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ABSTRACT

We show that that the complexity of the Voronoi diagram
of a collection of disjoint polyhedra in 3-space that have n
vertices overall, under a convex distance function induced
by a polyhedron with O(1) facets, is O(n**=), for any € > 0.
We also show that when the sites are n segments in 3-space,
this complexity is O(n?a(n)logn). This generalizes previ-
ous results by Chew et al. [9] and by Aronov and Sharir [4],
and solves an open problem put forward by Agarwal and
Sharir [2]. Specific distance functions for which our re-
sults hold are the L; and the Lo metrics. These results
imply that we can preprocess a collection of polyhedra as
above into a near-quadratic data structure that can answer
d-approximate Euclidean nearest-neighbor queries amidst
the polyhedra in time O(log(n/d)), for an arbitrarily small
6> 0.
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1. INTRODUCTION

The Voronoi diagram of a set I" of objects (‘sites’) in some
space under some metric (or distance function) is a subdi-
vision of the space into cells, one cell per site, such that the
cell associated with a site O € I' comprises the points in
space for which O is closer (under the given metric) than all
other sites of I'.

The study of Voronoi diagrams from the combinatorial
and algorithmic points of view has a long and rich history
in computational geometry, beginning with the very papers
that launched this field in the 1970s [17]. Following the
intensive research conducted since, properties of Voronoi di-
agrams in the plane are very well understood, with respect
to many different distance functions and types of sites (see,
e.g., [6, 11] for recent comprehensive surveys of the subject).

In higher dimensions, however, some very basic problems
concerning Voronoi diagrams are still wide open, and have
withstood repeated attacks. One such problem is determin-
ing the combinatorial complexity of the Voronoi diagram of
a set of n ‘simply-shaped’ sites in 3-space under a simple
metric, where the prevailing conjecture is that this com-
plexity is near-quadratic, as suggested by the best-known
lower bound. However, the best upper bound derived so
far is O(n®*¢), for any ¢ > 0 [19], and even this bound
is non-trivial to obtain; it is a corollary to the result that
states that the lower envelope of an arrangement of semi-
algebraic functions of constant description complexity in
R?*! has complexity O(n?*®), for any ¢ > 0 [18]. Since
the Voronoi diagram of semi-algebraic sites under a semi-
algebraic metric (all of constant description complexity) in
d dimensions can be represented as such an envelope, as ob-
served by Edelsbrunner and Seidel [10], this result implies
that the complexity of such Voronoi diagrams is O(n?**),
for any € > 0, as well.

A special case of this conjecture, which is still open, is the
case of the Voronoi diagram of pairwise-disjoint polyhedral
sites with a total of n edges in 3-space under the Euclidean
metric. Two results with quite involved proofs lend credence
to it. Ome result, due to Agarwal and Sharir [3], shows that
the locus of points in R® that lie at distance exactly a from
the closest site has complexity O(n?**), for any € > 0. The
second result, recently obtained by the authors [16], shows
that the Voronoi diagram of n lines in 3-space under the
Euclidean metric has complexity O(n***), for any € > 0, if



the lines have a constant number of distinct orientations.

A different research avenue is to consider Voronoi dia-
grams under a ‘polyhedral distance function’ induced by a
convex polytope with a constant number of facets (see Sec-
tion 2.1 for details). It is this direction that the current
paper takes, and we refer to such diagrams as polyhedral
Voronoi diagrams. The polyhedral distance functions in-
clude the well-known L; and Lo metrics, and are also inter-
esting due to the fact that the Euclidean ball can be approx-
imated arbitrarily well by a convex polytope. This implies
that any Euclidean Voronoi diagram can be approximated
with an arbitrarily high degree of accuracy by a polyhedral
one. The results presented in this paper concerning poly-
hedral Voronoi diagrams, as well as some results that were
known beforehand, are markedly better than the parallel
known results for the Euclidean case.

A tight worst-case bound of ©(n?) has recently been pre-
sented by Icking and Ma [14] for the complexity of a poly-
hedral Voronoi diagram of points in R®. This followed ear-
lier works by Tagansky [20], who has derived a bound of
O(n®logn) for this complexity (and a worst-case bound of
O(n?) for the L;-metric), and by Boissonnat et al. [7] who
have showed the ©(n?) bound for some special cases, and
have also given a tight worst-case bound of ©(n!?/?!) for
the case of points in d dimensions under the L., metric or
a distance function induced by a simplex.

Perhaps more significantly, in light of the state of the art
in the Euclidean case, an upper bound of O(n*a(n) log n) for
the polyhedral Voronoi diagram of n lines in R® was proved
by Chew et al. [9], together with a lower bound of Q(n*a(n)).
This followed an earlier work of Chew [8] who showed a
bound of O(n*a(n)) for the Voronoi diagram of lines in R?
under a distance function induced by a 2-dimensional poly-
gon.

In conclusion to their paper [9], Chew et al. have put for-
ward the problem of obtaining a near-quadratic upper bound
for the complexity of the polyhedral Voronoi diagram of line
segments, and, more generally, of polygons and polyhedra
in three dimensions. It has since been restated by Agarwal
and Sharir in their survey [2, Open Problem 6(ii)].!

In this paper we settle this problem by proving a bound of
O(n*a(n) log n) for the polyhedral Voronoi diagram of n line
segments in 3-space (Section 4), and a bound of O(n**¢),
for any € > 0, for the polyhedral Voronoi diagram of a col-
lection of disjoint polyhedra in 3-space with n vertices al-
together (Section 5). (The constant of proportionality is
quartic in the number of facets of the polytope that defines
the distance function.) This also significantly generalizes the
result of Aronov and Sharir [4] (see also [5]), who used fairly
complicated topological arguments to show a near-quadratic
bound for the complexity of the locus of points at any fixed
(polyhedral) distance a from their nearest site.

