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Abstract

Let P = {Py,..., Py} be aset of m convex polytopes in R?, for d = 2, 3, with a total
of n vertices. We present output-sensitive algorithms for reporting all k£ pairs of indices
(i,7) such that P; intersects P;. For the planar case we describe a simple algorithm with
running time O(n*/?logn + k), and an improved randomized algorithm with expected
running time O((nlogm + k)a(n)logn) (which is faster for small values of k). For
d = 3, we present an O(n8/5+5 + k)-time algorithm, for any £ > 0. Our algorithms can
be modified to count the number of intersecting pairs in O(n*/? log®™®) n) time for the
planar case, and in O(n8/5%¢) time and R?.

1 Introduction

Computing intersections in a set of geometric objects is a fundamental problem in compu-
tational geometry. A basic version of this problem is when the objects are line segments
in the plane. Indeed, computing the intersecting pairs in a set of n line segments was one
of the first problems studied in computational geometry: Already in 1979, Bentley and
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Ottmann [7] described an algorithm for this problem with O((n + k) logn) running time,
where k is the number of intersecting pairs of segments. Since then much research has been
done on this problem, culminating in optimal—that is, with O(nlogn + k) running time—
deterministic algorithms by Chazelle and Edelsbrunner [12] and Balaban [5], and simpler
randomized algorithms by Clarkson and Shor [14] and Mulmuley [19].

Another well-studied variant of the problem is the red-blue intersection problem. Here
one is given a set of red segments and a set of blue segments, and the goal is to report
all bichromatic intersections. If there are no monochromatic intersections, then the prob-
lem can be solved in O(nlogn + k) time by applying an optimal standard line-segment
intersection algorithm; when the red segments and the blue segments both form simply
connected subdivisions, then the problem can even be solved in O(n + k) time [15]. The
situation becomes considerably more complicated when there are monochromatic inter-
sections. Applying a standard line-segment intersection algorithm will not lead to an
output-sensitive algorithm because it may report a quadratic number of monochromatic
intersections even when there are no bichromatic intersections. Somehow one has to avoid
processing all the monochromatic intersections. Agarwal and Sharir [3] showed that one can
detect whether the two sets intersect in O(n*/3+) time." Later Agarwal [1] and Chazelle [9]
gave O(n4/ 3 logo(l) n + k)-time algorithm to report all k red-blue intersections. Basch et
al. [6] presented a deterministic O(\1o(n 4 k) log®(n)) algorithm for the case where the set
of red segments is connected and the set of blue segments is connected; this algorithm also
works for the case of Jordan arcs, each pair of which intersect at most ¢ times. Its running
time is O(\p42(n + k) log®(n)), where A4(n), the maximum length of an (n,s) Davenport-
Schinzel sequence, is an almost linear function of n for any fixed s. This bound was later
improved for the case of segments to O((n + k) log?(n) loglogn) by Brodal and Jacob [8].
Har-Peled and Sharir [17] give a randomized algorithm with O(A¢y2(n + k) logn) running
time for the case of Jordan arcs, as above.

We are interested in the case in which the input consists of convex polygons in the
plane. We want to compute all intersecting pairs of polygons. More formally, we are given
aset P = {P,...,Py,} of m convex polygons in R? with a total of n vertices, and we
want to report all k pairs of indices 7,7 such that P; intersects P;. (The polygons are
considered to be 2-dimensional regions, so two polygons intersect also in the case that one
of them is fully contained inside the other.) If each polygon P; has constant complexity,
then the number of intersections between pairs of edges will not exceed the total number of
intersecting pairs of polygons by more than a constant factor, and one can solve the problem
in O(nlogn+k) time, by a straightforward modification of the algorithms mentioned above
for reporting segment intersections. If the given polygons do not have constant complexity,
then the problem becomes considerably harder because the intersection of a pair of the
given polygons can have many vertices. Regarding each input polygon as a collection of
segments will thus not lead to an output-sensitive algorithm in this case.

