
The Union of Congruent Cubes in Three Dimensions�J�anos Pa
hy Ido Safrutiz Mi
ha SharirxAbstra
tA dihedral (trihedral) wedge is the interse
tion of two (resp. three) half-spa
es in R3. It is
alled �-fat if the angle (resp., solid angle) determined by these half-spa
es is at least � > 0. If,in addition, the sum of the three fa
e angles of a trihedral wedge is at least 
 > 4�=3, then it is
alled (
; �)-substantially fat. We prove that, for any �xed 
 > 4�=3; � > 0, the 
ombinatorial
omplexity of the union of n (a) �-fat dihedral wedges, (b) (
; �)-substantially fat trihedralwedges is at most O(n2+"), for any " > 0, where the 
onstants of proportionality depend on ",� (and 
). We obtain as a 
orollary that the same upper bound holds for the 
ombinatorial
omplexity of the union of n (nearly) 
ongruent 
ubes in R3. These bounds are not far frombeing optimal.1 Introdu
tionThe 
ombinatorial 
omplexity (or, simply, 
omplexity) of a polyhedral set is the total number of itsfa
es of all dimensions. To obtain an upper bound on the 
omplexity of a polyhedral set in R3,by Euler's Polyhedral Formula, it is suÆ
ient to bound the number of its verti
es. The problem ofbounding the 
ombinatorial 
omplexity of the union of various geometri
 obje
ts has a long history.It is partly motivated by questions in robot motion planning and manufa
turing. Spe
i�
ally, letA1; : : : ; An be n pairwise disjoint 
onvex obje
ts (`obsta
les'), and let B be another 
onvex body(`robot'), free to translate amid the obsta
les and 
onstrained not to interse
t any of them. Thespa
e of all 
ollision-free translations of B (at whi
h it does not interse
t any obsta
le) is the
omplement of Sni=1Ai� (�B), where Ki = Ai� (�B) = fx� y j x 2 Ai; y 2 Bg is the Minkowskisum of the two obje
ts Ai and �B. Hen
e, the problem of 
omputing the spa
e of all free positionsof B redu
es to that of 
omputing the union of these Minkowski sums. The �rst task towards thedesign of an eÆ
ient algorithm for this problem is to obtain a sharp bound on the 
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In the plane, the 
omplexity of the union of Minkowski sums was shown to be linear by Kedemet al. [11℄. In R3, we know the following. (i) If the Ai's and B are 
onvex polyhedra, then the
omplexity of the union is O(Nn logn), where N denotes the overall 
omplexity of the Minkowskisums Ki [3℄; see also [4℄. (ii) If the Ai's are 
onvex polyhedra 
onsisting of a total of n fa
es, andB is a ball, then the 
omplexity of the union is O(n2+"), for any " > 0 [1℄. In other words, allknown results 
on
erning unions of Minkowski sums yield linear upper bounds in the plane andnear-quadrati
 upper bounds in 3-spa
e.The above results 
annot be extended to the union of general 
onvex obje
ts without imposingany further restri
tion on their shapes or relative position. Indeed, it is easy to see that the unionof n triangles in the plane (tetrahedra in 3-spa
e) 
an have quadrati
 (resp., 
ubi
) 
omplexity.Sin
e all 
onstru
tions realizing these bounds use very `thin' obje
ts, it is a natural question to askwhat happens if we restri
t our attention to unions of `fat' 
onvex polytopes. For bounded obje
ts,fatness means that the ratio between the 
ir
umradius and the inradius of any input obje
t isbounded by a �xed 
onstant. For unbounded obje
ts, another de�nition is needed|see De�nition1.1 below.The 
ase of planar fat obje
ts has been studied extensively in [2, 7, 8, 9, 10, 13, 14℄. It wasshown that the 
omplexity of the union of n fat triangles is O(n log log n) [13, 14℄ and that of nfat wedges is O(n) [2, 9℄. For general 
onvex fat obje
ts of `
onstant des
ription 
omplexity', the
ombinatorial 
omplexity of the union is O(n1+"), for any " > 0 [10℄ (see also [7, 8℄ for slightimprovements and extensions).In 
ontrast, in three and higher dimensions, very few non-trivial bounds are known. It is an easy
onsequen
e of the Upper Bound Theorem for 
onvex polytopes that the 
ombinatorial 
omplexityof the union of n balls in Rd is O(ndd=2e). Asymptoti
ally the same upper bound is known for the
omplexity of the union of n axis-parallel hyper
ubes [5℄, whi
h 
an be improved to O(nbd=2
) whenall 
ubes have the same size.In spite of many e�orts, even in three dimensions no non-trivial (i.e., sub
ubi
) upper boundwas known for the 
omplexity of the union of n 
ongruent 
ubes, not ne
essarily in parallel position.The aim of this paper is to establish a nearly quadrati
 upper bound on this quantity. A
tually,we will prove a more general result. For this we need some preparation.De�nition 1.1 The interse
tion of two (three) half-spa
es is 
alled a dihedral (resp. trihedral)wedge. The boundary of a dihedral wedge 
onsists of a straight line edge and two half-planes.The boundary of a trihedral wedge 
onsists of a vertex (apex), three edges and three fa
es that arehalf-lines and 2-dimensional wedges, respe
tively.For any � > 0, a dihedral (trihedral) wedge is 
alled �-fat if its dihedral angle (resp., solidangle) is at least �. For any 
 > 4�=3, an �-fat trihedral wedge is said to be (
; �)-substantiallyfat, if the sum of the angles of its three fa
es is at least 
 > 4�=3.Note that a right-angle o
tant, obtained by taking the interse
tion of three half-spa
es boundedby mutually orthogonal planes, is (3�=2; �=2)-substantially fat. However, a trihedral wedge de�nedby three planes supporting di�erent fa
es of a regular tetrahedron is not (
; �)-fat for any 
 > 4�=3,be
ause the angles of its fa
es are too small. The requirement that 
 > 4�=3 is te
hni
al, made inorder to fa
ilitate our proof.All families studied in this paper 
onsist of n 
onvex polyhedral obje
ts in R3, ea
h having a
onstant number of verti
es, edges, and fa
es. As we pointed out earlier, to give an upper bound forthe 
ombinatorial 
omplexity of the union of su
h families, it is suÆ
ient to bound the number of2



verti
es of the union. Su
h a vertex is either a vertex of an input polyhedron, or it 
an be obtainedas the interse
tion of an edge of a polyhedron with a fa
e of another, or it is the interse
tion pointof three fa
es belonging to three distin
t polyhedra. Clearly, the number of verti
es of the �rst twotypes is O(n2), so the main task is to estimate the number of verti
es of the third type.We prove the following three results. In all of them, the 
onstants of proportionality hidden inthe O-notation depend on the relevant �xed parameters (", �, 
, �).Theorem 1.2 For any �; " > 0; the 
ombinatorial 
omplexity of the union of n �-fat dihedralwedges in 3-spa
e is O(n2+").Theorem 1.3 For any 
 > 4�=3; �; " > 0; the 
ombinatorial 
omplexity of the union of n (
; �)-substantially fat trihedral wedges in 3-spa
e is O(n2+").In Se
tion 5, we apply Theorem 1.3 to dedu
eTheorem 1.4 Let � > 1; " > 0. The 
ombinatorial 
omplexity of the union of any family of n
ubes in 3-spa
e, whose edge lengths di�er only by a fa
tor of at most �, is O(n2+").All of these results are nearly tight in the worst 
ase. That is, an 
(n2) lower bound 
an easily beestablished in ea
h of these 
ases.An important new tool in our analysis is the 
on
ept of spe
ial 
ubes.De�nition 1.5 Given a family P of 
onvex polyhedra in 3-spa
e, a spe
ial 
ube C (with respe
t toP) is the interse
tion of three members of P su
h that (i) C is disjoint from every other memberof the family, and (ii) C has the 
ombinatorial stru
ture of a 
ube, with ea
h of the three polyhedra
ontributing two opposite fa
es to C.Cubes that satisfy only 
ondition (ii) are referred to as quasi-spe
ial 
ubes. The level of aquasi-spe
ial 
ube C is the number of members of P that interse
t C, other than the three memberswhose interse
tion equals to C.This notion is related to the 
on
ept of spe
ial quadrilaterals used in [3, 4℄. The signi�
an
e ofspe
ial 
ubes, whi
h extends beyond the appli
ations given in this paper, is shown by the followingtheorem, whose somewhat te
hni
al proof is postponed to Se
tion 7.Theorem 1.6 Let P be a family of n 
onvex polyhedra in 3-spa
e, ea
h having at most some
onstant number of fa
es. Suppose that the number of spe
ial 
ubes determined by any m membersof P is O(m
), for some 
 > 2. Then the number of verti
es on the boundary of the union of P isO(n
).Here is a brief overview of the approa
h we follow. Consider a family of fat dihedral wedges.First, we `deform' the wedges to new `
anoni
al' wedges, without losing more than quadrati
allymany spe
ial 
ubes in the pro
ess. We redu
e the problem to the 
ase when there exists a plane Pinterse
ting every (3-dimensional) wedge in a fat 2-dimensional wedge, whose bounding rays belongto a �xed set of 
onstantly many `
anoni
al' dire
tions. In this way, we obtain a 
onstant numberof families, ea
h 
onsisting of wedges with isotheti
 