Our results can be applied to show (see Section 6) that
a collection of disjoint polyhedra in 3-space with n ver-
tices altogether can be preprocessed into a data structure
of size O(n>*¢/6"), for any & > 0, such that this data struc-
ture can answer J-approximate Euclidean nearest-neighbor
queries amidst the polyhedra in time O(log(n/d)), for an
arbitrarily small 4 > 0. (That is, the query returns a site
whose distance to the query point is at most 1 + § times

"We are aware of a subsequent study by Chew of the case of
segment sites and a distance function induced by a tetrahe-
dron; as far as we know, this work has not been published.

the distance to the nearest site.) To our knowledge, no such
data structure with comparable performance was available
before. For the case of point sites, a near-linear approximate
nearest-neighbor data structure has recently been presented
by Har-Peled [13].

Some of the basic techniques we employ are inspired by
ideas introduced by Chew et al. [9]. We extensively uti-
lize the probabilistic analysis method developed by Tagan-
sky [20], commonly known as the Tagansky technique. We
also rely on the technique of counting schemes, originally in-
troduced by Halperin and Sharir [12, 18], and refined in [1,
15] (see [19] for more details concerning this technique).

2. PRELIMINARIES
2.1 Definitions and a Reduction to Triangles

Let P be a convex polytope in R® with a constant number
of vertices, such that P contains the origin in its interior.
We will refer to the origin as the center of P. The distance
function induced by P is denoted by dp, and the distance
from any point v € R® to a (possibly infinite) set of points
S C R? under dp is

dp(v,S) =inf{t >0: (v+tP)NS # 0}

The distance function dp is a metric if P is centrally sym-
metric with respect to the origin.

The Voronoi diagram Vorp(I') of a set I' of m disjoint
sites in 3-space is the subdivision of R?® into m cells, one cell
for each site of I', such that the cell V(v), for y € T, is

V(v) ={v:dp(v,7) <dp(v,y), V7' #7}.

If T is a set of points, segments, or piecewise linear sur-
faces, then each V() is a (not necessarily convex) polyhe-
dron. The vertices (edges, faces) of all V(v), for v € T, are
the vertices (resp., the edges, the faces) of Vorp(I'). The
combinatorial complexity of Vorp(T') is the number of faces
of all dimensions of Vorp(I).

Let T’ be a collection of disjoint closed polyhedra in 3-
space with n vertices altogether. Throughout this paper,
we assume that I'' is in general position with respect to the
polytope P that induces the distance function. That is, no
two vertices in the scene lie on a line that is parallel to one of
the faces of P, no homothetic copy of P touches more than
four sites of T" with its boundary (while otherwise being
disjoint from these sites), no line parallel to an edge of P
intersects more than two edges of I, etc.

This assumption is essential, as the complexity of Vorp(I)
can reach 2(n?) when the sites are in a degenerate configu-
ration [7, Theorem 7.1].

By triangulating P and the boundaries of the polyhedral
sites, and by applying an infinitesimal perturbation to P and
the sites, we may assume that all faces of P are triangles,
and that the sites consist of O(n) pairwise disjoint triangles
in general position.?

It is easy to see that Vorp(I') does not contain edges and
facets that are not adjacent to a vertex. The complexity
of Vorp(I') is thus proportional to the number of its ver-
tices, and it is therefore sufficient to provide a bound on
this quantity.

2This replacement of solid sites by their bounding triangles
can increase the complexity of the diagram by partitioning
the points in the interior of a site among the Voronoi cells
of its boundary triangles.
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Figure 1: An illustration of some of the definitions.
Details are given in Section 2.5.

2.2 \ertices of the Diagram

Some of the concepts introduced in the remainder of this
section are illustrated in Figure 1.

Placements. Let I' be a collection of triangles in general
position in R®*. Consider a homothetic copy in R® of P.
It has four degrees of freedom, three for the location of its
center and omne for its scale relative to the center. (That is,
we represent a homothetic copy z + AP by the quadruple
(z,A).) Any set of four parameters that specifies location
and scale as above is called a placement of P. A placement
is said to be free if the corresponding copy of P is disjoint
from all the sites of I' in its interior.

Uni-contacts. A placement can be such that 0P touches
a triangle of I'. This can happen in several ways. We say
that a uni-contact (sometimes referred to as just a ‘contact’)
occurs if a vertex of P touches the interior of the triangle (a
V-contact), or if the relative interior of an edge of P touches
the relative interior of an edge of the triangle (an E-contact),
or if the interior of a face of P touches a vertex of the triangle
(an F-contact). Instead of saying that a contact occurs, we
will sometimes say that P makes or maintains this contact.
Notice that if we force P to maintain a certain contact, it
retains three degrees of freedom. For instance, fixing the
location of the center of P and forcing P to make a certain
contact uniquely determines the scale of P.

Multi-contacts. A bi-contact is said to occur if a vertex
of P touches an edge of some triangle of T' (a V*-bi-contact),
or if an edge of P touches a vertex of the triangle (an E2-bi-
contact). Forcing P to maintain a bi-contact leaves it with
only two degrees of freedom. A tri-contact is said to occur if
a vertex of P touches a vertex of a triangle, and we denote
this tri-contact by V. Maintaining such a tri-contact leaves

P with only one degree of freedom — its center can only
move along a line (more accurately, a half-line) in R?.

Events. Certain placements of P can make more than
one contact. An event is a placement of P in which it makes
such contacts that together leave it with zero degrees of
freedom. That is, any infinitesimal movement of P in any
direction away from an event necessarily results in losing
one of the contacts that are involved in the event. An event
is said to be free if it is a free placement. An event is said
to be a uni-contact event if P only makes uni-contacts in
this placement, and it is said to be a multi-contact event
otherwise.

OBSERVATION. There is a one-to-one correspondence be-
tween vertices of Vorp(I') and free events of P among I'.