Gupta et al. [16] nevertheless managed to develop an output-sensitive algorithm for

!The meaning of a bound like this is that for any € > 0 there exists a constant ¢ = ¢(¢) that depends on
€, so that the bound holds with ¢ as the constant of proportionality.
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this case that runs in time O(n*3*+¢ + k). The algorithm first computes a trapezoidal
decomposition for each polygon. Then it computes, using a multi-level partition tree, those
pairs of intersecting trapezoids such that the leftmost intersection point of the trapezoids is
also the leftmost intersection point of the corresponding polygons. This way it is ensured
that each intersecting pair of polygons is reported exactly once.

We develop two new algorithms for this problem. The first algorithm is randomized and
combines hereditary segment trees [13] with the above mentioned red-blue intersection algo-
rithm of Har-Peled and Sharir [17]. Its expected running time is O((nlog m + k)a(n) logn)
and it is significantly faster than the algorithm of Gupta et al. when k = o(n*/?). In addi-
tion, the algorithm also works for convex splinegons (that is, convex shapes whose boundary
is composed of Jordan arcs) with only a minor increase in running time; this is not the case
for the algorithm of Gupta et al. Our algorithm can be made deterministic at the expense
of an additional polylogarithmic factor.

Our second algorithm has O(n*3logn + k) running time, and is thus slightly faster
than our first algorithm for & = Q(n*/?3). Tt is related to the algorithm of Gupta et al.—it
uses partition trees and similar techniques to search for the rightmost intersection points
of intersecting pairs of polygons—but it is conceptually simpler and it has a slightly better
running time.

The main advantage of our approach over Gupta et al.’s is that it generalizes to the
3-dimensional version of the problem: Given a set P = {P,... , Py} of m convex polytopes
in R? with a total of n vertices, report all k pairs of indices (i, ) such that P; intersects
Pj. For this problem, no subquadratic algorithm was known. We generalize our second
2-dimensional algorithm, and obtain an algorithm with running time O(n8/5+¢ 4 k), for any
€ > 0. Such a generalization seems hard for the algorithm of Gupta et al., as the vertical
decomposition of a convex polytope can have quadratic complexity. Note that our algorithm
for the 3-dimensional case has the same running time as the best known algorithm for the
much simpler problem of reporting all intersecting pairs in a set of triangles in R3 [2].

2 The Planar Case

Let = {Pi,..., Py} beaset of m convex polygons in the plane, with a total of n vertices.
For simplicity, we assume that none of the polygons has a vertical edge and that all the
vertex coordinates are distinct; we can enforce this in O(nlogn) time by applying a suitable
rotation. For a polygon P;, we define ¢; to be the leftmost point of F; and r; to be the
rightmost point of P; (since there are no vertical edges, ¢; and r; are uniquely defined).
They partition the boundary of P; into two convex chains: the upper chain, denoted U;,
and the lower chain, denoted L;.

We first describe an algorithm whose running time is near-linear in n and k, and
then a worst-case optimal algorithm for the case of large k; its worst-case running time
is O(n*3logn + k).
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2.1 A near-linear randomized algorithm

We present a randomized algorithm that reports, in O((nlogm + k)a(n)logn) expected
time, all k intersecting pairs of polygons in P. For each polygon P;, we define s; to be the
segment connecting ¢; to r;; we call s; the spine of P;. Let 8P denote the set of all the
spines.

Our algorithm starts by constructing a hereditary segment tree T on (the z-projections
of) the spines of 8P [13]. Each node v of T is associated with a vertical strip W, and
with a subset 8P(v) of spines. A spine s; intersecting W, is short at v if at least one of
its endpoints lies in the interior of W, otherwise it is long. The set 8P(v) is the subset of
spines that intersect W, and are short at the parent of v. If v is the root, then SP(v) = 8P.
Let P(v) = {P; | si € 8P(v)}. A polygon is short (resp., long) at v if its spine is short (resp.,
long) at v. As shown in [13], >, |P(v)| = O(mlogm).

