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1. Introduction 1

2

Aspect graph$14], which arise in visibility theory, are data structures that incorporate informatien
about all the possible views of an object or collection of objects in a given scene; here, we consider
opaque polyhedrabbjects only. Aspect graphs are useful, for example, in object classification, in wtiich
the identity of an unknown object is established by comparing an available subset of its views with the
views of a series of known objects and ascertaining the closest match. Roughly speakavgisahe 7
line drawing resulting from the projection of object features visible from a given viewpoint onto a two-
dimensional viewing plane or pair of planes. In the literature, there are two distinct models under which
views may be generated. Undmthographic projectioreach viewpoint lies on the sphere at infinity ando
all lines of sight emanate from the viewpoint in the same direction. The viewpoint is defined by two
parametersd, its longitude or angle of rotation about the vertical axis, amdts azimuth or angle from 12
the positive vertical axis. The view is the projection of the visible portions of object edges and visible
object vertices onto a plane orthogonal to the lines of sight. Upelespective projectigreach viewpoint 14
lies in free space iR3 and lines of sight emanate from the viewpoint in all directions. The viewpointis
defined by itsc-, y-, andz-coordinates. The view is the projection of the visible portions of object edges
and visible object vertices onto some pair of parallel planes containing the viewpoint in the slab between
them. 18

One variation on this theme is that sometimes the view is defined to contain only ‘significant’ object
features; for example, in some cases only those visible (portions of) edges and vertices belongig to
the silhouette of an object with respect to a given viewpoint are projected to form the view from zhat
viewpoint [7]. 22

In either model, viewpoint space is partitioned into maximal connected regions such that the \dews
from the viewpoints in any region arisomorphic That is, the views, when considered as labeled4
embedded, undirected planar graphs, are all topologically equivaldni]nder perspective projection 25
the (three-dimensional) maximal connected regions are separated by planar or quadric surfaces.2eJnde
orthographic projection the (two-dimensional) maximal connected regions are separated by geaedesic
or quadratic curves which are the intersections of the planar or quadric surfaces under persp&ctive
projection with the sphere at infinity. The curves or surfaces separating regions of viewpoints awith
topologically equivalent views are referred to er#tical curves or surfaces. Each consists of thos®
viewpoints for which there exists sonugitical eventoccurring in the associated view such that thet
views corresponding to viewpoints immediately on one side of the curve or surface are non-isomo#phic
to the views corresponding to viewpoints immediately on the other side. It can be sbidivat|critical 33
events are of two types onligV eventoccur due to the alignment along some line of sight of an obje&t
vertex and a point on an object edge (both of which are visible) so that the projections of the vertegsand
edge intersect at a point in the vieBEE eventccur due to the alignment of three visible points oré
three object edges along some line of sight so that the projections of these edges intersect at a paint ir
the view. Clearly, for a general polyhedral scene witfeatures (vertices, edges and faces), EV everis
induce at most @:2) critical curves or surfaces, while EEE events induce at m@sé)ritical curves 39
or surfaces. For our purposes we consider an EV event to be a special type of EEE event, invalving
the alignment of one endpoint of each of two edges (adjacent to the vertex) and a point on asthird
edge. 42

We say that a critical event a&cludedat a viewpoint when it is rendered invisible from that viewpoint3
due to the imposition of an object face (along the line of sight at which the event would have occurred)
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between the viewpoint and at least one of the edges inducing the event. Viewpoints at which a ctitical
event is occluded are not part of the critical curves or surfaces induced by that event. 2

Given a critical event, ampvent occlusion endpoifEOE poin) [8] is a viewpoint such that, for any 3
¢ > 0, a ball with center at that viewpoint and raditisvill contain both viewpoints from which the 4
event is occluded and viewpoints from which the event is not occluded. This implies that at any EOE
point there exists a line of sight along which four scene edges align; the three edges which induce the
associated critical event and a fourth edge adjacent to the object face causing the occlusion. 7

In the orthographic case, critical curves terminate either abruptly at EOE points or naturally because
the edges inducing their associated critical events are of finite length. It can be shown that, in the svorst
case, the number of EOE points dominates the number of points at which the curves terminate naturally.
In the perspective case, critical surfaces are either bounded by EOE points or are bounded naturally,
again, because the edges inducing the critical event are of finite length. It can be shown that, in thewvorst
case, the number of critical surface edges (vertices) formed by EOE points dominates the number of
critical surface edges (vertices) at which the surfaces terminate naturally. 14