Freedom. A contact is said to be clean if the triangle of
I' that is incident to 0P in this contact is disjoint from the
interior of P. Otherwise, the contact is said to be dirty. An
event is said to be pseudo-free if one or more of the involved
contacts are dirty, but no triangle that is not involved in
a contact intersects P. A 1-level free (resp., pseudo-free)
event is an event that would be free (resp., pseudo-free) had
exactly one triangle been removed from I'. An event is said
to be a 0-level event if it is either free or pseudo-free.

Degrees. Consider a placement of P that is an event.
The degree of a vertex v of P in this event is defined as
the number of distinct contacts that involve either v or an
edge or a face of P that are incident to v. The degree of an
edge e of P is defined as the number of contacts that involve
the relative interiors of e or of the two faces of P that are
incident to e. The degree of a face f of P is defined as the
number of contacts that involve the interior of f.

V-, V2= and V?-contacts increase the degree of one vertex;
E- and E*-contacts increase the degree of an edge and the
two vertices adjacent to it; F-contacts increase the degree
of a face, along with the degrees of the three edges and the
three vertices adjacent to it. Notice that the general position
assumption implies that the degree of a face is at most 1.
The degree of an edge or a vertex can reach 4, which is the
maximum possible degree, as is again implied by the general
position assumption.

Incidence. Consider a placement of P that is an event.
Two contacts a and 3 are said to be incident in one vertex
(resp., two vertices) in this event if the feature of P that is
involved in a shares one vertex (resp., two vertices) with the
feature of P that is involved in f.

Activeness. Let i be the number of vertices of P. We
say that features of P that have strictly positive degree in
some event are ‘active’ in that event. The general position
assumption implies that not more that four distinct contacts
can participate in an event. Since each contact increases
only the degrees of the vertices that are adjacent to the
feature of P that is involved in this contact, and each feature
(face, edge, or vertex) is adjacent to at most three vertices,
at most 12 vertices can be active in an event. This implies
that it suffices to consider polytopes P with 12 or fewer
vertices. Indeed, if P has more than 12 vertices then any
event of P is also an event of a sub-polytope P’ that has 12
or fewer vertices that are adjacent to 4 features of P (clearly,
if a placement of P is free, then the corresponding placement
of P’ is also free.)

The maximal number of vertices of Vorp (L), for a poly-
tope P with ¢ vertices, is thus proportional to the maximal



number of vertices of Vorg(I'), where Q has 12 or fewer
vertices. Moreover, the dependence on ¢ in the constant
of proportionality is quartic, since it suffices to consider all
sub-polytopes of P that are defined by 4 or fewer distinct
features of P. The number of sub-polytopes with at most
12 vertices that have to be considered is therefore less than
i*. Hence, N; = O(i* N1»), for all i > 12, where N; = N;(T)
denotes the maximum number of vertices of Vorp ('), for a
given I', when P has ¢ vertices.

Moreover, in order to bound the maximal number of events
of a certain combinatorial type, it suffices to consider only
polytopes P that have a number of vertices that is equal to
the maximum possible number of active vertices in events of
this type. For example, it is enough to consider tetrahedral
P (four vertices) to bound the maximal number of events
that involve four V-contacts.

2.3 Sliding Along Three Contacts

A basic paradigm that will prove very useful in our anal-
ysis is that of ‘sliding’ along three contacts.

Consider an E-contact o that involves an edge e of some
triangle of T and an edge ¢’ of P. Let I, be the plane that
contains e and is parallel to ¢'. ‘Sliding’ P along o means
translating it in some direction, and possibly also scaling
it, such that the contact a is maintained throughout the
movement. It is obvious that during such sliding, the edge
e’ of P that is involved in o has to move inside the plane
II...

If @ is an F-contact, involving a vertex v of some triangle
of T and a face f of P, sliding is defined in an analogous
way, when the plane I, is the plane that contains v and
is parallel to f, and f has to move inside II,. The case
of a V-contact is analogous, and the plane II, is the plane
containing the triangle of I" that is involved in the contact.

When P is sliding along one contact «, it has three re-
maining degrees of freedom, two for moving along the plane
II,, and one more for scaling. If we require P to maintain
two contacts, a and (3, we leave it with only two degrees of
freedom. It is easy to see that the center of P is confined
to move inside a specific plane in R?, and that this plane is
incident to the line II, N IIg.

Sliding IT along three uni-contacts, «, 8, and J, means
moving it in such way that it maintains all three contacts
during the movement. This movement has only one degree
of freedom, and the center of II is confined to moving along
a specific line I, g s that is incident to the point pngs =
I1, NIIz NIIs (in general position, this intersection is indeed
a single point).

This means that if we wish to slide IT along three contacts
as above, starting from a specific placement, we can do so
in only two specific directions along I, 3. One of these
directions brings P towards pa,s,s. Since P has to continue
touching the planes Il,, IlIg, and IIs during the movement,
P shrinks to a point if the sliding continues until the center
of P reaches p. g,s. However, at least two of the contacts
are necessarily lost prior to this point, since the triangles
of T that define a, 3, and § are disjoint and only at most
one of them can be incident to p, g,s. This implies that at
some point during the sliding towards p. .5, P will reach
the boundary of one of the triangles it touches, and will lose
the contact defined by this triangle completely if it continues
sliding. At this moment, a bi-contact event will occur.

Because of linearity of trajectories and the preceding dis-

cussion, the volume of IT increases (resp., decreases) when P
slides away from (resp., towards) pa,s,s. (In general, P does
not shrink ‘into itself’ as it approaches p, g5, but sweeps
new portions of space while shrinking.)

Cousider the situation where we slide P along three con-
tacts starting from an event X defined by four contacts. The
general position assumption implies that the fourth contact
made by P in the event will be lost immediately after the
beginning of the sliding. Moreover, because of the linear-
ity of trajectories, in one of the directions of the sliding this
fourth contact will penetrate P, while in the other direction,
the placement of P will initially be free.