We assume that SP(v) and P(v) are clipped to within W,. At each node v of the tree,
we will report all pairs (7, ) such that

(x) the rightmost intersection point of P; and P; lies inside W, and P; is long
at v.

The following lemma is straightforward from the structure of hereditary segment trees.

Lemma 2.1 For every pair of intersecting polygons P; and Pj, there is exactly one node v
of T at which property (x) holds.

Let k, be the number of pairs that satisfy property (x) at a node v. Then ), k, = k.
Our procedure will ensure that a pair (4,7) is reported only once, at the node where (%) is
satisfied, but it will spend roughly O(logn) time for each intersecting pair.

Fix a node v. Let Py, C P(v) denote the subset of long polygons at v, and let Pg C P(v)
denote the subset of short polygons at v. Denote the set of spines of Py, by 8Py, the set
of their upper chains by Uz, and the set of their lower chains by L. The sets §Pg, Ug,
and Lg are defined analogously for the short polygons. Again, all these objects are clipped
to within W,. Let n, denote the total number of edges in (the clipped) P, and Pg. As
above, the structure of hereditary segment trees implies that ) n, = O(nlogm). Finally,
we define Rg to be the set of right endpoints of the spines in 8P(v) that lie in the interior
of W,. Note that every point in Rg is the right endpoint of an (unclipped) original spine in
8P. Let u, be the number of intersection points between 8P, and SP(v) U 9P (v) plus the
number of intersection points between the upper (resp. lower) chains of Py, and the lower

(resp. upper) chains of P(v), where 0P(v) = {8P ‘P € P(v) }
Lemma 2.2 Y ;- u, = O(k).

Proof: Let o be an intersection point of a spine s; € 8Py, (v) and another spine s; € 8P(v);
o is one of the intersection points counted by u,. We claim that v is the only node at which
o is counted by pu,. It is obvious that o cannot be counted by a node w other than an
ancestor or a descendent of v, as the vertical strip W, associated with w has to contain
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the intersection point o. Since neither s; nor s; belongs to 8Pr(w) for any ancestor w
of v, o will not by counted by p,. On the other hand, s; does not belong to 8P(u) for
any descendent u of v, so ¢ will not be counted by any descendent of v either. Hence v
is the only node at which o is counted. A similar claim holds for an intersection point of
8P (v) and 9P(v) or of upper (resp. lower) chains of Py (v) and lower (resp. upper) chains
of P(v). Since there are O(k) intersection points between two spines, between a spine and
a polygonal chain, and between upper and lower polygonal chains, the lemma, follows. O

Since all the vertex coordinates are distinct, there exists at most one spine in §P(v)
whose right endpoint r; lies on the right boundary of W,,. We can easily compute in O(n,)
time all polygons of P(v) that contain r;. We now describe how we report all the other
pairs that satisfy (x) at v.

We construct, in O(n, logn, + p,) time, the arrangement A = A(8Py) of the spines
of the long polygons [12]. We also add the vertical lines bounding W, to A. Each face
f of A is a convex polygon, so we can compute the intersections between a line and 0f
in O(logn,) time. We preprocess A, in O((n, + py)logn,) time, for planar point-location
queries [20]. For each edge e of P(v), we locate its left endpoint in A and then trace it
through A, spending O(logn,) time at each face of A that e intersects.

For each face f € A, we report the pairs (7, j) that satisfy (x) and for which the rightmost
point of P; N P; lies inside f. This is accomplished in the following three stages.

(a) Report all pairs (i,7) such that P; € Py contains the right endpoint r; € Rg and
T € f

(b) Report all pairs (7, ) such that the lower chain of P; € Py, intersects the upper chain
of P; € P(v) and the rightmost point of their intersection lies inside f.

(c) Report all pairs (i,7) such that the upper chain of P; € Py, intersects the lower chain
of P; € P(v) and the rightmost point of their intersection lies inside f.

It is easily verified that stages (a)—(c) indeed report all the desired intersections. Since
(b) and (c) are symmetric, we omit the description of (c).

