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Abstract

We show that the number of unit-area triangles determined by a set of n points
in the plane is O(n9/4+ε), for any ε > 0, improving the recent bound O(n44/19) of
Dumitrescu et al.

1 Introduction

In 1967, A. Oppenheim (see [6]) asked the following question: Given n points in the plane
and A > 0, how many triangles spanned by the points can have area A? By applying an
affine transformation, one may assume A = 1 and count the triangles of unit area. Erdős
and Purdy [5] showed that a

√
log n × (n/

√
log n) section of the integer lattice determines

Ω(n2 log log n) triangles of the same area. They also showed that the maximum number of
such triangles is at most O(n5/2). In 1992, Pach and Sharir [8] improved the bound to O(n7/3),
using the Szemerédi-Trotter theorem [10] on the number of point-line incidences. Recently,
Dumitrescu et al. [4] have further improved the upper bound to O(n44/19) = O(n2.3158), by
estimating the number of incidences between the given points and a 4-parameter family of
quadratic curves.

In this paper we further improve the bound to O(n9/4+ε), for any ε > 0. Our proof
borrows some ideas from [4], but works them into a different approach, which reduces the
problem to bounding the number of incidences between points and certain kind of surfaces
in three dimensions.
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2 Unit-area triangles in the plane

To simplify the notation, we write O∗(f(n)) for an upper bound of the form Cεf(n) · nε,
which holds for any ε > 0, where the constant of proportionality Cε depends on ε.

Our main result is the following result.

Theorem 2.1. The number of unit-area triangles spanned by n points in the plane is

O∗(n9/4).

Proof. We begin by borrowing some notation and preliminary ideas from [4]. Let S be the
given set of n points in the plane. Consider a triangle ∆ = ∆abc spanned by S. We call the
three lines containing the three sides of ∆abc, base lines of ∆, and the three lines parallel to
the base lines and incident to the respective third vertices, top lines of ∆.

For a parameter k, 1 ≤ k ≤ √
n, to be optimized later, call a line ℓ k-rich (resp., k-poor)

if ℓ contains at least k (resp., fewer than k) points of S. Call a triangle ∆abc k-rich if each
of its three top lines is k-rich; otherwise ∆ is k-poor.

We first observe that the number of k-poor unit-area triangles spanned by S is O(n2k).
Indeed, assign a k-poor unit-area triangle ∆abc whose top line through c is k-poor to the
opposite base ab. Then all the triangles assigned to a base ab are such that their third vertex
lies on one of the two lines parallel to ab at distance 2/|ab|, where that line contains fewer
than k points of S. Hence, a base ab can be assigned at most 2k triangles, and the bound
follows.

So far, the analysis follows that of [4]. We now focus the analysis on the set of k-rich
unit-area triangles spanned by S, and use a different approach.

Let L denote the set of k-rich lines, and let Q denote the set of all pairs

{(ℓ, p) | ℓ ∈ L, p ∈ S ∩ ℓ}.

By the Szemerédi-Trotter theorem [10], we have, for any k ≤ √
n, m := |L| = O(n2/k3), and

N := |Q| = O(n2/k2).

A pair (ℓ1, p1), (ℓ2, p2) of elements of Q is said to match if the triangle with vertices p1,
p2, ℓ1 ∩ ℓ2 has area 1; see Figure 1.

To upper bound the number of unit-area triangles, all of whose three top lines are k-rich,
it suffices to bound the number of matching pairs in Q. Indeed, given such a unit-area
triangle ∆p1p2q, let ℓ1 (resp., ℓ2) be the top line of ∆p1p2q through p1 (resp., through p2).
Then (ℓ1, p1) and (ℓ2, p2) form a matching pair in Q, by definition (again, see Figure 1).
Conversely, a matching pair (ℓ1, p1), (ℓ2, p2) determines at most one unit-area triangle p1p2q,
where q is the intersection point of the line through p1 parallel to ℓ2 and the line through p2

parallel to ℓ1; we get an actual triangle if and only if the point q belongs to S.

