arbitrarilysmall constant, we obtain the following.Theorem 3.3 Given a set P of m polytopes in R3 with a total of n vertices, we can reportall k pairs of indices (i; j) such that Pi and Pj intersect, in time O(n8=5+" + k), for anyconstant " > 0.Remark 3.4 The above algorithm can also be modi�ed to count, in O(n8=5+") time, thenumber of all intersecting pairs of polytopes in P.4 ConclusionsIn this paper, we presented output-sensitive algorithms for reporting all intersecting pairs ofconvex polygons / polytopes in two and three dimensions. For the planar case, we presenteda near-linear-time algorithm for this problem.An open question is whether there exists an o(m2)-time algorithm for reporting all pairsof intersecting polytopes in a set P of m convex polytopes in R4 .References[1] P. K. Agarwal, Partitioning arrangements of lines: II. Applications, Discrete Comput. Geom.,5 (1990), 533{573.[2] P. K. Agarwal and J. Matou�sek, On range searching with semialgebraic sets, Discrete Comput.Geom., 11 (1994), 393{418.[3] P. K. Agarwal and M. Sharir, Red-blue intersection detection algorithms, with applications tomotion planning and collision detection, SIAM J. Comput., 19 (1990), 297{321.
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