Containments of rightmost points. Let R(f) C Rg be the subset of right endpoints
that lie inside f. We wish to report all pairs (7,7) such that r; € R(f) lies inside P; € Pr.
Let P(f) C Pr, denote the set of long polygons that contain f in their interior (i.e., for a
polygon P € P(f), we have f C P), and let Q(f) C P, denote the set of polygons whose
boundaries intersect f. Let ny denote the number of vertices of the polygons in Q(f) that lie
inside f, and let n’f denote the number of edges in Q(f) that intersect f but their endpoints
do not lie inside f. Then

angnv and Zn'fguv. (1)
I I
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Obviously, [Q(f)| < ny + n’. Since we have already traced the edges of Pr(v) through A,
we have Q(f) at our disposal. However, we do not store P(f) explicitly for each face f
because the resulting storage could be quite large.

Note that every point in R(f) lies inside every polygon in P(f), so we report every pair
in P(f) x R(f). In order to compute the polygons of P(f), we perform a plane sweep over
A and the collection of long polygons. The events of the sweep are (i) all the vertices of
A; (ii) left and right endpoints of polygons in Pr; and (iii) intersections of boundaries of
polygons in P, with the edges of A. The number of events is O(n, + p, +k,). The algorithm
maintains the intersection of the sweep line A\ with long spines and with polygons in Pr.
More precisely, the intersection of A with the spines in 8Py partitions A into intervals, each
of which is the intersection of A with a face of A. The algorithm maintains a segment tree on
these intervals. The intersection of A with a polygon in Py, is also an interval. We store the
set of intervals {P N A | P € P1} into this segment tree. The structure of the segment tree
does not change between two consecutive event points, and it can be updated in O(logn)
time at each event point. When the sweep line reaches a point r; € Rg, the algorithm
simply reports all x; pairs (4,7) such that the interval P, N A contains r;. This can be
accomplished in time O(x; +logn,). In total, this step takes time O((n, + py + ky) logny).

Next, for every point r; € R(f), we report the polygons in Q(f) that contain r;. We
build a union tree ¥ on the polygons in Q(f), which is a minimum-height binary tree whose
leaves store the polygons of Q(f). Each node ¢ of W is associated with the subset Q¢ C Q(f)
of polygons that are stored at the leaves of the subtree rooted at £. Let v be the total
number of vertices of the polygons in Q¢ that lie in the interior of f, and let Vé be the number
of edges of the polygons in Q¢ that intersect f but whose endpoints do not lie inside f; we
have » . ve = O(nylogn,) and Y . vy = O(nlogn,). Let L¢ (resp., Ug) denote the set
of maximal connected portions of the lower (resp., upper) chains of the set of intersection
polygons {P N f | P € Q¢}. For a polygon P € Q¢, the boundary of P N f alternates
between the portions of P and df. We store only those portions of (P N f) which lie
on OP. At each node ¢, we compute the lower envelope L¢ of L and the upper envelope
Ug of Ug. Again we store only those portions of the envelopes which lie in the interior
of f. These portions have O((v¢ + v¢)a(ny)) breakpoints. If we have already computed
the lower and upper envelopes of the children of &, then L¢,Us can be computed in an
additional O((v¢ +vg)a(n,)) time. We store the sequences of breakpoints of L¢ (and Ug) in
an array, sorted from left to right. For each breakpoint, we store the segment that appears
on the envelope immediately to its left if the envelope lies in the interior of f to the left
of the breakpoint; otherwise we mark that the envelope appears on df to the left of the
breakpoint. We also apply fractional cascading [10] so that if we know the breakpoint of L
(resp. Ug) that lies immediately to the right of a given z-coordinate xy, we can compute,
in O(1) time, the corresponding breakpoints at the children of £. The total time spent in
preprocessing U is O((ny + n'y)a(n,) logny).