Suppose P makes the contacts «, 3, and § at some place-
ment. Consider a face f of P, such that one of the open
half-spaces defined by the plane incident to f (at this place-
ment) contains pa,s,s, but does not contain any point of
P. Define Pt C 9P as the collection of such faces f, to-
gether with the edges and vertices of P incident to these
faces. (These are the features of P that p, g5 ‘sees’ at this
placement of P.) Consider now a face g of P, such that one
of the open half-spaces defined by the plane incident to g
contains neither p, g.s nor any point of P. Define P~ C 0P
as the collection of such faces g, together with the edges and
vertices of P incident to these faces. (These are the features
‘hidden’ from pa g,5.)

Observe that if p, g,s lies on a plane that is incident to a
face h of P, h belongs neither to P+ nor to P~. If p, g5 lies
on a line that is incident to an edge e of P, the same holds
for e. If the point p. g5 is incident to a vertex v of P, this
also holds for v. Moreover, if p, 5,5 is incident to a vertex v
of P, then Pt = 0.

OBSERVATION.

e Pt and P~ are the same for any placement of P that
makes the contacts «, 8, and §.

e If a new clean uni-contact is made by P while P slides
towards p.,3,s as above, such that the new contact
involves a feature ¢ of P and a triangle v of I' that
was disjoint from P immediately before the contact
was made, then ¢ necessarily belongs to PT. If such
situation occurs while P slides away from pa g,s, then
t belongs to P~

We say that each face of P that belongs to P is a frontier
face, and that PT as a whole is the frontier, when we slide
towards pa,g,s as above. Symmetrically, each face of P that
belongs to P~ is a frontier face and P~ is the frontier when
we slide along a, 3, and ¢ in the opposite direction.

Shrinking P into itself. Consider a free placement of
‘P that makes three uni-contacts o, 8, and ¢, all incident to
a vertex v of P. It is easy to see that in this case po g5 = v,
and consequently PT = . (A 2-dimensional equivalent of
this situation is illustrated in Figure 1(f).) This implies that
if we slide P towards pa,s,s, along a, 8, and §, P will not
encounter new uni-contacts and no uni-contact event will
occur to P. (Informally, P shrinks ‘into itself’.) However,
as observed above, P will at some point reach a bi-contact
event. This implies that we can uniquely charge a free uni-
contact event that has a vertex of degree 3 to a free bi-
contact event.



2.4 Notation

We will distinguish between several types of events, based
on the type of contacts that are involved in the event. Each
type will be denoted mnemonically by listing the types of
the involved contacts. For instance, an FFEV event is an
event with two F'-contacts, an F-contact, and a V-contact.
Note that it can equivalently be called an EFV F' event, say.

Every such type of events can have many combinatorially
different sub-types. For instance, one EEEFE event may
have 4 active vertices (the minimum possible number), while
another may have 8 (the maximum possible number). Such
combinatorially different sub-types of events will often get
different treatment in our analysis, and it is thus essential to
be able to distinguish between them in the text. However,
for the sake of clarity in the exposition, we will not introduce
a text-based notation to distinguish between them, but in-
stead provide a symbolic illustration of each sub-type whose
analysis is non-trivial (see, e.g., Figure 2), and refer to the
relevant illustration when discussing a certain sub-type.

Each combinatorial type of events is represented for the
purpose of illustration as a multi-hypergraph, whose ver-
tices correspond to the vertices of P that are active in the
event. This hypergraph may have edges that connect 1,
2, or 3 vertices, and such edges correspond respectively to
V-, E- and F-contacts. The degree of a vertex in the hy-
pergraph is thus the same as the degree of the correspond-
ing vertex of P in an event of the illustrated combinatorial
type. The illustrations show planar realizations of the above
multi-hypergraphs, showing edges of degree 3 (F-contacts)
as filled triangles, edges of degree 2 (E-contacts) as straight
or curved segments, and edges of degree 1 (V-contacts) as
small circles. For a concrete example, refer to Figure 3 that
shows a specific combinatorial type of FEVV events. In
this type, the F'-contact is incident to the E-contact, and
the two V-contacts are incident to the F-contact and the
E-contact, respectively.®

2.5 lllustration

Figure 1 provides an illustration in a 2-dimensional setting
of some of the concepts introduced above. In the figure, the
polygon P is shown with its center marked by a thick dot.
Notice that in 2-D, a uni-contact event has only 3 contacts,
and that P has one degree of freedom if it has to maintain
2 uni-contacts or one bi-contact. A free uni-contact event
is shown in (a), while pseudo-free and 1-level free events
are shown in (b) and (c), respectively. Although P has 6
vertices, only 4 are active in these events. In (d), P makes
the contacts a and b, and can maintain these two contacts
while sliding its center along the line l, . The thickened
edge is the only part of P in PT, and if P slides towards
the point p, s and encounters a uni-contact event, the new
third contact can only involve this edge. In (e), a bi-contact
a is shown, together with the line I, that P can slide its
center along while maintaining this contact. In (f), P makes
two contacts a and b that are incident to a vertex that has
degree 2. In this case, P is empty, and P cannot encounter
new uni-contact events when sliding towards p,; the first
event encountered during such sliding is necessarily a multi-
contact event. (Informally, when sliding towards p.s, P
shrinks ‘into itself’.)

®Due to lack of space, we omit the treatment of triangle
sites; hence the main figures do not depict V-contacts.

3. TECHNIQUES

In this section we outline the techniques and arguments we
will be employing repeatedly throughout the analysis. Let
I' be a set of n pairwise disjoint triangles in R® in general
position.

3.1 Multi-contact events

The proofs of the following two lemmas are similar to
parts of the analysis of Chew et al. [9], and are omitted due
to space limitations.