ross se
tions (i.e., whose 
ross se
tions aretranslates of ea
h other, lying in planes parallel to P ), and it suÆ
es to bound the 
omplexity of3



the union of at most three su
h families. This is done in Se
tion 3, by �rst handling the (trivial)
ase of a single family, then passing to the 
ase of two families, and �nally ta
kling the general 
ase.For trihedral wedges, the analysis is more elaborate, sin
e our 
urrent ma
hinery works onlywhen, for any vertex v of the union, there exists a (
anoni
al) plane P , so that all three wedgesin
ident to v interse
t P in unbounded regions. The reason for this is quite te
hni
al, and itoriginates in the method developed in [13, 14℄ for studying the 
ase of fat triangles in the plane.This is why we 
an handle only trihedral wedges that are substantially fat (with the sum of theirfa
e angles being greater than 4�=3). Even with this assumption, the 
anonization pro
ess is moreinvolved than for dihedral wedges. We eventually manage to transform ea
h trihedral wedge to anew 
anoni
al wedge, all of whose 
ross se
tions by planes of some 
anoni
al dire
tion are eitherempty or isotheti
 to some 
anoni
al 2-dimensional wedge. This allows us to apply the argumentsused for dihedral wedges, with only minor modi�
ations.The 
ase of nearly equal 
ubes is an easy 
onsequen
e of the result for substantially fat trihedralwedges, spe
ialized to right-angle o
tants. More spe
i�
ally, we lay a grid whose size is slightlysmaller than that of the 
ubes, 
onsider the union within ea
h 
ell of the grid separately, repla
eea
h 
ube whose boundary 
rosses su
h a 
ell by an o
tant, and apply the bound on the 
omplexityof the union of su
h o
tants.We also 
onsider the algorithmi
 problem of eÆ
ient 
onstru
tion of the union of a family of, say,n nearly equal 
ubes. Using the algorithm of Aronov et al. [4℄, together with our new 
ombinatorialbounds, we obtain a randomized algorithm that 
omputes the union in expe
ted time O(n2+").Three interesting problems remain unsolved: In the �rst two, we wish to obtain near-quadrati
upper bounds for the 
ombinatorial 
omplexity of the union of (1) any 
olle
tion of n 
ubes (ofwildly di�erent sizes), and (2) any 
olle
tion of n �-fat (rather than substantially fat) trihedralwedges in 3-spa
e. (3) Is there a superquadrati
 lower bound for any of the fun
tions dis
ussedabove? As noted above, quadrati
 lower bounds are known for ea
h of them. We expe
t thatpositive answers to (1) and (2) will lead to a near-quadrati
 bound on the 
omplexity of the unionof any family of fat 
onvex polytopes in 3-spa
e.2 Canonization of Dihedral WedgesLet W be a family of n �-fat dihedral wedges in 3-spa
e. Let UW denote the union of W, and letA(W) denote the arrangement of the (fa
es bounding the) wedges in W.For a 
onstant parameter �, let D(�) be a set of O(1) dire
tions (points on the unit sphere)su
h that any spheri
al 
ap of radius larger than � 
ontains a dire
tion d 2 D(�).The following lemma holds for all triples of (not ne
essarily fat) wedges.Lemma 2.1 There exists an absolute 
onstant � > 0 su
h that for any three dihedral wedgesw1; w2; w3, there exists a dire
tion d 2 D(�) su
h that jhd; ewiij � 14 , for i = 1; 2; 3, where ewidenotes the unit ve
tor in the dire
tion of the edge ewi of wi.Proof: Consider the set of dire
tions d su
h that jhd; uij � 14 for a �xed dire
tion u. This set is aband of width � � 2 ar

os(1=4) 
entered at the great 
ir
le orthogonal to u. The area of su
h aband is 4� � (1=4) = �. Hen
e, the area of the set of dire
tions d where the asserted 
ondition ond is not satis�ed is at most 3�. Thus, the 
omplement set of `good' dire
tions is of area at least�. Sin
e the union of three su
h bands (ea
h around a great 
ir
le) has at most eight holes, there4



exists at least one hole of area larger than �8 . Sin
e any su
h hole is bounded by at most a 
onstantnumber of 
ir
ular ar
s, the 
laim readily follows. 2Lemma 2.2 Let Pd be a plane orthogonal to a dire
tion d satisfying the 
onditions in the previouslemma. If w1; w2; w3 are all �-fat then the three planar wedges wi \ Pd, for i = 1; 2; 3, are all(�=4)-fat.Proof: Let w be one of these wedges. It is a routine exer
ise in stereometry to show that theangle of the 
ross-se
tional wedge w \ Pd is minimized when the bise
tor plane of w is orthogonalto Pd. Assume that w does indeed attain this minimum. Let �0 denote the angle of w \ Pd. Lete0 denote the orthogonal proje
tion of ew onto Pd. Let 
 denote the angle between ew and e0; notethat sin
 = hew; di. Denote by A the point ew \ Pd; let B be a point on e0 at distan
e 1 from A,let C be the foot of the perpendi
ular from B onto ew, and let D;E be the points of interse
tionbetween �w and the line within Pd passing through B and orthogonal to e0; see Figure 1.We have BC = sin
, BD = BC tan(�=2) = sin
 � tan(�=2), and thus tan(�0=2) = sin
 �tan(�=2), or �0 = 2ar
tan(sin 
 � tan(�=2)). We 
laim that ar
tan(�x) � � ar
tan x for any x � 0and � � 1. Indeed, the fun
tion f(x) = ar
tan(�x)� � ar
tan x vanishes at 0, and its derivative isf 0(x) = �1 + �2x2 � �1 + x2 � 0;from whi
h the pre
eding inequality follows. We thus obtain�0 � 2 sin
 � �=2 = � sin
 = �hew; di � �=4:This 
ompletes the proof of the lemma. 2
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Figure 1: The setup in the proof of Lemma 2.2.A dire
tion satisfying the properties of Lemma 2.1 (and of Lemma 2.2) is 
alled a good dire
tionfor the triple w1; w2; w3 2 W.For ea
h d 2 D, let Wd � W denote the subfamily 
onsisting of all members of W that 
rossthe planes orthogonal to d in (�=4)-fat 2-dimensional wedges, i.e., in angles of size at least �=4.For simpli
ity, we refer to these planes as horizontal. Constru
t on a horizontal unit 
ir
le O(1=�)pairwise disjoint `
anoni
al' ar
s, ea
h of length 
(�) (say, �=16), so that (i) ea
h horizontal line5