The arrangementl[)] of critical curves or surfaces in viewpoint space induced by any polyhedral
scene is called theiewpoint space partitigna structure dual to the aspect graph][ It follows that, in 16
the orthographic case, a bound on the number of vertices in the viewpoint space partition can be found
by bounding the number of EOE points plus the number of points at which the relative interiors of#wvo
critical curves intersect. Further, in the perspective case, a bound on the number of vertices can betfounc
by bounding the number of points at which a critical surface edge formed by EOE points intersect® the
relative interior of a second critical surface plus the number of points at which the relative interiors of
three critical surfaces intersect (we note that the number of all other vertices, those adjacent to critical
surface edges at which the surfaces terminate naturallyyi3)Qand that this is dominated by the bounds
we shall prove for the perspective case). In either case a bound on the complexity of the viewpoint
space partition is obtained. This, in turn, provides a bound on the total number of non-isomorphic views
induced by the scene. For a general polyhedral scene of complexijantinga and Dyerlf3] have 26
shown this, in the worst case, to B»°) under orthographic projection artl(n°) under perspective 27
projection. 28

In this paper we shall be mostly interested in scenes consisting of (bounded) clatyelyhedra. 29
A (bounded) convex polyhedron fat [11]] if the ratio of the radius of the largest ball contained withirso
the polyhedron to the radius of the smallest ball containing the polyhedron is bounded away from Zero.
Intuitively, such objects possess no arbitrarily long, skinny parts. 32

The objects that populate our scenes include (translates of) cuds#inear near-unit-cubes 33
skyscraper terrainszonohedraand arbitrary convex centrally symmetric polyhedra. A cube is a fat
object. We define aear-unit-cubeo be a parallelepiped whose edge lengths lie in the interval from o#%e
up to a constank > 1. A near-unit-cube cannot thereforetbe long and skinny otooflat. A rectilinear 36
polyhedron (or polyhedral surface) is such that each of its edges is parallel to one of the coordinatesaxes.
A skyscraper terrainwhich will be defined more precisely in Section 4, is, essentially, a connected
infinite rectilinear polyhedral surface with features that can be long and skinny in the vertical direction
only. A zonohedronis a convex polyhedron formed by taking the Minkowski sum of finitely many lire
segmentsq]. 41

Our results In the main result of this paper, we establish that for scenes consisting of a collection
of n pairwise disjoint translates of a cube the maximum possible number of non-isomorphic views4s in
fact lower than the bounds given above. Alternatively, the worst-case complexity of the viewpoint space
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partition induced by such scenes is lower than for general polyhedral scenes. In other woeffecthe 1
of occlusionbecome significant for these restricted scenes. 2

Thus we present the first known non-trivial bounds on the number of views of a soesssting 3
exclusively of fat objectd.ittle is known regarding bounds on the number of views induced by mate
general scenes of fat objects. We emphasize that our results are for a particularly simple scene ?)f this
type, and that, in the general case, the problem remains open.

Agarwal and Sharir]] and de Berg et al4] have previously demonstrated the existence of addition7al
restricted classes of polyhedral scenes of complexitsee below) for which the bounds on the numbe8r
of views are lower than in the general case.

Related workA great deal of research has focused on visibility questions in general and comblnatolrlal
and algorithmic issues related to aspect graphs in particular. Plantinga and Ddjepffered
constructions showing that the trivial upper bounds % and Qn°) for the complexity of the 13
viewpoint space partition induced by general polyhedral scenes of complexityder orthographic ,
and perspective projection (respectively) are in fact tight in the worst case. Snoégjrdhpwed that .
the bound under orthographic projection continues to be tight in the case of scenes consisting solgly of
rectilinear (long and skinny) parallelepipeds. De Berg et4lihproved the bounds of Plantinga and,;;
Dyer to Qn*k?) under orthographic projection and t@5k®) under perspective projection in the specialg
case of a scene consisting lofpairwise disjoint convex polyhedra with total complexity Recently, 190
Aronov et al. B] provided a lower bound construction which establishes that these bounds are zalso
tight in the worst case. De Berg et afl] [also improved the upper bound of Plantinga and Dyer ta
O(n® - 2¢(0am1/2) (for a constant > 0) under orthographic projection in the case of a general polyhedeal
terrain. In addition, they demonstrated a lower boun®¢6°x (n)) (wherea(n) is the slowly growing 23
inverse Ackermann function), thus showing that the upper bound is nearly tight. Agarwal and Shar#?[
improved the upper bound of Plantinga and Dyer @®?) (wheree > 0 may be selected as small ag®
desired by an appropriate choice of the implied constant) under perspective projection in the cas# of a
general polyhedral terrain. De Berg et &} flemonstrated a lower bound &f(n8« (n)), thus showing %’
that the upper bound is nearly tight. Sé€][for a more complete survey of recent research efforts relatét
to aspect graphs. 29

