Top-Down Analysis of Path Compression*

Raimund Seidel Micha Sharirt

April 25, 2003

Abstract

We present a new analysis of the worst case cost of path compres-
sion which is an operation that is used in various well-known “Union-
Find” algorithms. In contrast to previous analyses which are essen-
tially based on bottom-up approaches our method proceeds top-down
yielding recurrence relations from which the various bounds arise natu-
rally. In particular the famous quasi-linear bound involving the inverse
Ackermann function can be derived without having to introduce the
Ackermann function itself.

1 Introduction

Path compression is used in a number of algorithms, most notably in various
very natural solutions to the so-called Union-Find problem. This problem
is basic enough to be covered in most introductory texts on algorithms,
however the performance analysis of the solutions is more often than not
at best incomplete if not omitted altogether. Already the definition of the
function «, the interesting constituent of the time bound, as a quasi inverse
of the Ackermann function is complicated.

Let us briefly recall the Union-Find problem. It asks to maintain a
partition of a finite set X and a representative element p(A) € A for each

*Work on this paper has been supported by a grant from the U.S.-Israel Binational
Science Foundation, by NSF Grants CCR-97-32101 and CCR-00-98246. by a grant from
the Israeli Academy of Sciences for a Center of Excellence in Geometric Computing at Tel
Aviv University, and by the Hermann Minkowski-MINERVA Center for Geometry at Tel
Aviv University.

JfFachrichtung Informatik, Univ. des Saarlandes, Postfach 151150, D-66041
Saarbriicken, GERMANY. rseidel@cs.uni-sb.de

iTel Aviv Univ., School of Computer Science, Tel Aviv 69978, ISRAEL, and Courant
Institute of Mathematical Sciences, New York Univ., New York, NY 10012, USA.
michas@post.tau.ac.il

set A participating in the partition. There are two operations: For z €
X the query FIND(z) is to determine the representative element p(A;),
where A, is the set in the partition that contains z. For two sets A and
B in the current partition the operation UNION(p(A),p(B)) is to change
the partition, replacing A and B by their union and providing the new
representative element p(A U B).

A very natural solution of this Union-Find problem is to represent the
partition as a forest of rooted trees on the node set X, where each tree
represents a set of the partition and its root is the representative element of
that set. The operation FIND(z) is realized by traversing the path from z to
the root p of its containing tree (just follow parent pointers) and reporting
p- The operation UNION(p(A), p(B)) is realized by making p(A) the parent
of p(B), or vice versa, thus combining the two trees. Note that a single
parent pointer per node suffices to implement such forests.

The time thus necessary for a UNION-operation is constant, whereas for a
FinD-operation it is proportional to the length of the path traversed. Thus
it is advantageous to keep paths short. To this end it makes sense to be
judicious in the UNION-operation which of the two involved roots to make
the new root. Choosing the one whose tree has the larger number of nodes is
known as the linking-by-weight strategy; choosing the one with larger rank is
known as the linking-by-rank strategy. Here “rank” is an integer associated
with node z that is initially 0 and that is increased by one whenever z is
made a parent to a node of equal rank.! In both strategies ties are broken
arbitrarily.

Both strategies produce trees of at most logarithmic height. Thus a
sequence of UNION and m FIND operations takes at most O(n + mlogn)
time. Here n = |X| and the initial partition consists of all singleton subsets
of X. Note that at most n — 1 UNION operations can occur.

Another way of producing short find-paths is so-called path compres-
sion: When performing a FIND operation make all nodes of the traversed
path children of the root. This increases the running time of the FIND oper-
ation only by a constant factor but may make the find-paths of subsequent
operations shorter.

Analyzing the performance of algorithms employing path compression
in combination with various linking strategies has a long history.