through the origin meets at most one of these ar
s, and (ii) ea
h ar
 of length at least �=4 on theunit 
ir
le fully 
ontains at least one of these ar
s.For ea
h wedge w 2 Wd, rotate its fa
es inwards about its edge (whi
h remains �xed) untilthe dire
tions of their horizontal 
ross se
tions 
oin
ide with the endpoints of one of these ar
s.Let W 0d denote the resulting 
olle
tion of wedges. By this pro
ess, we de
ompose W 0d into O(1=�)
anoni
al subfamilies so that the horizontal 
ross se
tions of any two wedges belonging to the samesubfamily are isotheti
.The proof of the following lemma, whi
h justi�es the 
anonization pro
ess, hinges on the fa
tthat the edges of the given wedges are not moved during the deformation.Lemma 2.3 The number of spe
ial 
ubes for Wd is smaller than or equal to the number of spe
ial
ubes for W 0d.Proof: Let C be a spe
ial 
ube forWd, formed by the interse
tion of three wedges w1; w2; w3 2 Wd.Let w0i denote the 
anoni
al image of wi, for i = 1; 2; 3. Put C 0 = w0i\w02\w03. We 
laim that afterthe 
anonization, C 0 remains a (nonempty) spe
ial 
ube (for W 0d). This is shown as follows.(i) The 
anonization pro
ess ensures that w0 � w for any w 2 W, from whi
h it follows thatC 0 � w1 \w2 \w3 = C. Moreover, sin
e C, being a spe
ial 
ube, is disjoint from all other wedges,it follows that the same holds for C 0.(ii) Let h1; h2; h3 be three half-planes su
h that hi is bounded by ewi and lies fully in wi, fori = 1; 2; 3. The interse
tion point v = h1 \ h2 \ h3 lies in C, by 
onstru
tion. Sin
e the new fa
esof ea
h wedge are both half-planes of this kind, this implies that during the 
anonization pro
ess,ea
h spe
ial 
ube shrinks but does not disappear (C 0 6= ;).(iii) The boundary �C 0 does not meet any of the edges of the wi's, be
ause C does not meet themand they do not move during the 
anonization pro
ess. Thus, C 0 must have the 
ombinatorialstru
ture of a 
ube and the two fa
es bounding ea
h wedge wi 
ontribute opposite fa
es to C 0. 2Theorem 2.4 The number of spe
ial 
ubes for W 0d is O(n2+"), for any " > 0.Combined with Lemma 2.3, this theorem implies that the number of spe
ial 
ubes for Wd is alsoO(n2+"). This, 
ombined with Theorem 1.6, implies that the 
omplexity of the union of Wd isO(n2+"), for any " > 0. Finally, sin
e ea
h vertex v 2 UW is also a vertex of UWd , for some
anoni
al d, it follows that the 
omplexity of the union of W is also O(n2+"), for any " > 0, thusestablishing Theorem 1.2.3 The Complexity of the Union of Fat Dihedral WedgesThe aim of this se
tion is to prove Theorem 2.4. As we have argued above, it is suÆ
ient to boundthe number of spe
ial 
ubes determined by at most three 
anoni
al subfamilies of W 0d.The union of one 
anoni
al family. In this 
ase, it is easy to see that a single 
anoni
al familyadmits no spe
ial 
ubes. Indeed, let C be the interse
tion of three wedges from the same subfamilyof W 0d. Then any interse
tion of C with a plane orthogonal to d is unbounded, whi
h is impossiblefor a spe
ial 
ube. 6



The union of two 
anoni
al families. Let R and B be two 
anoni
al subfamilies of W 0d. Werefer to their wedges as red and blue, respe
tively.Theorem 3.1 The number of spe
ial 
ubes in the union of two 
anoni
al subfamilies of n �-fatdihedral wedges in W 0d is O(n2�(n)), where �(�) is the inverse A
kermann fun
tion.Proof: We refer to the a
tual wedges as 3-wedges (not to be 
onfused with trihedral wedges), andto their horizontal 
ross se
tions as 2-wedges (as above, d is assumed to be the dire
tion of the z-axis). We also assume that the red 2-wedges point to the right (in the horizontal planes 
ontainingthem, so that the apex of a red 2-wedge is its rightmost point and its symmetry axis is parallel tothe x-axis) and that the blue 2-wedges point upwards (the apex of a blue 2-wedge has maximumy-
oordinate and its symmetry axis is parallel to the y-axis). We will thus refer to the two edgesof a red 2-wedge (and to the 
orresponding fa
es of the 3-wedge) as the `top' and `bottom' edges(and fa
es) and similarly use `left' and `right' for the blue wedges; 
f. Figure 2 for an illustration.It suÆ
es to estimate the number of red-red-blue spe
ial 
ubes of the union (i.e., 
ubes formedby two red wedges and one blue wedge).We will regard the z-axis as the `time-axis' and regard the 2-wedges as translating in the xy-plane at 
onstant (though possibly di�erent) velo
ities. The verti
es (of the third kind; see theremark before Theorem 1.2) of the union then be
ome 
riti
al events, at whi
h three edges boundingthe moving 2-wedges be
ome 
on
urrent.Let C be a spe
ial 
ube formed by the interse
tion of two red wedges r; r0; and of one blue wedgeb. Thus, C has six fa
es: ea
h of r; r0; b 
ontributes one pair of opposite fa
es to its boundary. Fourfa
es of C are red, and are arranged in a 
y
le. As is easily veri�ed, up to the possible permutationof r and r0, the 
y
le has the form (top fa
e of r, top fa
e of r0, bottom fa
e of r, bottom fa
eof r0). In other words, the 
ube has an edge where the two top fa
es of r and r0 meet. The twoendpoints of this edge are verti
es of C that are also verti
es of the union. We refer to them asspe
ial verti
es.Let v1; v2 be two spe
ial red-red-blue verti
es, so that v1 is top-top-right, v2 is top-top-left, andboth are verti
es of the same spe
ial 
ube (and are the endpoints of a 
ommon edge of that 
ube).Then v1; v2 lie on the top boundaries e; e0 of two red 2-wedges r; r0 (whi
h are overlapping) and onthe right and left boundaries f1; f2 of a blue 2-wedge b. We 
lassify the blue 2-wedges as being`short' or `long', where b is short if the portion of f1 between its apex u and v1 does not meet anyred 2-wedge, and is long otherwise.We �rst bound the number of spe
ial red-red-blue 
ubes, for whi
h the 
orresponding blue 2-wedge b is short. We use a 2-dimensional 
oordinate frame Ff1 to represent points on f1 by (t; �),where t is the time and � is the distan
e along f1 from its apex u. Ea
h red 2-wedge r shows upin Ff1 as a (portion of a) wedge | its top and bottom edges tra
e straight-line segments in Ff1 ,where the tra
e of the top (resp., bottom) edge of r is the bottom (resp., top) segment of the tra
edwedge in Ff1 . In general, verti
es of the union of the 3-wedges along f1 appear as verti
es of theboundary of the union of these representing wedges in Ff1 . However, when b is short, the vertexv1 under 
onsideration is a vertex of the lower envelope of the tra
ed wedges in Ff1 . Thus, thenumber of su
h verti
es is O(n�(n)) (see, e.g., [15℄). Summing over all blue 2-wedges, we 
on
ludethat the number of (not ne
essarily spe
ial) top-top-right verti
es for whi
h the blue 2-wedge isshort is O(n2�(n)).Suppose next that v1; v2 are two spe
ial verti
es, as above, for whi
h the 
orresponding blue2-wedge b is long. Suppose, with no loss of generality, that at the time when these verti
es appear,7



r is 
ontained in r0. Put e1 = f1 \ r and e2 = f2 \ r. Sin
e v1 and v2 lie on a spe
ial 
ube, e1 ande2 are segments that lie on fa
es of that 
ube, and hen
e, by de�nition, they do not meet any otherred or blue 2-wedge. Thus, the respe
tive lower endpoints w1; w2 of e1; e2 lie only in the interior ofr0 (and on the boundaries of r and b) but are outside all other red and blue wedges. See Figure 2.
b b’’

r’’

r’

r

b’