LEMMA 3.1. The number of free and pseudo-free events
that involve a V3-contact is O(n).

LEMMA 3.2. The number of free and pseudo-free events
that involve a V- or an E*-contact is O(n’a(n)).

We will only consider uni-contact events in the remainder
of this section.

3.2 Popular Vertices

A vertex v of P is said to be popular in a certain event of
P if its degree in this event is at least 3. A 2-dimensional
equivalent of a popular vertex is shown in Figure 1(f). The
proof of the following lemma is based on ideas introduced
by Chew et al. [9].

LEMMA 3.3. The number of free and pseudo-free events
that are such that one of the wvertices of P is popular is
O(n*a(n)).

ProOOF. Consider a free event X, in which a vertex v of
‘P is popular. Shrink P into itself towards v, and uniquely
charge X to a free bi-contact event Y, as described at the
end of Section 2.3. The lemma follows from the fact that
the number of such events Y is O(n’a(n)), as stated in
Lemma 3.2. Pseudo-free events are handled similarly. [

3.3 Popular Faces

A face f of P is said to be popular if each edge adja-
cent to it is either involved in an E-contact, or is incident
to a face other than f that is involved in an F-contact. A
2-dimensional equivalent of a popular face is shown in Fig-
ure 1(d).

LEMMA 3.4. The number of free events that are such that
one of the faces of P is popular is O(n’a(n)).

ProOF. Consider a free event X, in which a face f of P is
popular. If one of the vertices incident to f is popular, then
the lemma follows from Lemma 3.2. We thus assume below
that the three vertices adjacent to f all have degree at most
2. The popularity of the face f implies that their degrees
have to equal 2. This implies that exactly three contacts
involve edges of f and faces adjacent to these edges. Let a,
B, and § be these three contacts. Counsider sliding along «,
B, and 9§, as described in Section 2.3. It is easy to see that
in one of the two possible directions of the sliding, f is the
sole frontier face. Slide in this direction and consider the
first event Y encountered during the sliding. We charge X
to Y. As in the proof of Lemma 3.3, the charging is unique.
Y is either a bi-contact event, or it is an event that involves
a, B, d, and a fourth contact that involves f or one of the
edges or vertices of f. In the latter case, Y necessarily has
a popular vertex. The lemma thus follows from the bounds
stated in Lemmas 3.2 and 3.3. [



3.4 Reduction to Point Sites

LEMMA 3.5. The number of free and pseudo-free FFFF
events of a polyhedron P with a constant number of vertices

is O(n?).

Proor. Consider the set of vertices of the polygons in T'.
It is a set of O(n) points in 3-space. It is easy to see that
each free FFFF event uniquely corresponds to a vertex in
the Voronoi diagram of this set of points, under the distance
function induced by P. A pseudo-free F'F' F'F event similarly
corresponds to a vertex in this diagram whose level is at most
8. The complexity of this diagram is O(n?) [14], and this is
also a bound for the number of free and pseudo-free FFFF
events. []

3.5 Induction

Let N; = N;(I') denote the maximum number of vertices
of Vorp (L), over all polytopes P with P has i vertices. It
was observed in Section 2.2 (paragraph ‘Activeness’) that it
suffices to consider i up to 12. The discussion in that section
also implies that the number of events in which only 5 < ¢
vertices of P are active is O(Nj), even if P has i vertices.

Our basic approach to deriving a bound on N3 is to use
induction. We first prove a near-quadratic bound on Ny,
for which it suffices to consider tetrahedral P. We then
bound N; in terms of N;_;, for 5 < ¢ < 12. One of the
ways to achieve this will be to charge events with ¢ active
vertices to events with at most i — 1 active vertices (see, e.g.,
Lemmas 3.6 and 3.8).

3.6 The SFC Technique, or
Sliding away from a Face Contact

Consider a free uni-contact event X in which a face f
of P is involved in an F-contact. Let «, 3, and J be the
other three contacts involved in X. Consider sliding along
a, (3, and 8. By definition, only one of the parts Pt and P~
includes f. If this part is P, we slide away from p, g5, and
if this part is P, we slide towards pa,s,s5. It is easy to see
that P isin a free placement immediately after the beginning
of the sliding. We charge X to the first event Y encountered
during the sliding. Y is necessarily free. Observe that during
this sliding, the face f cannot become involved in new F-
contacts, as observed in Section 2.3. Therefore, the fourth
contact in Y does not involve the face f.

The SFC technique is useful when we want to charge an
event that involves a particular F-contact to an event that
does not involve an F-contact with the same face. Consider,
for example, the following situation.

We say that an F-contact is ‘isolated’ if it is incident
to no other contact. Suppose X involves an isolated F'-
contact, and denote the face of P involved in this contact
by f. Use the SFC technique to slide away from this contact
and charge X to an event Y. We claim that Y has fewer
active vertices than X. Indeed, any contact that does not
involve the face f cannot increase the degree of all the three
vertices of f. Since the degree of these three vertices was 1
in X, at least one of these vertices has degree 0 in Y. This
implies the following lemma.

LEMMA 3.6. The number of free events of P that have an
isolated F-contact is at most O(N;—1), where i is the number
of vertices in P.

3.7 The SEC Technique, or
Sliding away from an Edge Contact

Cousider a free event X in which a face f of P is involved
in an F-contact , and an edge e of f is involved in an E-
contact. The degree of e is thus at least 2. Let 8 and d
be the other two contacts involved in X. The point p, 3,5
lies on the plane II, that is incident to the face f (at this
placement). Thus, the edge e that lies inside this plane
belongs to only one of the parts P and P~ (this holds for
the other two edges of f as well). Sliding along «, 3, and
4, as in the previous subsection, we can uniquely charge X
to a free event Y that involves the contacts «, 3, 4, and
a fourth contact that is not an E-contact with the edge e.
It is also easy to see that this fourth contact cannot be an
F-contact with the second face incident to e. The ability to
perform such charging will prove useful in several steps of
our analysis.