In other words, our problem is now reduced to that of bounding the number of matching
pairs in Q. (Since we do not enforce the condition that the third point q of the corresponding
triangle belong to S, we most likely over-estimate the true bound.)
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Figure 1: The ordered pair ((ℓ1, p1), (ℓ2, p2)) is a matching pair of elements of Q.

Since elements of Q have three degrees of freedom, we can represent them in an ap-
propriate 3-dimensional parametric space. For example, we can assume that no line in L
is vertical, and parametrize an element (ℓ, p) of Q by the triple (a, b, κ), where (a, b) are
the coordinates of p, and κ is the slope of ℓ. For simplicity of notation, we refer to this
3-dimensional parametric space as R

3.

So far, the matching relationship is symmetric. To simplify the analysis, and with no
loss of generality, we make it assymmetric, by requiring that, in an (ordered) matching pair
(ℓ1, p1), (ℓ2, p2), ~op2 lies counterclockwise to ~op1, where o = ℓ1 ∩ ℓ2. See Figure 1.

Let us express the matching condition algebraically. Let (a, b, κ) ∈ R
3 be the triple

representing a pair (ℓ, p), and (x, y, w) ∈ R
3 be the triple representing another pair (ℓ′, p′).

Clearly, w 6= κ in a matching pair. The lines ℓ and ℓ′ intersect at a point o, for which there
exist real parameters t, s which satisfy

o = (a + t, b + κt) = (x + s, y + ws),

or

t =
y − b − w(x − a)

κ − w

s =
y − b − κ(x − a)

κ − w
.

It is now easy to verify that the condition of matching, with ~op′ lying counterclockwise to
~op, is given by

(

y − b − κ(x − a)

)(

y − b − w(x − a)

)

= 2(w − κ) and w 6= κ,
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or, alternatively,

w =

(

y − b − κ(x − a)

)

(y − b) + 2κ

(

y − b − κ(x − a)

)

(x − a) + 2

and w 6= κ. (1)

Fix an element (ℓ, p) of Q, and associate with it a surface σℓ,p ⊂ R
3, which is the locus

of all pairs (ℓ′, p′) that match (ℓ, p) (i.e., (ℓ, p), (ℓ′, p′) is an ordered matching pair). By the
preceding analysis, σℓ,p satisfies (1), where (a, b, κ) is the parametrization of (ℓ, p), and is
thus a 2-dimensional algebraic surface in R

3 of degree 3. We thus obtain a system Σ of N
2-dimensional algebraic surfaces in R

3, and a set Q of N points in R
3, and our goal is to

bound the number of incidences between Q and Σ.

The main technical step in the analysis is to rule out the possible existence of degeneracies

in the incidence structure, where many points are incident to many surfaces; this might
happen when many points lie on a common curve which is contained in many surfaces (a
situation which might arise, e.g., in the case of planes and points in R

3). However, for the
class of surfaces under consideration, namely, the surfaces σℓ,p generated by some line-point
incidence pair (ℓ, p), such a degeneracy is impossible, as the following lemma shows.

Lemma 2.2. Let (ℓ1, p1) and (ℓ2, p2) be two line-point incidence pairs, let γ = σℓ1,p1
∩ σℓ2,p2

be the intersection curve of their associated surfaces, and assume that γ is non-empty. Let

(ℓ, p) be some incidence pair and assume further that σℓ,p ⊃ γ. Then either (ℓ, p) = (ℓ1, p1)
or (ℓ, p) = (ℓ2, p2).

Proof. We establish the equivalent claim that, given a curve γ, which is the intersection
of some unknown pair of surfaces σℓ1,p1

and σℓ2,p2
, one can reconstruct (ℓ1, p1) and (ℓ2, p2)

uniquely (up to a swap between the two incidence pairs) from γ. Morever, it is enough to
know the projection γ∗ of γ onto the xy-plane in order to uniquely reconstruct the incidence
pairs (ℓ1, p1) and (ℓ2, p2) that generated it.