w

e1

w1
2

e2

Figure 2: The 
ross se
tion of a two-
olored spe
ial 
ube, at the time when the top edges of r; r0overlap. The bottom verti
es w1; w2 lie inside r0 only and on the boundaries of r and b.We now apply the analysis of Matou�sek et al. [13℄, developed for studying the 
omplexity of theunion of fat planar triangles (see also [14℄). Let p denote the apex of r and let q be the leftmostpoint on the top edge e of r that does not lie in the interior of any other red 2-wedge (sin
e thered 2-wedges are homotheti
, q is uniquely de�ned). Let � denote the ray emanating from q to theright in the dire
tion of the bottom edges of the red 2-wedges. It is easily veri�ed that the apexof any blue 2-wedge b whi
h is long with respe
t to r must lie above �; see Figure 3. Considerthe 
olle
tion of long blue 2-wedges that form spe
ial verti
es along e. Then, by the pre
edingobservation, the segments of interse
tion of these blue 2-wedges with the bottom edge of r arepairwise disjoint. It now follows from the analysis of [13, Lemma 3.5℄ and from its improvementin [14, Lemma 2.5℄ that the number of su
h 2-wedges is O( 1� log 1�). Sin
e the number of overlapsbetween top edges of red 2-wedges is O(n2), we 
on
lude that the number of red-red-blue spe
ial
ubes for whi
h the 
orresponding blue 2-wedge is long is O(n2� log 1�). This 
ompletes the proof ofTheorem 3.1. 2Note that Theorem 3.1, in 
ombination with Theorem 1.6, implies that the 
ombinatorial 
om-plexity of the union of two 
anoni
al families of n �-fat dihedral wedges in W 0d is O(n2+"), for any" > 0. This fa
t is used in the next stage of the analysis.The union of three 
anoni
al families. Let R;G;B � W 0d be three 
anoni
al subfamilies of�-fat dihedral wedges, and refer to their members as red, green and blue, respe
tively. Our goal isto bound the number of spe
ial 
ubes of R [ B [ G, formed by the interse
tion of a red wedge, ablue wedge and a green wedge.De�nition 3.2 (a) For any r 2 R; b 2 B; we say that r is semi-free within b (with respe
t toR [ B), if ea
h of the two sides of r 
ontain a point (a `semi-free point') that lies inside b and8
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Figure 3: No red 2-wedge above r 
an have a point below �, the dashed ray amanating from q tothe right. Thus, the apex of any long blue wedge with respe
t to r lies above �.outside all other red and blue 2-wedges. (b) We say that r is initial for b (with respe
t to R[B), ifthere is a side of b that no other red 2-wedge interse
ts between the apex of b and r. (See Figure 4.)
r1r2

b1 b2
Figure 4: r2 is initial for b2, whereas r1 is not. Ea
h red wedge is semi-free within every blue wedge,and vi
e versa.Arguing as in the 2-family 
ase and as in [13℄, we obtain:Lemma 3.3 There exists a 
onstant 
 = O( 1� log 1�) with the property that for every red 2-wedger and any �xed time t, the number of blue 2-wedges b for whi
h r is semi-free within b and r isnot initial for b at time t, is at most 
. Similar properties hold for all other kinds of (ordered)bi
hromati
 pairs of wedges.Proof: For a red 2-wedge r, let B denote the 
olle
tion of all blue 2-wedges b su
h that r is semi-free within b and r is not initial for b. Order the elements of B in the order of their 
ontainment ofsemi-free points along the upper or lower ray of r (this order is 
learly well de�ned). Let B0 be thesubsequen
e of B 
onsisting of every other element. For ea
h 2-wedge b in B0, r is not initial forb and b \ �r 
onsists of two segments that do not meet any other 2-wedge of B0. Indeed, if one ofthese segments interse
ts another blue 2-wedge b0 in B0 then, as is easily veri�ed, no intermediateelement b00 of B 
an have any free point on the same ray of r, 
ontrary to assumption (see Figure 5).Let e+r denote the edge of r that is 
loser to the apex of b, and let e�r be the other edge. Letr0 be the �rst red 2-wedge en
ountered when traversing e+r from the apex of r. Consider the three9
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Figure 5: Sin
e r is semi-free within b, the two blue neighbors b0; b00 
annot overlap along �r.lines that 
ontain e�r0 , e+r , and e�r , respe
tively. Ea
h b 2 B0 
rosses the se
ond line between theapex of r and the interse
tion vertex e+r \e�r0 , and no two elements of B0 interse
t ea
h other withinthe slab formed between the �rst and third lines. Hen
e, arguing as in the 
ase of two 
anoni
alfamilies, we have jB0j = O( 1� log 1�). Sin
e jBj � 2jB0j+ 1, we have that jBj = O( 1� log 1�) as well.2De�nition 3.4 An ordered pair (r; b) of 2-wedges is 
alled exposed at time t, if at least one ofthe following two 
onditions is satis�ed (with respe
t to the union of the two respe
tive 
anoni
alsubfamilies): (i) b is initial for r, or (ii) r is semi-free within b and r is not initial for b.Clearly, Lemma 3.3 implies that for any 2-wedge r 2 R, the number of exposed pairs (r; b), forb 2 B, at any �xed t, is at most 
+ 1.As t varies, a pair (r; b) may start or stop being exposed. It follows from the analysis of the2-family 
ase that the number of events at whi
h, say, a blue 2-wedge, b, starts or stops beinginitial for some red 2-wedge, r, is O(n2�(n)). Indeed, this event 
orresponds to a vertex of thelower envelope of blue wedges in the appropriate 2-dimensional frame atta
hed to one of the rededges.Consider an event at whi
h a red 2-wedge r starts or stops being semi-free within a blue 2-wedgeb. It is easily 
he
ked that at su
h an event three sides of red and blue 2-wedges be
ome 
on
urrentat a vertex that is 
ontained only in (the interior of) b. Clarkson-Shor's te
hnique [6℄, 
ombinedwith the statement at the end of the analysis of the 2-family sub
ase, implies that the number ofsu
h events is O(n2+"), for any " > 0. Let T denote the sorted list of all 
riti
al times at whi
h theoverall set of exposed pairs, with respe
t to all possible pairs of families, 
hanges. As just argued,we have jT j = O(n2+"), for any " > 0.We now return to the analysis of `tri
olored' spe
ial 
ubes. Let r 2 R, b 2 B; and g 2 G bethree 3-wedges that form su
h a 
ube C = r \ b \ g. Denote the 
ross se
tion of C at time t byC(t). Ex
luding times at whi
h verti
es of C o

ur, C(t) is a 
onvex polygon with at most 6 sides,so that ea
h side is a portion of an edge of one of these 2-wedges, and no two su

essive sides ofC(t) belong to the boundary of the same 2-wedge. It is easily veri�ed that if we sweep a planethrough any 
onvex polytope with the 
ombinatorial stru
ture of a 
ube, so that the plane is notparallel to any of its fa
ets, then there always exists a 
ross se
tion whi
h is either a pentagon or10



a hexagon. (Su
h a 
ross se
tion arises when the plane has three verti
es of the polytope on oneside and �ve on the other.)Let C(t0) be a 
ross se
tion of our 
ube whi
h is either a pentagon or a hexagon. Then at leasttwo of the 2-wedges, say r and b, 
ontribute two sides to �C(t0).Lemma 3.5 For ea
h unordered pair w;w0 in fr; b; gg, either (w;w0) or (w0; w) is exposed at timet0.Proof: If r 
ontributes two sides to �C(t0) then r is semi-free both within b and within g (withrespe
t to 
orresponding bi
hromati
 
olle
tion of 2-wedges). If r is not initial for b then, byde�nition, (r; b) is exposed, and if r is initial for b then (b; r) is exposed. The 
laim thus holds forfr; bg and, arguing similarly, for fr; gg. The 
ase of fb; gg follows from the fa
t that either b or galso 
ontributes two sides to �C(t0). 2We now apply a te
hnique similar to that used in [12℄. The list T of 
riti
al times partitions thetime-axis into O(n2+") atomi
 intervals. Let C = r \ b \ g be a tri
olored spe
ial 
ube, as above,and let I be some atomi
 interval 
ontaining a time t0 where the property of Lemma 3.5 holds forC. That is, for ea
h of the unordered pairs fr; bg, fr; gg, fb; gg, (at least) one of its ordered pairsis exposed over I. Hen
e, up to a permutation of the 2-wedges r; b; g, either(a) (r; b) and (r; g) are exposed, or(b) (r; b), (b; g) and (g; r) are exposed.We �rst estimate the number of spe
ial 
ubes of type (a). Fix a red 2-wedge r0, and let Tr0 denotethe sublist of 
riti
al times at whi
h some bi
hromati
 pair (r0; w) starts or stops being exposed.The following pro
edure 
omputes a superset of all spe
ial 
ubes of the form r0 \ b \ g thatsatisfy the 
ondition in (a). Iterate over the list Tr0 . For ea
h time t in that list, at whi
h a pair(r0; b0), for some b0 2 B, be
omes exposed, output all triples (r0; b0; g), for g 2 G, for whi
h (r0; g)is 
urrently exposed (there are at most 
 + 1 su
h triples). Apply a symmetri
 step when a pair(r0; g0), for g0 2 G, be
omes exposed. It is easy to see that every spe
ial 
ube r0\b\g that satis�esthe 
ondition in (a) will be output by this pro
edure, and that the total output size is at most(
+1)jTr0 j. This is easily seen to imply that the number of tri
olored spe
ial 
ubes that satisfy (a)is O(n2+").Consider next spe
ial 
ubes of type (b). The following pro
edure 
omputes a superset of those
ubes. Iterate over the list T . For ea
h time t in that list, at whi
h a pair (r; b), for r 2 R, b 2 B,be
omes exposed, output all triples (r; b; g), for g 2 G, for whi
h (b; g) is 
urrently exposed (thereare at most 
 + 1 su
h triples). Apply an appropriately symmetri
 step when any other type ofbi
hromati
 ordered pair be
omes exposed at t. It is easy to see that every spe
ial 
ube r \ b \ gthat satis�es the 
ondition in (b) will be output by this pro
edure, and that the total output sizeis at most (
+ 1)jT j = O(n2+").This shows that the overall number of tri
olored spe
ial 
ubes is O(n2+"), from whi
h Theo-rems 2.4 and 1.2 follow.4 The Union of Substantially Fat Trihedral WedgesWe next extend the analysis given in the pre
eding se
tion to the 
ase of (
; �)-substantially fattrihedral wedges. Substantial fatness is required to ensure the following property:11