Outline of the paperin Section 2 we demonstrate upper bounds ©#%) under orthographlc %0
projection and @:%+¢) under perspective projection, for any- 0, for the complexity of the V|ewp0|nt o
space partition induced by scenes consisting: gbairwise disjoint translates of a cube. Thus thg3
maximum possible number of views associated with such scenes is significantly lower than in the ggneral
case. In Section 3 we present constructions for which the number of vieRs:#%§ under orthographic 35
projection and (n°) under perspective projection, thus nearly closing the gap between the upper,and
lower bounds. We note here that these bounds show that, in the worst case, a relatively large viewpoint
space partition complexity is already inherent even in very simple scenes of fat objects. In Section4 we
show how to extend the upper bound results to the union of possibly overlapping rectilinear near-gnit-
cubes and to pairwise disjoint translates of a zonohedron. We also show that the upper bounds hadd for
a skyscraper terrain and indicate constructions similar in principle to those exhibited in Section 3:for
the lower bounds under orthographic and perspective projection. Finally, we note that the upper kound
results also apply to arbitrary convex centrally symmetric polyhedra when only silhouette viewsiare
considered. 44

12
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Let C be a collection ofn pairwise disjoint translates of a fixed culie We write C = {P;, =
2, (Where %’ denotes the Minkowski sum with the singletéuw }) and refer to the vectar;

A W N P

.....

Consider the case of orthographic views. Seenote the unit sphere of directions. For eachS, ;

consider the orthographic projectiaiu) of the cubes irC onto some plane orthogonal tio The family 12
C(u) consists ofz translates of the projectioR (u) of P. Specifically,C(u) = {a;(u) ® P(U)};—1.... 13
wherea; (u) is the projection of;; (again, B’ denotes the Minkowski sum, this time in the plane). 14

We need to bound the number of orientatianat which one of the following two types of events;s

occurs: 16

17

(i) There exist a quadruple of indices i, i3, i4 and a raya in direction —u, such that. touches an g

edge of each of the four cubds,, P;», P;3, Pi4 (in the orderP,4, P;3, Pi», P;1, With A emanating 19
from a point on the edge af;4), andX does not intersect the interior of any cube. The number gf
orientations at which this type of event occurs yields the number of EOE points in the viewpgint
space partition. 2

(i) There exist two distinct triples of indices (possibly with common elemehtsy, i3 and ji1, j2, ja, 23

and two distinct rays., A’ in direction —u, such that (a) touches an edge of each of the threes
cubesP;y, P2, Pz (in the orderP;3, P2, P;1, with A emanating from a point on the edge Bg), 25
(b) A’ touches an edge of each of the three cuBgs Pj,, P;3 (in the orderP;s, P;p, Pj1, With 1" 26
emanating from a point on the edge Bfz), and (c) neithei nor 1" intersects the interior of any 27
cube. The number of orientations at which this type of event occurs yields the number of intersestion
points between the relative interiors of two critical curves in the viewpoint space partition. 29

30

The projectionP; (u) of any translateP; of P, for a directionu € S, has a silhouette which is generallys1
a convex centrally symmetric hexagon. Three additional edgd% afe visible, and appear as internak:
edges withinP; (u). Each of them is a translate of two edges of the silhouett®; af), and together s3
they partitionP; (u) into three parallelograms. Three additional edgeg;dre invisible when viewed in 34
directionu. 35

Note that, in both types of events, only the edge(s) containing the endpoint(s) of the appropriate ray(s)

(the edge ofP;4 in a type (i) event, or the edges 8f; and of P;3 in a type (ii) event) can be interior in 37
the respective projection(s); all other edges must be silhouette edges. 38