Hopcroft and Ullman [3] proved a bound of O(m log* n). Their approach
was refined by Tarjan [5] to the so-called “multiple partition method” leading

Tn other words the rank of z is nothing but the height (number of edges on longest
leaf-root path) of the tree rooted at z if no path compression had occurred.

to a bound of O(mar(m,n)), where
ar(m,n) = min{i > 1| A(3, |[m/n|) > [logan]}
and A is the “Ackermann function” defined by

A(lg) = 2 for j > 1,
A(i,1) = A@G—1,2) for i > 2,

Tarjan [6] also showed that this slightly superlinear bound was best
possible for a reasonable, pointer based model of computation. Kozen [4]
simplified Tarjan’s analysis of the upper bound. Later Tarjan [8] and also
Harfst and Reingold [2] cast the existing analyses in terms of potential func-
tions, a standard tool for the amortized analysis of algorithm performance.
This type of analysis was taken into [1].

All the analyses so far have proceeded by low-level accounting and charg-
ing individual parent pointer changes to operations or nodes and bound-
ing the grand total of those charges. In this paper we present an analysis
that is based on a radically different approach. We proceed top-down and
employ divide-and-conquer to derive recurrence relations from which the
bounds follow. Our analysis yields rather precise bounds. For example, if
n = | X| < 26 and linking-by-rank and path compression are used, then any
sequence of m FIND operations causes at most min{m +4n, 2m+2n} parent
pointer changes.

2 The main lemma

Let F be a forest of disjoint rooted trees on a finite node set X. Here we
only consider paths p in F that lead from some node z to some ancestor y
of z. If y is a root in F we refer to p as a rootpath, otherwise we call it a
non-rootpath and we denote the parent of y by a(p).

Compressing a non-rootpath p means minimally changing F so that every
node on p has a(p) as its parent. Compressing a rootpath p means minimally
changing F so that every node on p becomes a root. We define the cost of
such an operation to be the number of nodes that get a new parent, i.e. if p
is a non-rootpath with d nodes the cost is d — 1, and if p is a rootpath the
cost is 0. It is also convenient to allow empty paths involving no nodes. We
classify them as rootpaths and “compressing” them has cost 0.

Let C = (p()), ;< be a sequence of paths along which compressions are
performed starting with the initial forest F, i.e. 7o = F and for 1 <i < M

the path p; is in F;_1 and F; is obtained from F;_; by compressing p;. Let
cost(C) denote the cumulative cost of C, i.e. the total number of times that
some node gets a new parent.

The notion of path compression that we just defined is more general than
the path compressions that arise in FIND-operations. For proof purposes this
generality turns out to be useful. Moreover, as already noted in [3] and [5],
the following holds:

Lemma 1 Let S be some sequence of UNION and m FIND-operations on an
initial partition of an n-element set X into singletons. Let T be the time
necessary to execute S.

There is a forest F on X and a sequence C of m path compressions, all
involving non-rootpaths, so that T = O(m + n + cost(C)).

Proof: (Sketch) For F consider the forest that is generated by performing
just the UNION-operations of the sequence. The sequence of FIND-operations
then defines a sequence of non-rootpaths in the corresponding forest. O

Thus we are interested in upper bounds for cost(C) measured in terms
of | X| and |C|, the number of non-rootpath compressions in C.

Let us create a setup for divide-and-conquer. Consider a partition of the
node set X of F into a “bottom set” X, and a “top set” X;. We call the
pair (X3, X;) a dissection for F, iff Xy is is upwards closed in F, i.e. if some
node z is in X}, then every ancestor of z in F must be in X; also. Note that
a dissection (X3, Xy) cuts every path into two contiguous subpaths p, and
p¢ consisting of the nodes on p that are in X, and X, respectively. Either
subpath maybe empty. Also note that upward-closedness and hence also
dissections are preserved under path compression. Let F(X3) and F(X;) be
the subforests of F induced by the sets X3 and X;.

All our analyses hinge on the following Main Lemma:

Lemma 2 Let C be a sequence of |C| compress operations in a forest F
with node set X. Let (Xy, Xt) be an arbitrary dissection for F.