3.8 Pseudo-free Events

Let 4 be the number of vertices in P. Let M; denote the
maximum number of pseudo-free events of P among I', over
all P with ¢ vertices. The proof of the following lemma is
omitted due to space limitations.

LEMMA 3.7. M; = O(N;).

3.9 The LEM Technique, or
Lower Envelopes Merging

Let 7 be the number of vertices in P. Consider four (not
necessarily distinct) features (each being a vertex, an edge,
or a 2-dimensional face) of P, such that two of these features,
a,b, are incident to each other, and the other two, ¢, d, are
each incident to a vertex of degree 1 (that is, no other feature
is incident to this vertex). Consider a uni-contact event in
which each of these features is involved in a distinct contact.
Such events are said to be LEM events.

LEMMA 3.8. The number of free and pseudo-free LEM
events of P is O(N;—1).

The proof of the lemma is based on the proof of [9, Lemma
3.5]. Informally, fixing the contacts a,b leaves P with 2 de-
grees of freedom, so its corresponding placements can be rep-
resented within a 2-dimensional frame, in which the events
under consideration can be shown to be vertices of the lower
envelope of all the c-contacts and the d-contacts. We then
use the fact that the complexity of such an envelope is pro-
portional to the sum of the complexities of the two sub-
envelopes of the c-contacts and of the d-contacts.

3.10 The Tagansky Technique

Consider four (not necessarily distinct) features a, b, c,
and d (each being a vertex, an edge, or a 2-dimensional face)
of P. Consider all the uni-contact events in which each of
these features is involved in a distinct contact. Denote the
collection of such free events by €4 5,4, and the collection
of such 1-level events by Qi,b,c,d' Let ® be another collection
of events, such that |®| = O(n’a(n)log® n), for some non-
negative integer constant c.

Assume that, given an event of Qg .c 4, we can either (i)
charge it to i > 0 events of Q}Lb’c’d, such that the number
of times that each event of Q}l,b,c,d is charged in this fash-
ion is at most j, or (ii) charge it to an event of ®, such



that the number of times that each event of ® is charged
in this fashion is bounded by a constant. The charging is
typically done by sliding on three of the contacts and letting
the fourth contact penetrate P. The following lemma is di-
rectly implied by the work of Tagansky [20], and its proof is
omitted due to space limitations.

LEMMA 3.9. Under the assumptions described above:
o Ifi/j =2, then |Qup.cd|l = O(na(n)logst n).
o Ifi/j > 2, then |Qup.cd| = O(n’a(n)log n).

4. SEGMENT SITES

THEOREM 4.1. The complexity of the Voronoi diagram
of a set I' of n segments in 3-space, under a conver dis-
tance function induced by a polytope P with q facets, is
O(¢*n’a(n)logn), provided that the segments are in gen-
eral position with respect to P, as defined in Section 2.1.

PROOF. Let ¢ be the number of vertices of P. As de-
scribed in Section 3.5, the proof of Theorem 4.1 proceeds by
induction on 4, through a series of lemmas. Recall that it
suffices to confine ourselves to i < 12. We begin by obtain-
ing a bound for N> (Lemma 4.2), and then work our way up
to N1z (Lemma 4.9). Notice that the only uni-contacts that
occur are F- and E-contacts. Recall that it is sufficient to
bound the number of free events.

A free or pseudo-free event (or a 1-level free or pseudo-free
event) is said to be good if it is a multi-contact event or an
FFFF event, or if it contains a popular vertex or an isolated
F-contact. A free event (or a 1-level free event) that contains
a popular face is also said to be good. Events with isolated
F-contacts are easily handled using Lemma 3.6, and the
various results shown in Section 3 imply that the number of
free and pseudo-free good events without isolated F'-contacts
is O(n’a(n)). We thus do not treat good events explicitly
below.

LEMMA 4.2. The complezity of the Voronoi diagram of a
set of segments in 3-space is O(n?) under a distance function
induced by a segment, and is O(n*a(n)) under a distance
function induced by a triangle*. In other words, No = O(n?)
and N3 = O(n*a(n)).

PROOF. It is easy to see that if P is a triangle (3 vertices),
all the events of P among I either have a popular vertex or a
multi-contact. A bound of O(n*a(n)) on the complexity of
Vorp(T') in these cases is thus implied by Lemmas 3.3, 3.1
and 3.2. If P is a segment (2 vertices), it is easy to see
that, assuming general position, the only type of events is
V2V2, and each event can be uniquely charged to a pair of
segments of . This easily implies a bound of O(n?). O

LEMMA 4.3. The complezity of the Voronoi diagram of a
set of segments in 3-space is O(n’a(n)logn) under a dis-
tance function induced by a tetrahedron. In other words,
Ny = O(n*a(n)logn).

“Strictly speaking, these are not well-defined distance func-
tions. What the lemma actually analyzes is the number
of free events of the underlying segment or triangle, and it
should be interpreted only in this context.
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Figure 2: Different combinatorial types of EEEE
events, not including good events. For each type,
the number of active vertices and the name of the
technique employed in the analysis are stated.

Proo¥r. Let P be a tetrahedron. Notice that all events
of P that have at least one F-contact, have at least one
popular vertex. Indeed, observe that an E-contact raises
the degree of two vertices of P by 1, while an F'-contact
similarly raises the degree of three vertices. Thus, the sum
of the degrees of the four vertices of P in an event with one
F-contact and three other contacts that are either E or F'is
at least 3+ 2+ 2 + 2 = 9. However, this necessarily means
that one of the four vertices of P has degree at least 3, and
is therefore popular. Thus, the O(n’a(n)) bound on the
number of events that have at least one F'-contact follows
from Lemma 3.3. This bound also applies to the number of
EFEFEFE events that have a popular vertex.