Fix one translatePy(u) = ag(u) @ P(u), and fix an edge (either a silhouette edge or an internal

edge)eg = eg(u) of Py(u). For any other translat®’(u) = a’(u) @ P(u), consider the intersection 4o

I’ = eo(u) N P'(u). As is easily verified,l” is an interval along;y which contains an endpoint oé,. 41
This follows from the observation that the length of any cross section of a convex centrally symmetric
polygon in a direction parallel to a side of it, is always at least as large as the length of that side, anebthat
eo(U) is, or has the same length as and is parallel to, a side of the silhouette. 44
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Fig. 1. The edge of Py is partially hidden by a nearer translaté but no endpoint o# is hidden.

-
w

14

Remark. The argument just given remains valid as longgs) is (a translate of) a silhouette edge. Thig>

holds for cubes, as noted above, and, more generally, for zonohedra, but may fail for general (ceﬁ?rally

symmetric) convex polyhedra; see Fig. 1 for an example.
18

19
20
21

Denote the endpoints @f(u) by po(u) andgg(u). Parametrize (the line containingy by orienting
it from pg to go, and by representing a pointon it by its signed distance fromg (S0 go has a positive
representation).

For each translat®’ as above, define two (partially-defined) real-valued functi ,) , G(,f,o) ons, 2

o] thath(,‘ZO)(u) is max!’ (in the parametrization afy), provided that (apo € I’ and (b) P’ is in front of
Py as viewed fromu; otherwise,F ' (u) is undefined. SimilarlyG<” (u) is min1’, provided thay € I’
and P’ is in front of Py as viewed frormu; otherwise it is undefined.

It is an easy exercise to verify that, with an appropriate parametrizatish thie functionsF<” and o7

G(,f,o) are of constant description complexifiL5], i.e., the graph of each function is a semialgebraig;

set defined by a Boolean combination of a constant number of equations and inequalities involying

polynomials of constant maximum degree. 30
Let £, denote the upper envelope of the functiagrfs”, and let£S denote the lower envelope of thes,
functionsG's . 32

Let u be an orientation of type (i), with a corresponding quadruple P;», P;3, P;4 of translates of 33
P, and respective contact edges e», es, e4. Then, by definition and construction,is the projection 34
on S either of a vertex ofEe—4 , or of a vertex ofE;:, or of an intersection of an edge of one envelopes
with a facet of the other. In other words, the event corresponds to a vertex sémigevich regionS,; 36
enclosed between the two enveloges and E;/ . Since each of these is the envelope:of 1 bivariate 37
functions of constant description complexity, the results of Agarwal efilp(sge also12]) imply that 38
the complexity of such a sandwich region, and thus also the number of type (i) events that ivolve
as their furthest contact edge (with respeatitpis O(n?*¢), for anye > 0. Repeating this argument for 40
each edge of every translate Bf we conclude that the number of events of type (i) @®°), forany 4
e > 0. 42