There are sequences Cy and Cy of compress operations for F(Xp) and
F(Xy), respectively, with |Cy| + |Ct| < |C| and

cost(C) < cost(Cy) + cost(Cy) + | Xp| + |Cy| -

Proof: Let C = (p(i))1 <i<m be the sequence of paths to be compressed and
let (F@), . be the resulting sequence of forests.

Let (X3, X;) be a dissection of F = F© and let F, = F(X;) and
Fie=F (Xt) be the induced bqttom and top forests. Define path sequences
Cy = (pl@)lgigM and C; = (pgz))ISiSM. It is easy to check inductively that

for each 1 <4 < M the path pl(f) occurs in F(O~1(X,) and compressing it
produces F)(Xj). Thus Cj is a compression sequence for . Analogously
C} is a compression sequence for F;.

If p is a non-rootpath in @1 then at most one of p,()i) and pgi) is a
non-rootpath in its respective forest. If p(*) is rootpath in F(~1) then both
pl()z) and pgz) are rootpaths. Thus |Cy| + |Ct| < |C|.

If a node from X; gets a new parent (necessarily from X;) when com-
pressing path p(9), then exactly the same happens when compressing pgi).
Thus the number of those types of parent changes is given by cost(Cy).
Likewise the number of times that a node from X} gets a new parent from
Xy is given by cost(Ch).

A node from Xj getting a new parent which is in X; can only happen

when compressing a non-rootpath p(® for which p,(f) is a non-empty rootpath

in the bottom forest. In this case all but the topmost node on p((f) get a
parent from X; for the first time, which can happen to each node in Xj at
most once. The topmost node gets a new parent again from X; only if p,(f) is

non-empty which means p,(f) is a non-rootpath (since p s a non-rootpath).
So this type of event can happen at most |Cy| times. Since X; is upwards
closed no node in X; can get a parent from X; and thus the total number

of parent changes, i.e. cost(C), is bounded by

cost(Cp) + cost(Cy) + | Xp| + |Cy] -

3 Arbitrary Linking

Let f(m,n) denote the maximum possible cost for a sequence of m compress
operations in a forest of n nodes. By Lemma 1, f(m,n) yields an asymptotic
upper bound for the running time of m union-find operations in a universe
of n elements if path compression and arbitrary linking is used.

Using our main lemma it is straightforward to give a rough argument
that f(m,n) < (m+n/2)log, n must hold: For a given compression sequence
C of length m, choose a dissection (X3, X;), where both X}, and X; have size

about n/2. Using induction, the inequality of the main lemma then yields

cost(C) < (|Cy| +mn/4)loge(n/2) + (|Cy| + n/4)loge(n/2) + n/2 + |Cy
< (m+mn/2)logy(n/2)+n/24+m
<

(m+mn/2)logyn.
For large m this bound can be improved to

f(m,n) < (2m +n) 108 1 /n] 417
which is achieved by setting k = [m/n] + 1 in the following claim:

Claim 3 For any integer k > 1 we have f(m,n) < (m + (k — 1)n)[log, n].

Proof: 'The bound clearly holds if n < k since each node can get a new
parent at most n— 2 times. So assume n > k and let C' be some sequence of
m compress operations in a forest with n nodes. Let (X;, X;) be a dissection
with ny = | Xy| = [n/k] and np = |X3|. Let C; and Cj be the compression
sequences asserted in the main lemma and let m; and my; be their respective
sizes. Then, using induction, the inequality of the main lemma implies

cost(C) < (mp+ (k—1)nyp) [log, ny| +(my + (k — 1)ny) [logy ne| +np + my

<Mogy, n] =[logj, n]—1
= (my+mp+ (k—1)(ne + np))[log, n] —my — (k — 1)ng + np + my
< (m+ (k—1)n)[log,n],

where the last inequality follows from the fact that n, < (k — 1)n; by con-
struction. O

4 Linking by rank

For every node z in a forest F define its rank rank(z) to be the height of
the subtree rooted at x, where the height of a one-node tree is 0. We call
F a rank balanced forest, or simply rank forest, if for each node = in F the
following property holds: For each 7 with 0 < ¢ < rank(z) node z has at
least one child y; with rank(y;) = 1.