Lemma 4.1 There exists a 
anoni
al set D of O(1) dire
tions on the unit sphere with the followingproperty. Let w1; w2; w3 be three (
; �)-substantially fat trihedral wedges, for 
 > 4�=3. Then thereexists d 2 D su
h that, for any plane � orthogonal to d and for ea
h i = 1; 2; 3, the 
ross se
tion� \ wi is unbounded (any su
h se
tion is either a 2-wedge or a trun
ated 2-wedge), and the anglebetween its bounding rays is at least �0, for some 
onstant �0 that depends on � and 
.Proof: Let w be a trihedral wedge whose edges emanate from its apex in dire
tions a; b; 
. Adire
tion d has the property that any plane orthogonal to d 
rosses w in an unbounded region ifand only if the signs of the s
alar produ
ts ha; di, hb; di, h
; di, are not all equal; (1)see Figure 7(a).Moreover, arguing as in the proof of Lemma 2.1, the angle between the two rays, bounding anyinterse
tion of w with a plane orthogonal to d, will be fat if the following holds:min fjha; dij; jhb; dij; jh
; dijg � Æ; (2)for some �xed Æ > 0. A dire
tion d that satis�es (1) and (2) will be 
alled good for w.We next estimate the probability that a randomly sele
ted dire
tion is good for the 3-wedge w.We �rst 
al
ulate the probability that d satis�es (1).For dire
tions x; y, represented as points on the unit sphere, let Px:y denote the probability thata plane through the origin 0 separates x from y. Let Px:yz be the probability that a plane through0 separates x from y and z.Claim 4.2 (i) Px:y = �x;y=�, where �x;y is the angle between the ve
tors x and y.(ii) Px:y = Px:yz + Py:xzIndeed, to see (i), 
onsider the plane P spanned by x; y; 0. For any plane � passing through theorigin, � separates x from y if and only if the interse
tion line ` = � \ P separates x from y in P ,and the probability for this to happen is �x;y=�, as asserted.To see (ii), we note that the event that a plane � through the origin separates x from y is thedisjoint union of the events that � separates x from y and z and that � separates y from x and z.The Claim implies that the probability that d satis�es (1) isPa:b
 + Pb:a
 + P
:ab = Pa:b + Pa:
 + Pb:
2 = �a;b + �a;
 + �b;
2� :Thus, for a substantially fat trihedral wedge, we have that this probability is at least 
=(2�), thusa dire
tion violates (1) with probability at most 1� 
=(2�).As mentioned in the proof of Lemma 2.1, for a given dire
tion x, the measure of the set ofdire
tions d for whi
h jhd; xij � Æ is 4�Æ. Sin
e the total area of the sphere is 4�, a randomdire
tion violates the inequality jhd; xij � Æ with probability Æ. Repeating this argument for ea
hof the three edges of w, the probability for violating the inequality (2) is thus at most 3Æ.It follows that a dire
tion is bad for a substantially fat wedge w with probability at most1� 
=(2�) + 3Æ. 12



Let w1; w2; w3 be three substantially fat wedges. The pre
eding argument implies that a dire
-tion will be good for all three wedges w1; w2; w3 with probability larger than 1�3(1�
=2�+3Æ) =3
=2�� 9Æ� 2. Hen
e, assuming that 
 > 4�=3 and that Æ < 
=(12�)� 1=9, the above probabilityis at least 3
=(4�) � 1 > 0.This implies, as above, that there exists a set D of size O(1) (whi
h depends on 
 and in
reasesas 
 approa
hes 4�=3) su
h that, for any three substantially fat wedges, D 
ontains a dire
tion thatis good for all of them. The 
ross se
tions of the three wedges by any plane orthogonal to d satisfythe properties asserted in the lemma, with �0 > Æ�, as shown in Se
tion 2. 24.1 Canonization of trihedral wedgesA signi�
ant step in the proof of Theorem 1.3 is the 
anonization pro
ess, whi
h is 
onsiderablymore intri
ate than in the 
ase of dihedral wedges. Here is a brief overview of the 
anoni
al pro
ess.We �x a dire
tion d and fo
us on the subsetWd of wedges that satisfy the properties in Lemma 4.1with respe
t to d. For ea
h w 2 Wd, we fold inwards ea
h of the three fa
es of w, and then repla
ethe shrunk wedge by the union of O(1) new wedges, so that (i) we lose at most quadrati
allymany spe
ial 
ubes, and (ii) the interse
tion of a plane orthogonal to d with any new wedge iseither a 
anoni
al 2-wedge (as in the 
ase of dihedral wedges) or empty. This will allow us toapply a variant of the arguments used for the 
ase of dihedral wedges, from whi
h the assertednear-quadrati
 bound will follow.In more details, we pro
eed as follows. Fix a dire
tion d 2 D, and 
onsider the family Wd ofwedges for whi
h d is a good dire
tion. The 
anonization pro
ess of Wd has two stages.First 
anonization stage: Folding ba
kward fa
es. Let w be a trihedral wedge inWd. De�nethe forward fa
e of w to be the fa
e spanned by those two edges of w, 
all them e0 and e1, forwhi
h the s
alar produ
t with d is of the same sign (say positive), and 
all the two other fa
es of wthe ba
kward fa
es. In what follows we refer to a ray � emerging from the apex o of w as positive(resp., negative) if the s
alar produ
t of a ve
tor along � with d is positive (resp., negative). Thus,the forward fa
e of w is spanned by the two positive edges of w, and ea
h of the two ba
kwardfa
es is spanned by one positive edge and by the unique negative edge, e2, of w.We fold inwards ea
h of the ba
kward fa
es of w, so that any interse
tion of the modi�ed wby a plane orthogonal to d will be bounded by rays whose orientations belong to some �xed setof 
onstant size (this property is not enfor
ed on any bounded segment on the boundary of su
h a
ross-se
tion). This deformation 
reates two new 
on
ave edges, e0; e00. This folding requires some
are, and is done as follows.We �rst fold ea
h of the ba
kward fa
es of w inwards along its positive edge (e0 or e1). Let f1(resp., f4) denote the folded fa
e in
ident to e1 (resp., e0). Let �1; �4 be the two planes 
ontainingf1; f4, respe
tively, and put e� = �1 \�4\w. Note that the orientation of e� varies 
ontinuously asa fun
tion of the folding angles of f1 and f4, and that the angle between e2 and planes orthogonalto d is at least some �xed 
onstant (that is, ar
sin Æ, where Æ is as de�ned in (2)). This implies thatwe 
an perform the folding so that the interse
tions of f1 and f4 with planes orthogonal to d have
anoni
al orientations, and e� is negative. Let w0 denote the wedge spanned by the edges e0; e1; e�.Clearly, the respe
tive portions f 01, f 04 of f1 and f4 between e� and the respe
tive edges e1; e0 areba
kward fa
es of w0 and f remains its forward fa
e.Next, fold the two ba
kward fa
es of w again, but this time about their 
ommon edge e2. Again,13