Consider next the analysis of events of type (ii). For each edgeany translate of?, denote the 43
projection of (the edges and vertices of) the sandwich regiamto S by M.. Then, again by definition 44
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and construction, an event of type (ii) occuradt there are two cube edges, ¢,, so that an edge of 1
M, crosses an edge @f,, atu. (It is possible that; = e¢; = ¢, in which case the crossing is between
the projections of an edge @&, and of an edge of".) 3
For any fixed pair of edges,, e,, the complexity of the overlay of,; and of M,, is O(n?*®), for 4
anye > 0. This is a consequence of the following result, which extends the analysis of overlays given in
[1,17. 6
;
Lemma 2.1.1. Let F1, F,, G1, G, be four collections of bivariate functions of constant descriptios
complexity each of size at most Let Sr denote the sandwich region between the upper envelopesof
F, and the lower envelope d@f,, and letS; denote the sandwich region between the upper envelopelof
G, and the lower envelope @f,. Let My (respectively, M) denote the projection ofthe edges and 11
vertices o) Sy (respectively,Ss) onto thexy-plane. Then the complexity of the overlayMf and of 12
Mg is O(n?*®), for anye > 0. 13
14
Proof. Let Q denote the overlay of the maximization diagraid][of F;, the maximization diagram of 15
G, the minimization diagraml[J] of F», and the minimization diagram @f,. By the results of ,17, 16
the complexity ofQ is O(n?**), for anye > 0. Letq be a crossing point of an edgeof M and of an 17
edgee’ of M. By definition, e is either an edge of the maximization diagramFaf or an edge of the 18
minimization diagram off,, or the projection of an edge of intersection between the upper envelope2of
F; and the lower envelope df,. Similarly, ¢’ is of one of three corresponding types, defined in terms af
G1 andGo,. 21
If e is of one of the first two types and sodstheng is a vertex of Q. On the other hand, suppose22
that bothe ande’ are of the third type, where (respectively,¢’) is the projection of a portion of an 23
intersection curve between the graphs of sofpe F; and f> € F, (respectively, of somg; € G, and 24
g2 € G,). Let 1 be the cell ofQ that containg;. By constructiony is fully contained in a single cell of 25
each of the four maximization or minimization diagrams of the respe@tiveé, G1, G,. This is easily 26
seen to imply that uniquely determines the four functiong, f>, g1, G, that defineg, which in turn 27
implies thatr can contain only O(1) crossing poinjf the above kind. Similar reasoning applies whees
e is of the third kind and’ is of one of the two former kinds, or vice versa. Since the number of ecells9
is O(n?*¢), the lemma follows. O 30
31
Multiplying the bound provided by Lemma 2.1.1 by the numben?) of pairs of edgeg, e,, we 32
obtain an overall bound of @***) for the number of type (ii) events. We thus obtain the main result ef
this section: 34
35
Theorem 2.1.1. The number of combinatorially different orthographic views of a collection of n pairwise

disjoint translates of a cube iR3 is O(n**+*), for anye > 0. 37
38

We will see below (Section 3) that this bound is nearly tight in the worst case. 39

40

2.2. Perspective views 41

42

Consider next the case of perspective views. For eaetiR®, consider the central projectiofi(z) 43
of the cubes inC from z onto some pair of parallel planes containingn the slab between them. 44
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Without loss of generality, assume that the planes are parallel to a fadet afd that this facet is 1
horizontal. Technically, we prefer this projection over the more natural projection onto a sphere centered
at z, because the images in our projection are convex polygons. It suffices to analyze the changes that
occur in just one of these planes. Some cubes may project onto both planes, and then both projectians ar
unbounded polygons. Aspasses through a horizontal plane that contains a facet of some trahslatée
the projection ofP; on one plane starts or stops being nonempty. In what follows we omit the analysis
of the effect of these changes on the number of views, since they do not affect the asymptotic bourid that
we are going to derive. 8
The collectionC(z) (on the fixed projection plane) consistsroprojections ofP, each of which isa ©
(possibly unbounded) convex polygon. Similar to the orthographic case, each projection contains ®ome
additional visible projected edges in its interior. 11
We need to bound the number of poiatat which one of the following two types of events occurs: 12
13
(i) There exist a quadruple of indices, i,, i3, is and a triple of indicesj;, j», jz (they may share 14
elements, but the triple is not fully contained in the quadruple), and two distinct segmexits 15
havingz as a common endpoint, such that {&puches an edge of each of the four culbes P,,, 16
P;3, P4 (in that order), with the other endpoint ofying on the edge of,4, ands does not intersect 17
the interior of any cube; and (b) touches an edge of each of the three cubBgs P;», P;3 (in that 18
order), with the other endpoint of lying on the edge of;3, ands’ does not intersect the interior of 19
any cube. The number of points at which this type of event occurs yields the number of intersegtion
points between a critical surface edge formed by EOE points and the relative interior of a sezond
critical surface in the viewpoint space patrtition. 22
(i) There exist three distinct triples of indices (possibly with common elemeénts), i, ji, j2, j3, and 23
k1, k2, k3, and three distinct segmentss’, s” with z as a common endpoint, such thatatisfies the 24
property in (i) with respect to the tripla, i, i3 (with its other endpoint lying on an edge 8f3), 25
ands’, s” satisfy this property with the tripleg, j», ja, andky, k», k3, respectively. The number of 26
points at which this type of event occurs yields the number of intersection points among the relative
interiors of three critical surfaces in the viewpoint space partition. 28
29
Fix one of the projection®(z), and fix an edgeg = ¢q(2) of Py(2). For any other translat®’(z) 30
such thatP’ is in front of Py as viewed frone, consider the intersectiol = eq(z) N P’(z). We claim 31
that if I’ is nonempty then it must be an interval alofggvhich contains an endpoint ofy. 32
To prove the claim, lef\g denote the triangle spanned band the edgegy of Py which projects teg. 33
Denote the endpoints gf by a andb. The claim is equivalent to asserting thaiif intersectsAg then 34
it intersects at least one of the edgesor zb of A. 35
Let p be a point onP’ intersectingAg; see Fig. 2. Let be the line throughp parallel to fy. Note that 36
the segment = P’ N1 is parallel to an edgg¢’ of P’ and thus has length equal to that ©f Hence the 37
intersection ofP’ and A contains a (contiguous) portion of a segment lyingRirthat is parallel tofy 38
and this segment is of length (at least) as long as thg.ofhus P’ must intersect eitheta or zb. This 39
implies our claim. 40
41
Remark. The argument just given remains valid as long@g) is the projection of (a translate of) a42
silhouette edge. As in the preceding section, this holds for cubes and, more generally for zonohedra, but
may fail for general (centrally symmetric) convex polyhedra. 44
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Fig. 2. A nearer translatg’ that intersectg\g must intersect an edge ofy.
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20
Denote the endpoints @(z) by po(z) andgo(z), and parametrize (the line containing) as in the 5,