We start by computing the algebraic representation of γ∗. Let (a1, b1, κ1) and (a2, b2, κ2)
be the respective parametrizations of (ℓ1, p1) and (ℓ2, p2). By (1), γ∗ satisfies the equation

(

y − b1 − κ1(x − a1)

)

(y − b1) + 2κ1

(

y − b1 − κ1(x − a1)

)

(x − a1) + 2

=

(

y − b2 − κ2(x − a2)

)

(y − b2) + 2κ2

(

y − b2 − κ2(x − a2)

)

(x − a2) + 2

. (2)

Recall the additional requirement in (1), namely that w 6= κ1 and w 6= κ2. This requirement
is implicit in (1) and in (2), meaning that equation (2) is defined only for values of x and y
for which the value of w is not any of κ1 or κ2. Consulting (1), this says that (x, y) cannot
satisfy y − b1 = κ1(x − a1) or y − b2 = κ2(x − a2). Put

L1 = y − b1 − κ1(x − a1), and

L2 = y − b2 − κ2(x − a2),
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and write (2) as
L1(y − b1) + 2κ1

L1(x − a1) + 2
=

L2(y − b2) + 2κ2

L2(x − a2) + 2
,

or
(

L1(y − b1) + 2κ1

)(

L2(x − a2) + 2
)

=
(

L2(y − b2) + 2κ2

)(

L1(x − a1) + 2
)

,

which we can rewrite as

L1L2L3 + 2L1L4 − 2L2L5 + 4C = 0,

where

L3 = (b2 − b1)x − (a2 − a1)y + (a2b1 − a1b2),

L4 = y − b1 − κ2(x − a1),

L5 = y − b2 − κ1(x − a2),

C = κ1 − κ2.

We can further simplify the equation by noting that L6 = L1L4 −L2L5 is a linear expression
is x, y. That is,

L6 = Dx + Ey + F,

where

D = 2κ1κ2(a2 − a1) − (κ1 + κ2)(b2 − b1),

E = 2(b2 − b1) − (κ1 + κ2)(a2 − a1),

F = κ1κ2(a
2
1 − a2

2) + (κ1 + κ2)(a2b2 − a1b1) + (b2
1 − b2

2).

We can thus write (2) as

L1L2L3 + 2L6 + 4C = 0, and L1 6= 0, L2 6= 0 (3)

All the expressions L1, L2, . . . , L6 are linear in x and y (see Figure 2 for the different lines
defined by the equations Li = 0, and their relations with (ℓ1, p1) and (ℓ2, p2)), so the equation
(3) of γ∗ is therefore cubic. We have the following two special cases to rule out:

1. If p1 = p2, that is, a1 = a2 and b1 = b2, then L3 = 0, L4 = L2, and L5 = L1. But then
the equation becomes 4C = 0, so it has no solutions, meaning that γ is empty and the
surfaces do not intersect.

2. If ℓ1 = ℓ2 but p1 6= p2, that is, κ1 = κ2 = (b2 − b1)/(a2 − a1), then L1 = L2 = L4 = L5,
L3 = (a1 − a2)L1, and C = 0, resulting in the equation (L1)

3 = 0, which is not allowed
in (3). Hence γ is not defined in this case either.

We can therefore restrict our attention to the general case. Consider the cubic part of the
equation L1L2L3. In this term, each factor can be thought of as a line defined by the equation
Li = 0, for i = 1, 2, 3. The lines L1 = 0 and L2 = 0 respectively are simply ℓ1 and ℓ2, whereas
L3 = 0 defines a third line λ which is the line passing through p1 and p2 (see Figure 2). Note
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Figure 2: The lines Li = 0, for i = 1, . . . , 6.

that λ may coincide with one of the other two lines. Indeed, if p1 happens to be incident
with ℓ2, then λ coincides with ℓ2. Similarly, if p2 ∈ ℓ1 then λ coincides with ℓ1 (these are
the only possible coincidences, since we have assumed that ℓ1 6= ℓ2). These cases will be
handled shortly, and we now consider the general case. In this case, γ∗ has three distinct
asymptotes given by L1 = 0, L2 = 0, and L3 = 0; for a proof of this fact, see Lemma A.2 in
the appendix. Using this fact, one can reconstruct the two line-point pairs that generated
γ∗.