using 
ontinuity and the fa
t that the angles that e0 and e1 make with planes orthogonal to d arebounded away from 0, we 
an perform this folding so that the following property holds: Denotethe folded fa
es as f2 and f3, where f2 (resp., f3) is folded from the fa
e of w between e1 ande2 (resp., between e0 and e2). Let e01 be the edge of interse
tion of f1 and f2, and let e00 be theedge of interse
tion of f3 and f4. Then we require that the interse
tions of f2 and f3 with planesorthogonal to d be at 
anoni
al orientations, and that the edges e01 and e00 be both positive. Letw00 be the wedge spanned by e00, e01 and e2. It is easily veri�ed that e� must be 
ontained in (theinterior of) w00, and that w� = w0 [ w00 is a (non
onvex) pentahedral wedge bounded by the fa
esf; f 01; f2; f3; f 04. Moreover, f2 and f3 are the two ba
kward fa
es of w00 and its third fa
e, whi
h wedenote as f5, is a forward fa
e. See Figure 6.
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Figure 6: First 
anonization stage of trihedral wedges. The good dire
tion d is upwards (withinthe page). (a) A 
ross se
tion of w by a plane parallel to d. (b) The same 
ross se
tion after thefolding.We repeat this 
onstru
tion to ea
h wedge w 2 Wd, and 
onsider the 
olle
tion W 0d 
onsistingof all new wedges like w0; w00, 
onstru
ted above. The size of W 0d is at most twi
e that of Wd.We now relate the number of spe
ial 
ubes in Wd to those inW 0d. First, arguing as in the proofof Lemma 2.3, it follows that the total number of spe
ial 
ubes in the 
olle
tion of the deformedpentahedral wedges w� de
reases by at most O(n2). Indeed, a spe
ial 
ube C = w1 \ w2 \ w3 inWd 
an stop being a spe
ial 
ube only if a 
on
ave edge of one of the deformed w�1; w�2; w�3 appearson the boundary of the 
ube. In parti
ular, this edge 
rosses the original C.Let us then bound the number of spe
ial 
ubes in Wd 
rossed by a 
on
ave edge t, say of w1.Sin
e t is 
ontained in w1, by de�nition, any spe
ial 
ube 
rossed by t is formed by w1 and by twoother wedges w2; w3. For ea
h other wedge w, let Iw denote the interval w \ t. The endpoints ofthese intervals partition t into at most 2n atomi
 intervals, and the interse
tion of t with a spe
ial
ube C 
onsists of one or of several 
onse
utive atomi
 intervals. A
tually, su
h an interse
tionmust be a single atomi
 interval, for otherwise a fourth wedge would have interse
ted C, 
ontrary14



to the properties of spe
ial 
ubes. For the same reason, no atomi
 interval 
an lie in two distin
tspe
ial 
ubes. It follows that the number of spe
ial 
ubes 
rossed by t is at most 2n, so the totalnumber of su
h spe
ial 
ubes, over all possible 
hoi
es of w1, is O(n2). This establishes the 
laim.Next we relate the number of spe
ial 
ubes in the 
olle
tion of deformed pentahedral wedges tothe number of spe
ial 
ubes in W 0d, through the following lemma.Lemma 4.3 Let C be a spe
ial 
ube formed by the interse
tion of w� with two other deformedwedges. Then C is, or 
ontains, a quasi-spe
ial 
ube in W 0d formed by the interse
tion of these twoother wedges and one of the (undeformed) wedges w0, w00.Proof: w� has �ve fa
es. Sin
e the boundary of any spe
ial 
ube formed by the interse
tion of w�with two other wedges meets exa
tly two fa
es of w�, there are �52� = 10 
ases to 
onsider.Sin
e fa
es f 01; f2 form a 
on
ave angle between them, no spe
ial 
ube as above 
an meet bothf 01 and f2, so this 
ase is impossible. The same argument rules out the pair f3, f 04.The fa
es f; f 01; f 04 are all 
ontained in w0. Thus, any spe
ial 
ube that meets a pair of thesefa
es is a quasi-spe
ial 
ube in W 0d that involves w0.The pair of fa
es f2; f3 are fa
es of w00, so a spe
ial 
ube C that meets these fa
es will be aquasi-spe
ial 
ube in W 0d de�ned by w00 and the only new wedge that interse
ts C (but does notde�ne it) is w0.The remaining four 
ases involve pairs of fa
es, one from ff2; f3g and one from ff; f 01; f 04g(ex
luding the pairs (f 01; f2) and (f3; f 04)). Any su
h spe
ial 
ube C must 
ross the forward fa
ef5 of w00 and 
annot meet any edge of f5, sin
e those are also edges of w�. Thus, C \ w00 has thestru
ture of a 
ube, with opposite fa
es belonging to the same subwedge, so it is a quasi-spe
ial
ube inW 0d, and the only new wedge that interse
ts C (but does not de�ne it) is w0. This 
ompletesthe proof of the lemma. 2We note that the weight of any quasi-spe
ial 
ube 
onstru
ted in the pre
eding proof is at mostthree: it 
an be interse
ted (and not de�ned) by at most one new wedge that repla
es ea
h of thethree pentahedral wedges that formed the original 
ube.We have thus transformed the trihedral wedges ofWd into a familyW 0d of new trihedral wedges,whose size is at most 2jWdj and su
h that (a) the two ba
kward fa
es of any new wedge have
ross se
tions orthogonal to d at 
anoni
al orientations; and (b) the number of spe
ial 
ubes inthe original family is at most the number of quasi-spe
ial 
ubes of level at most three in the new
olle
tion W 0d, plus O(n2). Following Clarkson-Shor's te
hnique [6℄, the number of quasi-spe
ial
ubes at level at most three is at most proportional to the number of spe
ial 
ubes in an appropriaterandom subfamily of W 0d. Hen
e, it suÆ
es to bound the number of spe
ial 
ubes in W 0d.Se
ond 
anonization stage: Folding forward fa
es. Let w 2 W 0d and let � be a planeorthogonal to d. The 
ross se
tion w \ � is either a (
anoni
al) 2-wedge (of angle � �0) or atrun
ated 2-wedge (whose rays have 
anoni
al orientations). There is a unique plane �0 orthogonalto d (passing through the apex of w) so that, as we sweep � parallel to itself from in�nity to �0,the 
ross se
tion w \ � is a 2-wedge that translates at 
onstant velo
ity. After rea
hing �0, theapex of this 2-wedge `
attens out' and is repla
ed by a new edge that keeps widening as we sweep;see Figure 7(a). We note though that the above des
ription �ts wedges whose forward fa
e pointsat the dire
tion of in
reasing time. Handling wedges whose forward fa
e points at the dire
tion ofde
reasing time 
an be a

omplished in a fully symmetri
 manner.15
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Figure 7: The 
ross se
tions of a trihedral wedge w by planes in a good dire
tion: (a) for theoriginal w; (b) after folding inwards a fa
e of w.We repla
e the family of the 
ross se
tions of w that are trun
ated wedges by another family,as follows. For a plane � pre
eding �0 we leave the 
ross se
tion � \ w un
hanged. For a plane �su

eeding �0, let w0 denote the trun
ated 2-wedge w\�, with bounding rays �1, �2 and boundingsegment e. We repla
e w0 by two 2-wedges w01, w02, whose api
es are at the endpoints of e andwhose bounding rays are parallel to �1 and �2; see Figure 7(b).Lemma 4.4 There exist three trihedral wedges w1, w2, w3, all 
ontained in w, so that:(i) w1 [ w2 [ w3 has one vertex|the apex o of w.(ii) w1 [ w2 [ w3 has four (unbounded) edges, where three of these edges are 
onvex and 
oin
idewith the edges of w and the fourth is 
on
ave.(iii) w1 [w2 [w3 has four fa
es, two of whi
h 
oin
ide with two fa
es of w and the other two areobtained by folding the third fa
e of w inwards about ea
h of its edges.(iv) The 
ross se
tions � \ (w1 [ w2 [ w3), over all planes � orthogonal to d, 
oin
ide with themodi�ed 
ross se
tions of w.(v) Ea
h of the interse
tions � \ w1, � \ w2, � \ w3, for planes � orthogonal to d, is empty onone side of the apex o, and is a 2-wedge translating at 
onstant velo
ity on the other side ofo. All three kinds of 2-wedges are homotheti
 (and 
anoni
al).Proof: Let a; b; 
 be unit ve
tors along the edges of w, as above. We may assume, without loss ofgenerality, that ha; di and h
; di have the same sign, and that the sign of hb; di is opposite; that is,the fa
e between a and 
 is the forward fa
e of w.16