We now bound the number of EEEFE events that are not
good, and therefore have no popular vertices or faces. Fig-
ure 2 illustrates all the combinatorially distinct types of such
events when P is a polyhedron with an arbitrary number of
vertices. Only two of them, the ones shown in Figures 2(a)
and 2(b), can occur when P is a tetrahedron, since all the
other types have at least 5 active vertices. We treat these
two types of events using the Tagansky technique (see Sec-
tion 3.10). Due to lack of space, we merely state that the
analysis shows that the number of events of the Figure 2(a)
and Figure 2(b) types is O(n’ca(n)logn). (A similar analy-
sis was carried out by Chew et al. [9], but only for the case
of line sites.) [

LemmA 4.4. N5 = O(n’a(n)logn).

PROOF. Let P be a convex polyhedron with 5 vertices.
Events of P with 5 active vertices are either good, or be-
long to the types illustrated in Figures 2(f), 2(g), 4(m),
4(n), 4(o), 5(y) and 5(z). Events of the types shown in
Figures 2(f) and 2(g) are LEM events, and their number is
thus O(N4) = O(n*a(n)logn) (Lemmas 3.8 and 4.3).

Let X be a free event of a type illustrated in Figure 4(n)
or 4(o). Let f be the face of P that is involved in the
F-contact in X. Use the SFC technique (Section 3.6) to
slide away from this F-contact. Charge X to the first event
Y encountered during the sliding. Y is a free event, since



the placement of P immediately upon the beginning of the
sliding is free. The SFC technique implies that either YV is a
multi-contact event, or it has the same triple of E-contacts
as X, together with a fourth contact that is not an F-contact
with f. It is easy to see that either (i) Y has 4 active
vertices, or (ii) Y is a good event, or (iii) Y is a LEM event.
Since the number of such events Y is O(n’a(n)logn), and
any event Y can be charged as above only a constant number
of times, this implies that the number of events of the types
illustrated in Figures 4(n) and 4(o0) is O(na(n)logn).

Let X be a free event of the type illustrated in Figure 4(m).
Let a denote the edge of P that is involved in the E-contact
that is incident with two vertices to the F-contact. Use
the SEC technique (Section 3.7) to slide away from this E-
contact and charge a free event Y, as above. The SEC tech-
nique implies that Y cannot have an E-contact that involves
a, or a second F-contact that involves a face incident to a.
This implies that either (i) Y is a good event, or (ii) Y is
an event of the type shown in Figure 4(0). The number of
events of the Figure 4(m) type is therefore O(n*a(n) log n),
as above.

Let X be a free event of one of the type illustrated in
Figures 5(y) and 5(z). Use the SFC technique (Section 3.6)
to slide away from one of the two F-contacts in X. Charge
X to the first event Y encountered during the sliding. As
above, Y is a free event, and does not involve an F-contact
with the same face. Thus, either (i) Y is a good event, or
(ii) Y is an event of one of the types shown in Figures 4(m),
4(n) and 4(0). The number of events of the types illustrated
in Figures 5(y) and 5(z) is thus O(n?a(n)logn). O

LEMMA 4.5. Ng = O(n*a(n)logn).

PROOF. Let P be a convex polyhedron with 6 vertices.
Events of P with 6 active vertices are either good, or belong
to the types illustrated in Figures 2(e), 2(h), 2(i), 4(b), 4(d),
4(£), 4(g), 4(3), 4(), 4(K), 5(g), 5(h), 51, 5(5), 5(w). 5(v),
5(A), 5(B), 5(C), 6(q), and 6(r).

Free events of the types shown in Figures 2(e), 2(h), 2(i),
4(b), 4(d), 4(9), 4(g), 4(i), 4(), 4(9), 5(g), 5(h). 5(1), 5(5),
5(u), and 5(v) are LEM events, and their number is thus
O(Ns) = O(n*a(n)logn) (Lemmas 3.8 and 4.4).

Let X be a free event of a type illustrated in Figure 5(A),
5(B), or 5(C). Use the SFC technique to slide away from
any one of the two F-contacts of X and charge X to a free
event Y, as in the proof of Lemma 4.4. Either (i) Y is good,
or (ii) Y is a LEM event, or (iii) Y has at most 5 active
vertices. The number of events of the types illustrated in
Figures 5(A), 5(B), and 5(C) is therefore O(na(n)logn).

Let X be a free event of a type illustrated in Figure 6(q)
or 6(r). Use the SFC technique to slide away from the
(unique) F-contact that involves a face that is incident to
a vertex of degree 1. Charge X to the first event Y en-
countered during the sliding. In complete analogy to the
above, the number of these events is O(n’a(n)logn). This
completes the proof of the lemma. [

LemmA 4.6. N7 = O(n’a(n)logn).
ProoF. Let P be a convex polyhedron with 7 vertices.

Events of P with 7 active vertices are either good, or belong
to the types illustrated in Figures 2(d), 4(a), 4(e), 4(h), 4(1),

5(a), 5(c), 5(d), 5(e), 5(i), 5(k), 5(m), 5(n), 5(p), 5(r), 5(t),
5(x), 6(c), 6(h), 6(j), 6(k), 6(1), 6(n), and 6(0). All of these
events are LEM events, and the number of free such events
is thus O(Ns) = O(n’a(n)logn) (Lemmas 3.8 and 4.5). O

LemMA 4.7. Ng = O(n’a(n)logn).

ProoF. Let P be a convex polyhedron with 8 vertices.
Events of P with 8 active vertices are either good, or be-
long to the types illustrated in Figures 2(c), 4(c), 5(b),
5(£), 5(0), 5(a), 5(w), 6(a), 6(b), 6(e), 6(g). 6(i), 6(m).
and 6(p). All of these events except the Figure 2(c) type
are LEM events, and the number of free such events is
O(N7) = O(n*a(n)logn) (Lemmas 3.8 and 4.6).