For each point r; € R(f), we find all polygons in Q(f) containing r; by traversing the
union tree in a top-down manner. Suppose we are at a node ¢ of W. Since f is not crossed
by any spine, 7; does not lie in any polygon of Q¢ if and only if r; lies below all the chains
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Figure 1: A face f of A, the associated sets U(f), L(f), and 8P(f), and an added vertical

segment.

in L¢ (i.e., lies below L¢) and above all the chains in Ug (i.e., lies above Ug¢). We thus find
the breakpoints of L¢, U that lie immediately to the right of r;. If either of the envelopes
lies on the boundary of f at the z-coordinate of 7;, then we can conclude that r; lies in
all polygons of Q¢, and therefore report all pairs (,j) such that P; € Q¢. Otherwise, we
determine in O(1) time whether r; lies below L¢ and above Ue. If the answer is yes, we
conclude that r; does not lie in any polygon of Q¢, and we stop. If { is a leaf and r; lies
inside the only polygon, say P;, in Q¢, then we return the pair (i,7). If £ is not a leaf and
r; lies inside a polygon of Q¢, we recursively visit the children of . Suppose r; lies inside
k; polygons of Q(f), then the query procedure visits O(1 + k; logn,)) nodes of W. It spends
O(logn,) time at the root and O(1) at any other node, so the time spent in processing r;
is O((1 + k;) log n,). Hence, the algorithm spends

o(((nf +nlam,) + > (14 kj)> log n>

i €R(f)

time at face f. Summing over all the faces of A and using (1), we obtain that the total
time spent in reporting the pairs that satisfy condition (a), over all faces f of A, is O((n, +

oy + ky)a(ny) log ny).

Intersections between long lower chains and upper chains. For a face f of A, let
L(f) denote the set of maximal connected portions of the chains in L7, that lie inside f,
let U(f) denote the set of maximal connected portions of upper chains of (short and long)
polygons in P(v) that lie inside f, and let 8P(f) denote the set of portions of short spines
inside f. Since we have traced the edges of P(v) through A, the sets L(f) and U(f) are
already available for all faces f. We will report all pairs (7, 7) that satisfy (x) and whose
rightmost intersection points lie inside f. See Figure 1 for an illustration.

The endpoints of all chains in L(f) lie on df because they are portions of long chains.
Let A; be the set of edges that constitute L(f) and 0f; set ay = |Af|. The union of Ay is
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connected. If both endpoints of a chain v € U(f) lie in the interior of f, then + is the entire
upper chain of a short polygon P;. In this case, we add a vertical segment o; from the right
endpoint r; of P; downwards until it meets 0f. Let By denote the union of the set of edges
that constitute U(f) and 0f, and the set of vertical segments that we have just added; set
by = |By|. By construction, the union of By is also connected because all the upper chains
in U(f) are connected to Of after introducing the vertical segments. Since the unions of
Ay and of By are both connected, we can use the randomized algorithm of Har-Peled and
Sharir [17] to compute all I intersection points between the segments of Ay and of By that
lie in the interior of f, in O((as + by + Iy)a(n,)logn,) expected time.

The total expected running time spent in reporting the pairs that satisfy property (b)
is 327 O((ay + by + Ir)a(ny) logny). Each endpoint of a segment of Ay or of By is either
a vertex of P(v), or an intersection point of a long spine and an edge of P(v), or the lower
endpoint of a vertical segment ;. Therefore, 3 (ay + by) = O(ny + py). The expected
running time is thus O((ny + py + 32 Ir)a(ny) logny).

We call an intersection point of e € Ay and €' € By real if e is an edge of a lower chain
in L(f) and €' is an edge of an upper chain in U(f); otherwise we call the intersection point
virtual. We report a pair (7, 7) if there exists an edge e; of P; in Ay and an edge e; of P; in
By such that the intersection point of e; and e; is the rightmost vertex of P; N P;.