Let Fx;y denote the planar wedge bounded by the two rays that emanate from the apex o of win the dire
tions x; y, respe
tively. Take the ba
kward fa
e Fa;b (resp., Fb;
) of w and draw in itthe ray u (resp., v) orthogonal to d. Let w1 be the 
onvex hull of the edges a; u; v, let w2 be the
onvex hull of the edges 
; u; v, and let w3 be the 
onvex hull of the edges b; u; v. Note that anyinterse
tion of Fa;v with a plane orthogonal to d is empty if the plane lies in the negative side ofo, and is a ray parallel to v, otherwise. This, and a symmetri
 statement 
on
erning F
;u, implythat all 
ross se
tions orthogonal to d of ea
h of w1; w2; w3, if nonempty, are all homotheti
 to ea
hother. This is easily seen to imply all �ve properties asserted in the lemma. 2Let W 00d denote the 
olle
tion of the transformed, 
anoni
al wedges, obtained, as in Lemma 4.4,from the wedges ofW 0d. Arguing as in the proof of Lemma 2.3, and in the pre
eding analysis of the�rst 
anonization stage, we obtain:Lemma 4.5 The number of spe
ial 
ubes for W 0d is smaller than or equal to the number of spe
ial
ubes for W 00d plus O(n2).Proof: Let w1; w2; w3 be three trihedral wedges inW 0d, forming a spe
ial 
ube C, and let w01; w02; w03be their 
anoni
al images, that is, the union of the three partial wedges that repla
e ea
h originalwedge, as in Lemma 4.4. Denote by twi the dire
tion of the new 
on
ave edge of w0i, for i = 1; 2; 3.By de�nition, C = w1 \w2 \w3. We may assume that C does not meet any plane orthogonal to dand passing through the apex of one of the wi's. Indeed, sin
e the overall number of su
h planes isO(n), the number of spe
ial 
ubes that violate this assumption is O(n2), so we may ignore them.De�ne C 0 = w01\w02\w03. Sin
e ea
h w0i � wi, it follows that C 0 � C. The 
ube C has two oppositefa
es from the boundary of ea
h wi. Sin
e only one fa
e of wi has been folded in the 
anonizationpro
ess, it follows that C has three fa
es, one on the boundary of ea
h wi, su
h that these fa
esalso lie on the respe
tive boundaries �w0i. Let a be the point of interse
tion of these fa
es. Then ais a vertex of C and also a vertex of C 0.Consider the 
onne
ted 
omponent C 00 of C 0 that 
ontains a. If C 00 has the 
ombinatorialstru
ture of a 
ube with pairs of opposite fa
es lying on the boundary of the same w0i then, arguingas in the proof of Lemma 4.3, C 00 is easily seen to be a quasi-spe
ial 
ube in W 00d . Hen
e, ea
hspe
ial 
ube forW 0d of this kind is mapped (in a 1-1 manner) to a quasi-spe
ial 
ube forW 00d , whoselevel is, as above, at most three.If C 00 does not have the 
ombinatorial stru
ture of a 
ube, as above, then �C 00 must meet oneof the new 
on
ave rays twi . Suppose, without loss of generality, that tw1 meets �C 00. In parti
ular,tw1 
rosses C. Arguing as in the analysis of the �rst 
anonization stage, the overall number of su
hspe
ial 
ubes is O(n2). This 
ompletes the proof of the lemma. 2To re
ap, we have taken the original familyWd, for a �xed dire
tion d, and have deformed ea
hwedge w 2 Wd in two steps. We �rst have folded inwards its two ba
kward fa
es and repla
ed the`pin
hed' wedge w� by the union of two new wedges, so that the ba
kward fa
es of ea
h new wedgehave planar 
ross se
tions orthogonal to d with 
anoni
al orientations. Then we have taken ea
hnew wedge w0 and folded inwards its forward fa
e, so that this pin
hed wedge 
an be repla
ed bythe union of three other wedges, so that any 
ross se
tion orthogonal to d of any new wedge iseither empty or is a 
anoni
al 2-wedge, and all these 
anoni
al 2-wedges (from the same w0) arehomotheti
 to ea
h other. The resulting set W 00d is partitioned to O(1) subfamilies, ea
h 
onsistingof 3-wedges with homotheti
 
ross se
tions, as above.
17



4.2 Spe
ial 
ubes and 
omplexity of the union for 
anoni
al trihedral wedgesThe estimation of the number of spe
ial 
ubes for W 00d is similar to that for dihedral wedges, withthe following signi�
ant di�eren
e. Let w be a trihedral wedge inW 00d . From the point of view of thesweeping plane �, the modi�ed 
ross se
tion � \ w is a 2-wedge translating at some �xed velo
ityuntil en
ountering some 
riti
al plane �0, after whi
h it disappears altogether, or, symmetri
ally,the interse
tion is empty until the 2-wedge suddenly appears in � and then translates at some
onstant velo
ity. We thus need to modify the pre
eding analysis so that it also handles theseappearan
es and disappearan
es.The 
ase of a single 
anoni
al family is trivial, and is handled as in the 
ase of dihedral wedges.The union of two 
anoni
al families. For two families, denoted red and blue, we estimate thenumber of spe
ial red-red-blue 
ubes.We �rst bound the number of spe
ial red-red-blue 
ubes, for whi
h the 
orresponding blue 2-wedge is short (see the analysis of dihedral wedges for the de�nition). Using the same 2-dimensionalframes introdu
ed there, it is easily veri�ed that the number of su
h 
ubes is O(n2�(n)). Indeed,as shown there, this number is proportional to the overall 
omplexity of the lower envelopes, overtime, of the red 2-wedges as seen along some ray bounding a blue 2-edge, summed over all blue2-wedges. Sin
e a red 2-wedge r 
an appear or disappear at some 
riti
al time, it means that r isrepresented in su
h a 2-D frame by a segment that may start or stop at that 
riti
al time. Hen
e,ea
h envelope is still an envelope of O(n) segments and rays, and the 
laim follows as above.Consider next spe
ial red-red-blue 
ubes for whi
h the 
orresponding blue 2-wedge is long. Anysu
h 
ube has, as in the dihedral 
ase, a top-top-right vertex. This vertex lies on a `top-top' rededge (in a 
ross-se
tion where the boundaries of two red 2-wedges overlap). Sin
e appearan
es anddisappearan
es of 2-wedges do not a�e
t su
h overlaps, the number of overlaps is O(n2), as before.Consider the planar 
ross se
tion at the time of a red top-top overlap. This is a planar arrange-ment of two families of �=4-fat wedges. Thus, there are at most 
 = O(1=� log(1=�)) blue 2-wedgesthat are long and form a red-red-blue spe
ial 
ube in this arrangement.Thus, the total number of spe
ial 
ubes for two 
anoni
al families is O(n2(�(n)+1=� log(1=�))).This, 
ombined with Theorem 1.6, implies that the 
omplexity of the union of two 
anoni
al familiesof trihedral wedges is O(n2+").The union of three 
anoni
al families. For three 
anoni
al families, denoted red, green andblue, we estimate the number of spe
ial red-green-blue 
ubes, following and adapting the analysisof the dihedral 
ase.Let C = r \ g \ b, for r 2 R; g 2 G; b 2 B, be su
h a `tri
olored' spe
ial 
ube. The followingproperties, established for the 
ase of dihedral wedges, 
ontinue to hold for the trihedral wedges ofW 00d , as is easily veri�ed.(i) There exists a plane � su
h that � \ C has �ve or six edges.(ii) At the time (i) o

urs, for any w;w0 2 fr; g; bg, either (w;w0) is exposed or (w0; w) is exposed.(iii) For ea
h wedge w, the number of bi
hromati
 exposed pairs (w;w0), at any �xed time, is atmost some 
onstant 
 (equal to O( 1� log 1�)).18