preceding section. For each transld&teas above, define two (partially-defined) real-valued functiong,
F,(ff’), G(,ff” onR3, so thatF,(f/O) (2) is max/’ (in the parametrization af), provided that (apg € I’ and 23
(b) P’ is in front of Py as viewed frome; otherwise,F 5 (2) is undefined. SimilarlyG'<® (z) is min1’, 24

provided thay € I’ and P’ is in front of P, as viewed frong; otherwise it is undefined. 25
As in the preceding section, it is an easy exercise to verify that the funciigiflsand G\ are of 26
constant description complexity. 27

Letz be a point in 3-space of type (i), with a corresponding quadrBpleP;,, P;s, P;4 of translates of 28
P, respective contact edges ey, e3, e4, another tripleP;1, Pj», P;3 of cubes, and their respective contact®
edges, €5, e5. Then, by definition and constructionjs an intersection point between the projection of
R3 of an edge of the sandwich regid and the projection of a 2-face of the sandwich regipg. st

Since these are sandwich regions between envelopes -ofl trivariate functions of constant 32
description complexity, the recent results of Koltun and Shafy¢an be used to deduce that the numbet
of such intersection points is@**), for anye > 0. 34

Indeed, this bound is an immediate consequence of the following extension of Lemma 2.1.1 t& the

36
37
38
Lemma22l. LetFy, F», G1, G2, Hy, H, be six collections of trivariate functions of constant descriptioes
complexity each of size at mostLet S denote the sandwich region between the upper envelope ofso
and the lower envelope df,, and defineSs, Sy analogously for the collection§,, G, and Hy, H,, 41
respectively. LeM  (respectivelyMs, My) denote the projection ofthe faces, edges and verticeg of 42
Sr (respectivelySs, Sy) onto thexyz-hyperplane. Then the complexity of the overlapgf, M and 43
My is O(n®*), for anye > 0. 44

case of trivariate functions:
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Proof. An easy generalization to the case of trivariate functions of the proof of Lemma 2.1.1, using
the near-cubic bound on the complexity of the overlay of any constant number of minimizationz (or
maximization) diagrams of trivariate functions of constant description complexity, as giveé#lin[o 3
4
Remark. Clearly, the same bound holds if we consider only two sandwich regions, rather than three.
6
Applying Lemma 2.2.1, and multiplying the resulting bound by the numke?of pairs of furthest 7
(from z) contact edges,, ¢5, we obtain that the number of type (i) points igQ), for anye > 0. 8
Analysis of points of type (ii) is also straightforward, and proceeds in much the same way as above.
It applies Lemma 2.2.1 to the three sandwich regions, each arising for the furthest edge of contact in
each of the triples of translates Bfthat are involved in the event. We omit the further easy details. This
yields a bound of @:3+) for the number of points of type (ii) associated with a fixed triple of furthest
contact edges, and, multiplying by the number€) of such triples of edges, we obtain an overall bounc:
of O(n®+*), for anye > 0. We thus obtain the main result of this section: 14
15
Theorem 2.2.1. The number of combinatorially different perspective views of a collection of n pairwise

disjoint translates of a cube iR3, is O(n%+¢), for anye > 0. 17
18

We will see below (Section 3) that this bound is nearly tight in the worst case. 19