Each real intersection point is an intersection point of L; and the upper chains of
P(v), so the total number of real intersection points, summed over all faces of A, is O(uy).
Since df does not intersect the relative interior of any segment in U(f) or L(f), a virtual
intersection point is an intersection point e N e/, where e is an edge of the lower chain of
a long polygon P; and €' is the vertical segment o; emanating from the right endpoint r;
of (the upper chain of) a short polygon P;. We can ignore intersections on Of because
they correspond to degenerate intersections between A; and By, and, in any case, their
number is only O(u,). Since P; is a long polygon, its spine s; is in 8Py. Therefore, s; lies
above the interior of the face f and thus above r;. The intersection of e and o} implies
that r; is inside P;. We charge the intersection point e N e’ to the pair (i,7). Each pair
(i,7) is charged by at most one virtual intersection point and the pair (7, 7) is reported at
v, therefore the total number of virtual intersection points, summed over all faces of A, is
at most k,. Hence, ) Iy = O(ky + py), and the total expected time spent in executing
stage (b) is O((ny + ky + py)a(ny) log ny).

We have thus described procedures for reporting all intersecting pairs that satisfy prop-
erties (a)—(c) at a node v of T. The total expected time we spend at v is O((n, + ky, +
pv)a(ny)logny). Since Y, n, = O(nlogm), > ky, =k, and Y p, = O(k) (Lemma 2.2),
we obtain the following result.

Theorem 2.3 Let P = {Py,...,Py} be m convex polygons in the plane with a total of n
vertices. Allk pairs of indices (i, j) such that P; intersects Pj can be reported in O((nlogm+
k)a(n)logn) expected time.

Remark 2.4 (i) To get a worst-case time bound instead of an expected time bound, we can
replace the algorithm of Har-Peled and Sharir [17] used in the second part of the algorithm
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by an algorithm of Basch et al. [6]. This will increase the time bound by a polylogarithmic
factor.

(ii) The algorithm also works when the boundaries of the polygons are composed of
Jordan arcs instead of straight edges, provided the polygons are still convex. If ¢ is the
maximum number of times any pair of Jordan arcs intersect, the running time of the algo-
rithm becomes O((Ai2(n)logm + Ai12(k)) logn).

2.2 An alternative deterministic algorithm

Let P; and P; be two intersecting polygons of P. As above, the rightmost vertex of P; N P;
is either r;, or r;, or an intersection point of the upper chain of P; with the lower chain of
Pj, or an intersection point of the lower chain of P; with the upper chain of P;. Using this
observation, we can report the intersecting pairs of polygons as follows.

Let V.= {r; | 1 <i < m}. We first report all intersecting pairs of polygons for which
the rightmost vertex of the intersection polygon is the rightmost vertex of one of the two
polygons. A vertex r; is the rightmost vertex of P; N P; if and only if r; € P;. For each P;,
we therefore report P; N V. Using the range-searching data structure of Matousek [18], we
preprocess V, in time O((m?/3n2/3 +n)logn), into a data structure of size O(m?/*n2/3 4+n),
and query it with each P;. For a polygon P;, all u; points of P; NV can be reported in time
O(|P;|(m?/3 /n'/3) log n + ;). Hence, the total time spent in this step is O(m?/3n?/3 logn +
nlogn + p) where p=3" |[PBNV| <k.

Next, we report the pairs (i, j) such that the rightmost vertex of P;NP; is an intersection
point of an edge of P; with an edge of P;. Let U be the set of segments in the upper chains of
the polygons in P, and let L be the set of segments in the lower chains of these polygons. We
compute all v intersecting pairs of segments between U and L. This can be accomplished
in O(n*/3 log2/3 n + v) time [1, 9]. Suppose that an edge e of the upper chain of P; and
an edge ¢’ of the lower chain of P; intersect. We check in O(1) time whether e N €’ is the
rightmost vertex of P, N Pj, and, if so, report the pair (7, 7). Since an upper chain intersects
a lower chain in at most two points, the number of intersections between U and L is at
most 2k, where k is the number of intersecting pairs of polygons in P.

Hence, we obtain the following result.

Theorem 2.5 Let P be a set of m convex polygons in the plane with a total of n vertices.
All k pairs of indices (i,7) such that P; intersects P; can be reported in O(n*/*logn + k)
time.