Rank forests arise in union-find algorithms that employ the linking-by-
rank strategy. It is easy to prove by induction that in such a forest every

node of rank k¥ must be the root of a subtree of size at least 2*¥. Thus
the maximum rank that occurs is at most log, n, where n is the number of
nodes. The following inheritance lemma is important for our purposes. Its
straightforward proof is left to the reader.

Lemma 4 Let F be a rank forest with node set X and mazimum rank r.
Let s be some integer, let X<, be the set of nodes with rank at most s, and
let X<s be the set of nodes with rank exceeding s. Then

(i) (X<s,X>s) is a dissection.

(i) F(X<s) is a rank forest with mazimum rank at most s.
(iii) F(Xss) is a rank forest with mazimum rank at most r — s — 1.
(iv) | Xs| < |X|[/25F1.

Let f(m,n,r) be the maximum cost for a sequence of m path compres-
sions in a rank forest with n nodes and maximum rank r. By Lemma 1
f(m,n,|logy n]) yields an asymptotic upper bound for the running time of
m union-find operations in a universe of n elements if path compression and
linking-by-rank are used.

We need two definitions involving integer functions, the first of which is
standard. Let g : IN — IN be a function with g(n) < n for n > 0. Define the
functions ¢g* : IN — IN and ¢° : IN — IN as follows:

“(r) = 0 ifr<1
III=Y 1+44¢%(g(r) ifr>1,

g<>(,r,) _ { g(r) if g(r) <1
1+g°([loga g(r)1) ifg(r) > 1.

Note that ¢° is essentially (logog)*.

With these definitions we can state and prove the following Shifting
Lemma.

Lemma 5 Assume there is some k > 0 and some non-decreasing function
function g : IN — IN with g(r) <r for r > 0 so that

flm,n,r) < km + 2ng(r)
holds for all m,n,r. Then the following bound also holds for all m,n,r:

f(m,n,r) < (k+ 1)m + 2ng°(r).

Proof: We proceed by induction on r. The statement clearly holds if
g(r) <1, since in these cases we have g°(r) = g(r) = 0.

So assume r is such that g(r) > 1 and let C' be some compression se-
quence of length m in a rank forest F with n nodes and maximum rank
r. Let s = [logyg(r)] and let (X<;, X55) be the dissection described in
Lemma 4. Note that s < r since g(r) < r. Put ny = |X<,| and n; = | X5 4|.
Let Cy and C; be the compression sequences asserted in the main lemma,
and put my = |Cp| and m; = |Cy|. By the main lemma we have

cost(C) < cost(Cy) + cost(Cy) + mp + my .

The bottom forest F(X<;) is a rank forest of maximum rank s < r. Using
the inductive assumption we get

cost(Cy) < (k4 1)mp + 2npg°(s)
< (k+1)mp + 2ng°([logy g(r)])

g°(r)—1
= (k+ 1)mp+ 2ng°(r) — 2n.

The top forest F(Xss) is a rank forest of maximum rank r — s — 1 with
ny < nj2°tt = pj2ttloa 9l < /(2g(r))

nodes. Using the assumption of the lemma and the fact that g is non-
decreasing, we therefore get

cost(Cy) < kmy + 2n4g(r —s — 1) < kmy +n.
Putting things together we get
cost(C) < ((k + 1)my + 2ng°(r) — 2n) + (kmt + n) + np + my

< (k4 1)(mp + my) + 2ng°(r)
= (k+1)m+ 2ng°(r).