We treat events of the type illustrated in Figure 2(c) using
the Tagansky technique (see Section 3.10). Due to lack of
space, we omit all details of this analysis, that shows that the
number of events of the Figure 2(c) type is O(n’a(n) log n).

Lemma 4.8. Ng = O(n’a(n)logn).

ProoF. Let P be a convex polyhedron with 9 vertices.
Events of P with 9 active vertices are either good, or be-
long to the types illustrated in Figures 5(i), 6(d), and 6(f).
All of these events are LEM events, and the number of
free such events is O(Ng) = O(n’a(n)logn) (Lemmas 3.8
and 4.5). 0O

LEMMA 4.9. Ny = O(n’a(n)logn), for 10 < d < 12.

PROOF. A free event of P with 10 or more active vertices
necessarily has at least one isolated F-contact. The number
of such events is therefore easily bounded by induction, using
Lemma 3.6. Since Ng = O(n*a(n)logn) (Lemma 4.8), this
implies the lemma. [

This completes the proof of Theorem 4.1. O

5. POLYHEDRAL SITES

THEOREM 5.1. The complezity of the Voronoi diagram of
a collection of pairwise disjoint polyhedral sites in 8-space
that have n vertices overall, under a convex distance function
induced by a polytope P with q facets, is O(q*n**<), for any
e > 0, provided that the sites are in general position with
respect to P, as defined in Section 2.1.

Unfortunately, all details of the proof of Theorem 5.1 have
to be omitted in this version due to space limitations. The
proof proceeds by induction on the number of vertices of P,
as in Section 4, starting with P being a segment or a triangle,
and concluding with the case of P having 12 vertices.

The proof is complicated by the fact that V-contacts,
which cannot occur when the sites are segments, can now
appear. This raises the number of combinatorially distinct
types of events that have to be handled, and drastically in-
creases the number of such types that cannot be handled
‘easily’ with the LEM, the SFC, and the SEC techniques.

The hardest stages of the proof are bounding N4 and
N5. For N4, we resort to the analysis technique of counting
schemes, introduced by Halperin and Sharir [12, 18], and



refined in several subsequent papers (see, e.g., [1, 15]). In-
formally, in the refined version, we charge each 0-level event
to about k* events at level at most k (i.e., at most k sites
intersect the interior of P at such events), or to other events
whose number can be bounded independently. This leads
to a recurrence whose solution is O(n?"¢), for any ¢ > 0.
(Actually, only one combinatorial type, shown in Figure 3,
requires, so far, the use of a counting scheme.)

For N5, we apply an intricate geometric analysis that
strongly relies on the properties of the pentahedron the
only combinatorial form that a convex polytope with 5 ver-
tices can assume. The Tagansky technique is employed re-
peatedly, sometimes in a fairly involved fashion, throughout
the proof.

Figure 3: The ‘hard’ combinatorial type of events
whose analysis involves a counting scheme.

6. APPROXIMATE NEAREST-NEIGHBOR
SEARCHING

Theorem 5.1 can be applied to obtain the following result.

THEOREM 6.1. We can preprocess a collection of disjoint
polyhedra in 3-space with n vertices altogether into a data
structure of size O(n”T=/6%), for any € > 0, such that this
data structure can answer d-approrimate Euclidean nearest-
neighbor queries amidst the polyhedra in time O(log(n/d)),
for an arbitrarily small 6 > 0.

The data structure described in the theorem is essentially
a point-location data structure on a polyhedral Voronoi di-
agram of the collection of polyhedra (‘sites’). We use the
fact that the Euclidean ball in R® can be §-approximated
by a convex polytope with O(1/4) vertices. The polyhedral
Voronoi diagram of the sites under the distance function
induced by this polytope is a d-approximation of the Eu-
clidean Voronoi diagram of these sites. J-approximate Eu-
clidean nearest-neighbor queries amidst the sites can there-
fore be answered using point location queries in this polyhe-
dral Voronoi diagram. Theorem 5.1 states that the complex-
ity of this diagram is O(n***/6"), and standard machinery
can be used to preprocess it into a point location data struc-
ture with the desired performance. All further details are
omitted.

REMARK 1. We also have another solution, with a data
structure of size only O(n>*¢/8). However, the query time
becomes O((logn)/d).
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Figure 4: Different combinatorial types of FEEE events, not including good events. For each type, the
number of active vertices and the name of the technique employed in the analysis are stated.

>0 AV 2 B Al el

(@) 7, LEM (b) 8, LEM (©) 7. LEM (d) 7, LEM (e) 7, LEM (f) 8, LEM
ey I ol v B B
(g) 6, LEM (h) 6, LEM (i) 9, LEM (i) 7, LEM (k) 7, LEM (1) 6, LEM
> A A NN >N \ANA A N\A
(m) 7, LEM (n) 7, LEM (0) 8, LEM (p) 7, LEM (a) 8, LEM (r) 7, LEM
<> () <>\/ < >/ <> || P> |
(s) 6, LEM (t) 7, LEM (u) 6, LEM (v) 6, LEM (w) 8, LEM (x) 7, LEM
> <) A A AN S
(y) 5, SFC (2) 5, SFC (A) 6, SFC (B) 6, SFC (C) 6, SFC

Figure 5: FFEFE events.

DAL & DDA ADA T AN D D

(a) 8, LEM ()5, LEM (c) 7, LEM (d) 9, LEM (e) 8, LEM (f) 9, LEM
A Gy e b —Pd
(9) 8, LEM (h) 7, LEM (i) 8, LEM (j) 7, LEM (k) 7, LEM (1) 7, LEM
Dl ey B By @9
(m) 8, LEM (n) 7, LEM (r) 6, SFC
(0) 7, LEM (p) 8, LEM (a) 6, SFC

Figure 6: FFFE events.