Let us explain the details of the reconstruction process. Suppose we are given a curve γ∗

generated by some unknown two incidence pairs, and we want to reconstruct the incidence
pairs (ℓ1, p1) and (ℓ2, p2) that generated it. γ∗ is given as the zero set of some cubic bivariate
polynomial f(x, y) = 0, where f is of the form f(x, y) = c(L1L2L3 + 2L6 + 4C), but the
decomposition of f into L1, L2, L3, L6, C, and c is unknown. First, we find its three asymp-
totes Λ1 = 0, Λ2 = 0, and Λ3 = 0, where for each i = 1, 2, 3, Λi is linear in x and y. Since,
by Lemma A.2, these asymptotes are L1 = 0, L2 = 0, and L3 = 0, we know that each Λi is
equal to some Lj multiplied by a constant, but we don’t know which is which. To determine
the roles of the asymptotes correctly, observe that Λ1Λ2Λ2 = µL1L2L3 for some constant µ.
Thus, there exists some constant ν, such that f(x, y) − νΛ1Λ2Λ2 = Λ4 is linear in x and y.
The line Λ4 = 0 is parallel to the line L6 = 0, which happens to be the median of the triangle
spanned by the three asymptotes emanating from the vertex o = ℓ1 ∩ ℓ2, and bisecting the
edge p1p2; see Figure 2. We thus have enough information to determine which vertex of the
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triangle is o, and which are p1 and p2, and which edges of the triangle are ℓ1 and ℓ2. This
proves the lemma for the general case where all the points and lines are distinct, and no
point coincides with both lines.

Finally, consider the case where p2 ∈ ℓ1 (a symmetric argument follows when p1 ∈ ℓ2).
In this case, L1 = L5, and L3 = (a1 −a2)L1, so the equation of the curve γ∗ can be rewritten
as

(a1 − a2)L
2
1L2 + 2L1(L4 − L2) + 4C = 0.

Note that a1 6= a2 under the preliminary assumption that there are no vertical lines in
the system, since both p1 = (a1, b2) and p2 = (a2, b2) are on ℓ1. Put s = L4 − L2 =
(b2 − b1) − κ2(a2 − a1). Then

(a1 − a2)L
2
1L2 + 2sL1 + 4C = 0. (4)

This equation defines a curve with two asymptotes given by L1 = 0, and L2 = 0, namely, the
lines ℓ1 and ℓ2; for a proof, see Lemma A.3 in the appendix. In this case, C = κ1 − κ2 6= 0,
for otherwise, ℓ1 and ℓ2 would have to coincide, which we have ruled out earlier. Hence, γ∗

does not intersect L1 = 0, whereas L2 = 0 is intersected at a single point (x, y) for which
L1 = −2C/s. Using this point, one can compute the value of s, and hence, reconstruct the
line L4 = 0. The point p1 is then simply the intersection of the lines L1 = 0 and L4 = 0.
Thus, one can uniquely reconstruct ℓ1, ℓ2, p1, and p2 in this case too. This completes the
proof of Lemma 2.2.

Bounding the number of incidences. Recall that we need to bound the number of
incidences between the set Σ of surfaces σℓ,p, for (ℓ, p) ∈ Q, and the set Q of points. This is
done by following the standard method of Clarkson et al. [3]. The first step in this method is
to derive a simple but weaker bound, usually by extremal graph theory. Then, we strengthen
the bound by cutting the arrangement of the surfaces into cells, and by summing the number
of incidences within each cell, over all the cells.

The first step: A simple bound. Lemma 2.2 implies that the incidence graph between
Σ and Q does not contain K3,10 as a subgraph, or, in other words, no three distinct surfaces
of Σ and ten distinct points of Q can all be incident to one another. Indeed, the intersection
points of three surfaces σℓi,pi

, for i = 1, 2, 3, is equal to the intersection points of the two
curves γ1,2 = σℓ1,p1

∩ σℓ2,p2
, and γ1,3 = σℓ1,p1

∩ σℓ3,p3
. These intersection points project

to (some of) the intersection points of the projections γ∗

1,2 and γ∗

1,3 of, respectively, γ1,2,
and γ1,3 onto the xy-plane. By Lemma 2.2, these two curves are distinct (or empty), so (by
Bezout’s theorem [9]) they intersect in at most nine points. Hence, by the Kővari–Sós–Turán
theorem [7], the number of incidences between Σ and Q can be bounded by

91/3|Σ||Q|2/3 + 2|Q|.