20

21

3. Lower bounds 22

23
We now present lower bound constructions induc®gn®) and Q(n°) different views under 24
orthographic and perspective projection, respectively, as follows. 25
For orthographic projection, leR be the set of viewpoints in a small rectangular region just below
and to the right of the origin of the plane= +-o0. Place a collection 0B (n) (rectilinear) cubes along 27
the negativey-axis so that they appear, froRy to be lined up one behind the other and so that the upper
edge of each cube face for which the outward normal vector is iR-theirection is just visible above 29
the upper edge of the corresponding face of the cube immediately in frongodity(a), Fig. 3). 30
Next, place a collection ad (n) (rectilinear) cubes along the positiyeaxis so that they appear, fromsi
R, to be lined up one behind the other and so that the top right vertex of each cube face for whicte the
outward normal vector is in the y direction appears to be slightly below and to the right of the top right

vertex of the corresponding face of the cube immediately in front girdujp (b), Fig. 3). 34
Each line of sight emanating from any viewpoint fnand passing through the top right vertex (ass
specified above) of a cube group (b) will be tangent to the cube at that vertex. 36

The edges and vertices specified above combine to c&@i® EV events each of which induces as7
critical surface intersecting the plape= +oc along a horizontal line irR. The cubes may be positionedss
so that these critical curves are pairwise disjoinkiand so that the distance between neighboring curves
is arbitrarily smaller than the lengths of the curves themselves. 40
Finally, copy and translate the cubesgroup (b) to form group (d), and copy, translate and rotatest
the cubes irgroup (a) to formgroup (c) (Fig. 3). This induces a second set@fn?) critical curves in 42
R orthogonal to the first set. The cubes may be positioned so that the curves in the second set intersec
each of the curves in the first set. This forms a gri®dafi?) by ® (n?) critical curves in the regio® on 44
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Fig. 3. The construction under orthographic projection.
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Fig. 4. The construction under perspective projection (and its induced critical surfaces).
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30

the planey = +o00. Hence the complexity of the viewpoint space partition under orthographic projection
induced by this scene & (n%).

For the perspective case, we position a copgroups(a) and (b) on the positive-axis, a copy of 33
groups(c) and (d) on the negative-axis and amirror imagecopy ofgroups(c) and (d) (reflected through 34
the yz-plane) on the negative-axis. Each copy is placed sufficiently far from the origin, and is oriented
so that the critical surfaces induced forn®&:2) by © (n?) by ® (n?) grid within a small parallelepiped 36

near the origin (see Fig. 4). Thus the complexity of the viewpoint space partition induced by this seene

is Q(n).

4, Discussion

32

38
39
40
41
42

Pairwise disjoint near-unit-cubed he collection of pairwise disjoint translates of a cube in the proofs

of Section 2 may be replaced more generally with a collection of pairwise disjoint rectileeaunit-

44
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cubesof different sizes, that is, axis-parallel parallelepipeds whose edge lengths lie in the interval from
one up to a constamt > 1. Assume that an edgein this new scene has lengthfor 1 <1, <m. We 2
may subdivider into m subintervals of length, /m (< 1), identifying the projection of each subinterval3

in turn with ¢ (in the discussions of Sections 2.1 and 2.2), and apply the analysis given in those sections
to each of then subintervals created. In particular, the assertion continues to hold'tfeg defined in 5
Sections 2.1 and 2.2) must contain an endpoirb @ive say that’ coversthat endpoint). Thus the upper?®
bounds presented in Section 2 remain valid for these more general scenes. !

Overlapping translates of a cub&he union of a collection of possibly overlapping translates of a8
cube with unit length edges, which may, in addition to convex edges, contain arbitrarily short contave
edges, itself has complexity @) [5]. Any such concave edge will be parallel to some (collection off
silhouette edges in the scene. In addition, if general position is assumed, no edge has length greatér tha
one. Note that if a concave edge is involved in an EV or EEE event, or in the creation of an EOE pBint,
it must be thdurthestedge from the viewpoint along the line of sight associated with that event or EgE
point.