Remark 2.6 Asin Agarwal and Sharir [4], we can use a more sophisticated data structure
to improve the running time of the algorithm to O(mZ/ 3n2/3 log® n + k), for an appropriate
constant c.

The data structure in [18] can count the number of points lying inside a k-gon in time
O(k(m?/3 /n'/?)1ogn) time using O((m?/*n?/3+m)logn) preprocessing. Moreover, a minor
variant of the algorithm by Chazelle [9] can count in O(n*/3logn) time the number of
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intersection points between L and U that correspond to the rightmost intersection points
of the corresponding polygons. Hence, we obtain the following.

Theorem 2.7 Let P be a set of convex polygons in the plane with a total of n vertices. All
pairs of indices (i,4) such that P; intersects P; can be counted in O(n*/?logn) time.

3 The Three-Dimensional Case

Let P = {P},...,Py,} be a set of m convex polytopes in R® with a total of n vertices.
We present an algorithm, with running time O(ns/ 5+ 1 k), for any £ > 0, which reports
all k pairs of indices (i,7) such that P; intersects P;. Our approach is similar to the
algorithm described in Section 2.2. We compute the bottom vertex, i.e., the vertex with the
minimum z-coordinate, of each nonempty intersection polytope P;; = P; N P;, and report
the corresponding pairs (4, 7). The bottom vertex of an intersection polytope P;; is either
the bottom vertex of P;, or the bottom vertex of P;, or the intersection point of an edge of
P; and a face of P;, or the intersection point of a face of P; and an edge of P;. In the two
latter cases, the intersection has to satisfy some additional properties, which we describe
and exploit below.

Let b; be the bottom vertex of P;, and let V- = {b; | 1 < ¢ < m}. We first report
all pairs (z,7) such that the bottom vertex of P;; is the bottom vertex of P; or of P;. A
vertex b; € V' is the bottom vertex of P;; if and only b; € P;. Therefore, for each P; € P,
we need to compute and report P; N V. As in Section 2.2, we can accomplish this in
time O(m>/4n3/*log®n + p), for some constant ¢, where = .7 |P; N V| < k, using the
range-searching algorithm of Matousek [18].

Next, we report all pairs (¢, 7) such that the bottom vertex of (the nonempty) P;; is an
edge-face intersection. Let E and F' denote the sets of edges and of faces, respectively, of
the polytopes in P. Using the data structure of Agarwal and Matousek [2], we can compute,
in O(n8/5¢) time, for any € > 0, a family of pairs F = {(Ey, F}), ... , (E,, F,)}, such that

(i) BE; CEand F; CF,forall 1 <i<r;
(ii) every edge in E; crosses every face of Fj, for all 1 <17 < r;

(iii) for every crossing edge-face pair (e, f) € E x F, there is an i so that e € E; and
f € F;; and

(iv) Y (1Bl + [ Fi]) = O(n®/>+).

We will describe an algorithm that, for a given pair (E;, F;), computes, in time O((|E;|+
|F;|) log? n + v;), all v; pairs (e, f) € E; x F; such that e N f is the bottom vertex of the
corresponding intersection polytope. Repeating this procedure for all pairs of F, we report,
in time O(n®5t¢ 4+ 1) (for a slightly larger, but still arbitrarily small ¢ > 0), all v pairs
(4,7) such that the bottom vertex of P;; is the intersection of an edge-face pair.

Consider a pair (E;, F;) from the family F. For each edge e € E; (resp., each face
f € F}), let P, € P (resp., Py € P) be the polytope containing e (resp., f). Let S? be the
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Figure 2: An arc v,, and a spherical triangle Apgr.

unit sphere of directions in R?, and let x = (0,0,—1) be the south pole of S2. For two
points p,q € S? that are not antipodal, let Ypg C S? be the shorter arc of the great circle
passing through p and ¢. For three points p,q,7 € S? no two of which are antipodal, let
Apgr be the smaller spherical triangle formed by the arcs v,q, 74, and 7y,,. See Figure 2.