AN

Since this is true for any sequence C' of length m in a rank forest with n
nodes and maximum rank r, we get the desired bound

f(m,n,r) < (k+ 1)m + 2ng°(r).
O
The shifting lemma makes it possible to take a simple but loose bound for

f(m,n,r) and derive from it a whole sequence of valid bounds. From these
bounds we then choose a particularly good one.

Corollary 6 Let the integer functions Jy with k € IN be defined as
Jo(r) =[(r—1)/2] and Ji(r) = J;_i(r) for k> 0.
Then for each k € IN we have

flm,n,r) < km+ 2nJy(r).

Proof: 1t is easy to show by induction that for each k£ the function Jj is
non-decreasing and it satisfies Ji(r) < r for all » > 0.

Since a node in a rank forest of maximum rank r has at most r ancestors
(one of which is its initial parent) it can get a new parent at most r — 1
times. Therefore

f(m,n,r) <n-(r—1) <2nJy(r)

holds. For k > 0 the stated bound now follows by induction using the
shifting lemma. O

The Ji’s are very slowly growing functions even for small £’s. The reader
may check that Ji(r) < 2 and Ja(r) < 1 for r < 65. Since in a rank forest
with n nodes and of maximum rank r we have r < |log, n| we therefore get
for n < 2% a bound of

f(m,n,r) < min{m + 4n,2m + 2n} .

For general m and n we now want to choose from the infinitely many bounds
provided by the Ji’s one that is particularly good. To this end define

ag(m,n) = min{k € IN|J;(|logy n]) <14 m/n}.
Using the corollary we then get the following:
Theorem 7 For all m,n,r we have f(m,n,r) < (as(m,n) + 2)m + 2n.
Invoking Lemma 1 we immediately get:

Theorem 8 Performing a sequence of UNION-operations and m FIND-
operations on a set of size n using union-by-rank and path compression
requires at most O(n + mag(m,n)) time.

10

The reader may wonder how the function as(m,n) defined here relates
to Tarjan’s initial definition of the inverse Ackermann function ar(m,n). In
analogy to the formalism used in this paper, a7 can be defined as follows:

ar(m,n) = min{k > 1|Ty(|logyn|) < m/n},

where
Ti(r) = |logyr] and Ty(r) =Tp_,(r) for k > 1,
and
“(r) = 0 if r <2 (in contrast to 1 in the definition of g*)
I=N 14¢°(g(r) ifr>2.

One can see that the differences between ag and ar are minor and one can
show that asymptotically they are equivalent.

5 Linking by weight

Besides linking-by-rank the method of linking-by-weight is another standard
strategy in union-find algorithms. Applying our top-down approach to its
analysis is a bit less straightforward than in the case of linking by rank that
we just saw. The main technical issue is to create a setting where some
analogue of Lemma 4 holds.

Let F be a forest and for each node z in F let T, be the subtree rooted
at z, let hy be the height of T, and let w(z) be some positive integer
weight function on the nodes z of F. For each node z define W(z) =
>y node in 7, W(y)- We call F a weight balanced forest iff for every node z
in F with parent y we have W (y) > 2W(z). We call such a forest of type
(s b, W) iff

(i) w(z) > 2* for every leaf z,
(ii) hy < h for each node z,
(111) Zy node in fw(y) < w.

Note that any forest created by linking by weight with 7 initial nodes, each
of weight 1, is a weight balanced forest of type (0, [logyn], n).

Lemma 9 Let F be a weight balanced forest with node set X and node
weightfunction w and let F be of type (u,h, W). Let s be some integer, let

11

X<s be the set of the nodes x with hy < s and let X~ be the set of nodes
with hy > s. Define a new weight function

I() = w(z) if x € X<
R w(z) + Xy e xo, chitd ofz W (1Y) if T € Xss.

The following hold:
(i) (X<s,X>s) is a dissection.

(ii) F(X<s) with weight function w' is a weight balanced forest of type
(1, 8, W).