By duality, we get that the number of incidences is also bounded by

91/3|Q||Σ|2/3 + 2|Σ|. (5)
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Cutting. We apply the following fairly standard space decomposition technique. Fix a
parameter r, whose specific value will be chosen later, and construct a (1/r)-cutting Ξ of
A(Σ) [2]. We use the more simple-minded technique in which we choose a random sample
R of O(r log r) surfaces of Σ and construct the vertical decomposition (see e.g. [1]) of the
arrangement A(R). We obtain O∗(r3) relatively open cells of dimensions 0,1,2, and 3, each
of which is crossed by (intersected by, but not contained in) at most |Σ|/r = N/r surfaces;
this latter property holds with high probability, and we simply assume that our sample R
does satisfy it.

Summing over all cells. Fix a cell τ of Ξ, and put Qτ := Q ∩ τ and mτ := |Qτ |. Let Στ

denote the subset of surfaces of Σ which cross τ , and put Nτ := |Στ | ≤ N/r.

We now apply the simple bound obtained in the first step (5) to each cell τ of our cutting
Ξ, handling, for the time being, only surfaces that cross τ . The overall number of incidences
is

∑

τ∈Ξ

O
(

mτN
2/3
τ + Nτ

)

,

which, using the bounds Nτ ≤ N/r, and
∑

τ mτ = N , is

O∗
(

N(N/r)2/3 + Nr2
)

= O∗
(

N5/3/r2/3 + Nr2
)

.

To minimize this expression, we choose r = N1/4, making it O∗(N3/2).

We also have to take into account incidences between points in a cell τ and surfaces that
fully contain τ . This is done separately for cells of dimension 0, 1, and 2 (it is vacuous for
cells of dimension 3). Indeed, a 2-dimensional cell τ is contained in exactly one surface, so
a point w ∈ τ takes part in only one such incidence. Thus, in this case we only need to add
N , the number of points, to the above bound.

The same argument applies for points in 1-dimensional cells. Assuming that the vertical
decomposition is performed in a generic coordinate frame, it suffices to consider only 1-
dimensional cells that are portions of the intersection curves between the surfaces of Σ. By
Lemma 2.2, each such cell τ is contained in exactly two surfaces of Σ. Thus, we need to add
at most 2N to the number of incidences to handle these cells.

Each cell of dimension 0 is a single point w, and, arguing as above, we may assume it
to be a vertex of the undecomposed arrangement A(R). Any surface σ incident to w has
to cross or bound an adjacent full-dimensional cell τ ∗, so we charge the incidence of σ with
w to the pair (τ ∗, σ), and note that such a pair can be charged only O(1) times. It follows
that the number of incidences with 0-dimensional cells of Ξ is O∗(r3 + r3(N/r)) = O∗(r2N),
which is equal to the bound obtained above for the crossing surfaces.

In conclusion, the overall number of incidences between Σ and Q is O∗(N3/2).

Recall now that N = O(n2/k2), and that we also have the bound O(n2k) for the number
of unit-area triangles with at least one k-poor top line. Thus, the overall bound on the
number of unit-area triangles is

O∗

(

n3

k3
+ n2k

)

,
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which, if we choose k = n1/4, becomes O∗(n9/4), as asserted. 2

Discussion Theorem 2.1 constitutes a major improvement over previous bounds, but it
still leaves a substantial gap with the near-quadratic lower bound. One major weakness of
our proof is that, in bounding the number of matching pairs, it ignores the constraint that
a matching pair is relevant only when the (uniquely defined) third vertex of the resulting
triangle belongs to S. It is therefore natural to conjecture that our bound is not tight.
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A Asymptotes of cubic curves

In this appendix, we analyse the class of cubic curves defined by equations (3) and (4) from
Section 2, and derive their asymptotes. We start by analysing a normalized version of these
equations, in which two of the generating lines (and, as we show hence, the asymptotes) are
the x and y axes. We then reduce equation (3) to the normalized case. Finally, we handle
equation (4) in a different and simpler way.