It can be seen that the analysis of Section 2 may be applied to the union of overlapping translates of a
cube in general position. In particular, it continues to hold ftabvers an endpoint @, even wheregg
is the projection of a concave edge. Thus the upper bounds are applicable to these scenes also.

Overlapping near-unit-cubed he union of a collection of possibly overlapping rectilinear near-unit- 18
cubes of different sizes has complexityxQ®. This becomes evident by observing that each near-unit- cube
may be approximated as closely as desired by a constant number of translates of a cube with unit E?ngth
edges (slightly perturbed so as to be in general position) and that there exist at least as many features ir
the new scene as there were in the original, after which the proof presentgdniay be applied directly.

Again the upper bounds are extendible to these more general scenes.

Skyscraper terrainsWe consider a collection af possibly overlapping rectilinear parallelepipeds 055
varying heightsgkyscrapers whose bases lie on thg-plane, having the property that all edges paralle),
to thex- andy-axes possess lengths lying in the interval from one up to a constant. Edges parallel .,
to thez-axis may be of arbitrary length. We take the boundary of the union of these parallelepipeds alpng
with the entirexy-plane, excluding those portions of the-plane containing the bases. The resulting,
connected infinite two-dimensional polyhedral surface will be referred tskgszraper terrain 30

Itis not difficult to see that the analysis of Section 2 may be applied to skyscraper terrains. In partigylar,
by virtue of the properties of a terrain (see Fig. 5), and with the usual assumption that viewpointg,are
restricted to pointabovethe terrain only, it continues to hold th&tcovers an endpoint @, even when 33
eo is the projection of a vertical edge. Moreover, a simple counting argument on the number of verices
in a skyscraper terrain can be used to show that its complexity#3. @herefore, the upper boundsss
are extendible to skyscraper terrains (note that, for vertical edges, the analysis of Section 2 is somgwha
simplified since only facets of envelopes, rather than sandwich regions, need be considered). 37

We note that our upper bounds of/3*¢) for anye > 0 under orthographic projection and#5*¢) 38
for any ¢ > 0 under perspective projection for the specific case of a skyscraper terrain represent
improvements over the respective upper bounds @P©@2¢(°9"1/2) (for a constant: > 0) derived by de 40
Berg et al. fi] and O(n®+¢) derived by Agarwal and Shari2] for general polyhedral terrains. 41

We further point out that a simple modification to the first construction exhibited in Section 3 allews
us to deduce that a lower bound under orthographic projection for the case of skyscraper terrains is
Q(n* (the modification is that we change all cubes to parallelepipeds with bases any-fflane). 44

17
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Fig. 5. In a skyscraper terrain, a nearer parallelepipéthat partially hides a vertical edgeof Py must also hide the lower

endpoint ofe.

© 00 N o O b~ W N PP

e S S S
N o o W N B O

19

A similar modification to the second construction of Section 3 allows us to deduce that a lower bound

under perspective projection for skyscraper terrairs (s°).

Zonohedra As previously noted, the analysis of Section 2 holds for pairwise disjoint translates o% a

zonohedron with @) facets. This is so because the arguments given there remain valid as leg as
is the projection of (a translate of) a silhouette edge, which, for zonohedra, will always be the cage.

particular, it continues to hold thdt covers an endpoint af, wheney is the projection oinyedge in
the scene.

Centrally symmetric polyhedraVe also note that the analysis of Section 2 holds for pairwise disjoﬁ%t

translates of arbitrary convex centrally symmetric polyhedra witth) @acets, provided that we only 28

consider views of their silhouettes. That is, we assume that edges of the polyhedra that become ifternal

In

in the projected view are not observable in the view, so critical events only involve silhouette edges.
In particular, it continues to hold thdt covers an endpoint ofy, whenevereq is the projection of a o

silhouette edge.
Fat objects We reiterate that improving the trivial upper bounds %€ and Q»°) on the complexity

of the viewpoint space partition induced ggneralscenes comprised affat objects each of complexity z:
O(1) remains an open problem. Other simple scenes of this type, for which there are no known non-trivial

upper bounds, include, for example, disjoint translates of a simplex, disjoint tranastatestaleccopies
of a cube, or disjoint translateahd rotatedcopies of a cube.
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