(i1i) F(Xss) with weight function w' is a weight balanced forest of type
(u+s+1,h—s—1,W).

(iv) | X<s| < | X| <2W/2% and | X54| < QW [2hFsHL,

Proof: Points (i) and (ii) are trivial. Point (iii) follows from the property
W (parent(z)) > 2W(z) and from the fact that the definition of the new
weights w'() implies that for each node z € X; the value W'(z), defined
with respect to F(Xss), coincides with W (z) defined with respect to F.

For point (iv) it suffices to show that the number of nodes in a weight
balanced forest F of type (u, h, W) is less than 2W/2#. For each i € IN let
N; = {z node in F|h, =i} and let W; = >° . W(x). Note that W; < W
for each i. Since for each z € N; we have W (z) > 24*% (a consequence of
the property W (parent(z)) > 2W (z)) we get

|N;| < W, 28T < W j2krte

Summing over all ¢ yields the desired bound on the number of nodes in F.
O

Let f(m,u,h,W) denote the maximum cost for a sequence of m path
compressions in a weight balanced forest of type (u, h, W). Again a shifting
lemma holds:

Lemma 10 Assume there is some k > 0 and some non-decreasing function
function g : IN — IN with g(h) < h for h > 0 so that

flm, p, h, W) < km + 4(W/2")g(h)

holds for all m,u,h,W. Then also the following bound holds for all
m, p, h, W:
flm, p, h, W) < (k + 1)m + 4(W/2*)g°(h) .

12

The proof proceeds in the same way as the proof of Lemma 5, using the
dissection properties described in Lemma 9 instead of the ones described in
Lemma 4, and with A playing the role of 7.

We can now conclude that

flm,p, b, W) < km + 4(W/2")Jy(h)

for every k € IN.

As already noted, in forests as they arise in union-find algorithms with
linking by weight we have w(z) = 1 for each of the n nodes, and hence
u=0,W =n, and h <log,n. Thus we get the following:

Theorem 11 A sequence of m path compressions in a forest of n nodes as
it arises in union-find algorithms with linking by weight has cost at most

(as(m,n) +4)m + 4n.
Again invoking Lemma 1 we immediately get:

Theorem 12 Performing a sequence of UNION-operations and m FIND-
operations on a set of size n using union-by-weight and path compression
requires at most O(n + mag(m,n)) time.

6 Open problems

Can this top-down analysis method be made to work also for variants of
path compression such as path compaction (see [7])? Can this top-down
approach be used to prove lower bounds involving the inverse Ackermann
function?

References

[1] THOMAS H. CORMAN, CHARLES E. LEISERSON, RONALD L. RIVEST,
AND CLIFF STEIN: Introduction to Algorithms. Second Edition,
MIT Press (2001).

[2] GREGORY C. HARFST, EDWARD M. REINGOLD: A Potential-
based Amortized Analysis of the Union-Find Data Structure. ACM
SIGACT News 31(3) September 2000.

[3] JouN E. HOPCROFT, JEFFREY D. ULLMAN: Set Merging Algorithms.
SIAM J. Comput. 2(4): 294-303 (1973).

13

[4] DEXTER C. KOZEN: The Design and Analysis of Algorithms.
Springer Texts and Monographs in Computer Science (1991).

[5] ROBERT E. TARJAN: Efficiency of a Good But Not Linear Set Union
Algorithm. JACM 22(2): 215-225 (1975).

[6] ROBERT E. TARJAN: A Class of Algorithms which Require Nonlinear
Time to Maintain Disjoint Sets. JCSS 18(2): 110-127 (1979).

[7] ROBERT E. TARJAN, JAN VAN LEEUWEN: Worst-case Analysis of Set
Union Algorithms. JACM 31(2): 245-281 (1984).

[8] ROBERT E. TARJAN: Princeton cs423 class notes (1999)
http://www.cs.princeton.edu/courses/archive/spring99/cs423/handouts.html