Lemma A.1. Let λ1 and λ2 be two lines in R
2, given by the equations Λi = 0, where

Λi = αix+βiy +γi, for i = 1, 2, such that none of the coefficients is 0. Let Γ be the algebraic

curve defined by the equation

xyΛ1 + Λ2 = 0. (6)

Then, Γ is asymptotic to the x-axis.

Proof. We shall show that for each arbitrarily small δ > 0, there exists a sufficiently large
M > 0, such that for any x > M , there exists some y, such that (x, y) ∈ Γ, and |y| < δ.
Rewrite (6) as

y +
Λ2

xΛ1

= 0,

and put fx(y) = Λ2

xΛ1

, that is, fx is a function at the variable y with x kept constant. It is
easily verified that for D = min{|α1/2β1|, |α2/β2|}, and for any y in the range |y| < Dx, we
have

|fx(y)| <
4|α2x| + 2|γ2|

x(||α1x| − 2|γ1||)
.

By assuming that x > |4γ1/α1|, we have

|fx(y)| <
8|α2x| + 4|γ2|

|α1|x2
,

and by assuming further, that x > |γ2/α2|, we have

|fx(y)| <
12|α2|
|α1|x

.

Finally, by assuming that x > max{|12α2/(α1δ)|, δ/D}, we get that for any |y| ≤ δ, we have
|fx(y)| < δ. But then, δ + fx(δ) > 0, and −δ + fx(−δ) < 0, so, by the intermediate value
theorem, there exists some y ∈ (−δ, δ) for which y + fx(y) = 0, and thus, (x, y) ∈ Γ. To
wrap things up, we have assumed that x is larger than some positive constant, say M , that
depends on α1, β1, γ1, α2, β2, γ2, and δ, and got that for any such x, there is a point (x, y) ∈ Γ
for which |y| < δ. This completes the proof of the lemma.

We are now ready to prove the more general cases discussed in Section 2.

Lemma A.2. Let ℓ1, . . . , ℓ4 be four lines in general position in R
2, given by the equations

Li = 0, where Li = Aix + Biy + Ci, for i = 1, . . . , 4. Let Γ be the algebraic curve defined by

the equation

L1L2L3 + L4 = 0.

Then, Γ is asymptotic to the lines ℓ1, ℓ2, ℓ3.
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Proof. We may assume, by an appropriate change of variables, that one of ℓ1, ℓ2, and ℓ3 is
the x-axis and another one is the y-axis. For example, put u = L1, and v = L2. Then we
can write L3 = α1u + β1v + γ1, and L4 = α2u + β2v + γ2, for some appropriate coefficients
α1, β1, γ1, α2, β2, γ2. Note that, by the general position assumption, none of the coefficients
is 0. Γ can then be written as

uvL3 + L4 = 0

in the (u, v) coordinate system. Note that the choice of ℓ1 and ℓ2 as axes is arbitrary, and
we could just as well choose any other pair of lines in any order. Hence, the claim of the
lemma is an immediate corollary of Lemma A.1.

Lemma A.3. Let ℓ1 and ℓ2 be two intersecting lines in R
2, given by the equations Li = 0,

where Li = Aix + Biy + Ci, for i = 1, 2. Let Γ be the algebraic curve defined by the equation

L2
1L2 + L1 + C = 0,

for some constant C. Then, Γ is asymptotic to the lines ℓ1 and ℓ2.

Proof. If C = 0, then the claim is easy. Indeed, in this case we have L1(L1L2 + 1) = 0, so
Γ is the union of the line L1 = 0 and the hyperbola L1L2 = −1, which is asymptotic to the
lines L1 = 0, and L2 = 0.

If C 6= 0, put u = L1, and v = L2. Then, in the (u, v) coordinate system, Γ is defined by
the equation

u2v + u + C = 0,

which can be rewritten as

v = −u + C

u2
.

Once v has been expressed as a rational function of u, it is easy to see that this function tends
to 0 as u tends to ∞, which means it is asymptotic to the u-axis, i.e., to ℓ2. Furthermore,
the function has a pole at u = 0, meaning it is asymptotic to the v-axis, i.e., to ℓ1.
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