Let n; denote the outward unit normal of the face f. For an edge e, let v, be the
great circular arc representing all outward normals to the planes supporting P, at e. The
endpoints ¢ and 7 of v, are the outward normals of the faces of P, incident upon e, and
Ye = Yen- For an edge e € E; and a face f € F;, let 7.; = Afnny be the spherical triangle
formed by ve, ¥¢n > and Ypng; Tep is the set of outward normals supporting P, N P; at the
vertex e N f. The following lemma is straightforward but crucial to our analysis.

Lemma 3.1 For a pair (e, f) € E; X F;, the intersection point e N f is the bottom vertex
of P. N Py if and only if x € Tey.

In order to find the edge-face pairs with the above property, we define a spherical triangle
A, for each edge e € F; as follows. Let p and ¢ be the antipodal points of the endpoints
of v, and let 7, be the antipodal arc of ~., i.e., the set of points that are antipodal to the
points on .. We define A\, to be the spherical triangle Apgy, which is bounded by the
arcs Yo, Ypy, and 7vq,. We also define W, to be the spherical wedge that contains the arc 7,
and is formed by the meridians passing through p and ¢. Finally, let H, be the hemisphere
containing A, and bounded by the great circle containing 7, and 7, (this circle is the set
of normals to the planes passing through the edge €). Then A, = H, N W..

It can be easily checked that x € 7. if and only if ny € A, which implies the following
lemma.

Lemma 3.2 For a given pair (e, f) € E; X F;, the intersection point e N f is the bottom
vertez of P. N Py if and only if ny € A,.

Let A = {A., | e € E;}and N = {ny | f € F;}. For each A, € A, we wish to
report A, N N. Recall that A, = W, N H,. We thus preprocess N into a two-level data
structure—the first level reports, for any query A\, all points of W, N N as the union of
O(log |F;|) canonical subsets, and the second level reports all points of the canonical subsets
that lie inside H.. More precisely, we proceed as follows. We sort the points in N by their
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longitudes and construct a minimum-height binary tree T on the sorted point set (we omit
the easy details concerning the handling of the circularity of this order). Each node u of T'
is associated with the subset N, C N of points that are stored at the leaves of the subtree
rooted at u. We preprocess N,, for hemisphere reporting queries, where each query reports
all points of N, lying inside a query hemisphere H C S2. By using a halfplane reporting
structure [11], we can preprocess NV, in O(|Ny|log|N,|) time, into a data structure of size
O(|Nyl), so that a hemisphere query can be answered in O(log|N,|+t) time, where ¢ is the
output size. We attach this structure at v as its secondary structure. The total time spent
in preprocessing N is O(|F;|log? | F;|). For an edge e € A, we report A, N N as follows. By
searching with the longitudes of the endpoints of 7,, we first find, in O(log|F;|) time, a set
U, of O(log |F;|) nodes of T', so that |J, . Nu = We N N. For each node u € U,, we report
all ¢, points of N, N A, in O(log|F;| + t,) time, by searching with H, in the secondary
structure attached to u. Therefore the total time spent in reporting all ¢, points of A, NN
is O(log? |F;| + t.). Hence, the overall time spent in reporting all v pairs of E; x F; such
that e N f is the bottom vertex of P. N Py is O((|E;| + |Fi|) log? |F;| + v).

Summing up all the bounds, and replacing ¢ by a slightly larger, but still arbitrarily
small constant, we obtain the following.

Theorem 3.3 Given a set P of m polytopes in R® with a total of n vertices, we can report
all k pairs of indices (i,7) such that P; and P; intersect, in time O(nd/5te 1 k), for any
constant € > 0.

Remark 3.4 The above algorithm can also be modified to count, in O(n®5%¢) time, the
number of all intersecting pairs of polytopes in P.

4 Conclusions

In this paper, we presented output-sensitive algorithms for reporting all intersecting pairs of
convex polygons / polytopes in two and three dimensions. For the planar case, we presented
a near-linear-time algorithm for this problem.

An open question is whether there exists an o(m?)-time algorithm for reporting all pairs
of intersecting polytopes in a set P of m convex polytopes in R*.
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