The number of events at whi
h some wedge b starts or stops being initial for some other wedger is O(n2�(n)), as follows from the arguments used in the 
ase of two families of trihedral wedges.Consider next an event at whi
h some 2-wedge r starts or stops being semi-free within another2-wedge b. It is easily 
he
ked that at su
h an event either (a) three sides of red and blue 2-wedgesbe
ome 
on
urrent at a vertex that is 
ontained only in b (as in the 
ase of dihedral wedges), or(b) some 2-wedge appears or disappears. Clarkson-Shor's te
hnique, 
ombined with the pre
edingresult for two families of trihedral wedges, implies that the number of events of type (a) is alsoO(n2+"). Con
erning events of type (b), we note that the 2-wedge(s) that newly appear 
oin
ide atthat 
riti
al time with the 2-wedge(s) that disappear. It follows that the status of being semi-free
an 
hange at this time only for pairs that involve one of the 2-wedges that appear or disappear.Sin
e the number of su
h pairs is O(n) (at the time of appearan
e/disappearan
e), and there areonly O(n) events of appearan
e/disappearan
e, it follows that the number of 
hanges of type (b)is only O(n2).Let T denote the sorted list of all 
riti
al events at whi
h the set of exposed pairs 
hanges.Following the pro
edure presented for the 
ase of dihedral wedges, it is easily veri�ed that thenumber of spe
ial 
ubes in this 
ase is at most (
 + 1)jT j, where 
 is the 
onstant given in (iii)above. Sin
e jT j = O(n2+"), we 
on
lude that the number of spe
ial 
ubes in the 
ase of three
anoni
al families is O(n2+").Hen
e, the number of spe
ial 
ubes in W 00d , and thus also in Wd, is O(n2+") for any " > 0.Summing this over all dire
tions in D, the same asymptoti
 bound also holds for the overall numberof spe
ial 
ubes in W. This, 
ombined with Theorem 1.6, implies that the 
omplexity of the unionof the original W is also O(n2+") for any " > 0.This 
ompletes the proof of Theorem 1.3.Remark: Trying to extend the proof of Theorem 1.3 to the 
ase of wedges that are not substantiallyfat fa
es the diÆ
ulty that we might have planar 
ross se
tions that are bounded triangles. In this
ase it is not ne
essarily true that the number of exposed pairs (r; b) involving a �xed 2-wedge ris 
onstant at any given time. This is the main reason why substantial fatness is needed in ouranalysis, and an obvious open problem is to extend the present te
hnique, so that it 
an also handlebounded 
ross se
tions of wedges.5 The Union of Nearly Equal CubesIn this se
tion, we apply Theorem 1.3 to derive Theorem 1.4. Without loss of generality, we mayassume that the side length of any 
ube in the given 
olle
tion C is between 1 and �. Fix some
onstant parameter t < 1=p3. Constru
t a grid G of 
ubes with side length t. Clearly, any 
ube
 2 C interse
ts only a 
onstant number of grid 
ubes. Consider the 
olle
tion G0 of grid 
ubesQ, for whi
h the 
olle
tion CQ of 
ubes of C that interse
t Q is nonempty. Then jG0j = O(n) andPQ2G0 jCQj = O(n).Let Q be a grid 
ube in G0, and put nQ = jCQj. Let 
 be a 
ube in CQ. By the 
hoi
e of t, Q
annot 
ontain a pair of points that lie on opposite fa
es of 
. It follows that there exists a vertex vof 
 so that the interse
tion of �
 with Q is 
ontained in the union of the three fa
es of 
 in
ident tov. Moreover, any edge of 
 that meets Q must be in
ident to v. Repla
e 
 by the trihedral wedgew that has v as an apex and is spanned by 
 (formally, w = fv + �(x� v) j x 2 
; � � 0g). Then
 \ Q = w \ Q. Let WQ denote the resulting 
olle
tion of trihedral wedges, for all 
 2 CQ. Thenany vertex of the union of CQ within Q is also a vertex of the union of WQ.19



By Theorem 1.3, the 
omplexity of the union of WQ is O(n2+"Q ), for any " > 0. Summing overall grid 
ubes Q, Theorem 1.4 follows.Theorem 1.4 
an be extended in several ways, using essentially the same proof.Theorem 5.1 Let B be a family of n boxes so that the ratio between the side lengths of any pairof edges belonging to distin
t members or to the same member of B is at most �, for some 
onstantparameter � > 1. Then the 
omplexity of the union of B is O(n2+"), for any " > 0.Theorem 5.2 Let P be a family of n 
onvex polytopes, ea
h bounded by a 
onstant number offa
es, so that the solid angles at the verti
es of these polytopes are all (
; �)-substantially fat, forsome 
onstants 
 > 4�=3, � > 0, and the ratio between the distan
e from a vertex of some polytopeto a non-in
ident edge of the same polytope, and any other similar distan
e (within the same oranother polytope) is at most �, for some �xed 
onstant parameter � � 1. Then the 
omplexity ofthe union of P is O(n2+"), for any " > 0.6 EÆ
ient Constru
tion of the UnionIn this se
tion we 
onsider the problem of 
onstru
ting eÆ
iently the (boundary of the) union of nnearly 
ongruent 
ubes (or of any of the other kinds of obje
ts studied in this paper). For this weadapt the randomized algorithm of Aronov et al. [3, 4℄, whi
h 
onstru
ts the boundary of the unionalong ea
h fa
e of ea
h 
ube separately, and then `stit
hes' together these boundary portions.Let F be a fa
e of one of the 
ubes. The algorithm interse
ts all other 
ubes with F , therebyobtaining a 
olle
tion of 
onvex polygons, and then 
omputes the union of these polygons by astraightforward randomized in
remental 
onstru
tion that inserts these polygons one by one in arandom order. By adapting the analysis in [4℄ to the 
ase at hand, it is easily seen that the expe
tedrunning time of the algorithm is O(n2+"), for any " > 0. The reader is referred to [4℄ for furtherdetails. In other words, we have shown:Theorem 6.1 The union of n nearly equal 
ubes 
an be 
omputed in randomized expe
ted timeO(n2+"), for any " > 0. Similar near quadrati
 bounds hold for the 
omputation of the union of fatdihedral wedges or of substantially fat trihedral wedges.7 The Complexity of the Union and Spe
ial CubesIn this se
tion we 
on
lude the paper by proving Theorem 1.6. This provides a general-purposeanalysis that obtains a bound on the 
omplexity of the union of an arbitrary family of 
onvexpolyhedra in three dimensions, whi
h depends on bounds on the number of spe
ial 
ubes in anysubfamily.We �rst re
all the te
hnique of Aronov et al. [4℄ for analyzing the 
omplexity of the union ofarbitrary 
onvex polyhedra in 3-spa
e. We then extend it and show that the 
omplexity dependson bounding the number of spe
ial 
ubes.LetW = fw1; : : : ; wng be a 
olle
tion of n fat wedges in 3-spa
e. Let wi; wj ; wk be three distin
twedges inW. Let F 1i , F 2i denote the two fa
es of wi. The triple (F ai ; wj ; wk), for a 2 f1; 2g, de�nesa spe
ial quadrilateral, denoted as Qi;a:j;k, if the following 
onditions hold:20



(i) Qi;a:j;k = F ai \ wj \ wk is a quadrilateral.(ii) Ea
h of the interse
tions F ai \ �wj \ wk and F ai \ �wk \ wj 
onsists of two opposite edges ofQi;a:j;k.(iii) Qi;a:j;k \ wl = ; for any wl 2 W n fwi; wj ; wkg.Let Q(W) denote the number of spe
ial quadrilaterals for W, and let Q(n) denote the maximumvalue for Q(W), taken over all 
olle
tions of n �-fat wedges (with � �xed).The level of a vertex v of the arrangement A(W) is the number of polyhedra inW that 
ontainv in their interiors. Let us denote by C0(W) the number of verti
es on �UW (whi
h is equal to thenumber of level-0 verti
es of A(W)), and by C0(n) the maximum value of C0(W), taken over all
olle
tions W of n �-fat wedges (with � �xed).Following Aronov et al. [4℄, we 
all a triple (f; e; e0) spe
ial if f is a level-1 2-dimentional fa
eof A(W), and e; e0 are 0-level edges of f , and we 
an tra
e the boundary of f from e to e0 withoutpassing through any other level-0 edge. We denote by C(1)(W) the number of spe
ial triples inA(W), and by C(1)(n) the maximum value of C(1)(W), taken over all 
olle
tions W of n �-fatwedges (with � �xed).The following relation is established in [4℄ between C0(n) and Q(n). First we haven� 5=3n C0(n) � C0(n� 1) +O(n2) + 4nC(1)(n) : (3)The number of spe
ial triples is bounded in turn by the re
urren
e:n� 2n C(1)(n) � C(1)(n� 1) + 1nO(n2 +Q(n)) : (4)Noti
e that De�nition 1.5 implies that every fa
e of a spe
ial 
ube is a spe
ial quadrilateral. Theproof pro
eeds by 
harging spe
ial quadrilaterals to spe
ial 
ubes or to verti
es at shallow levels inthe arrangement A(W). Let Q = Q1;a:2;3 be a spe
ial quadrilateral. Consider the 
orrespondinginterse
tion C = w1 \w2 \ w3. We distinguish between two 
ases:Case (a): C has the 
ombinatorial stru
ture of a 
ube. Let pij = F 11 \F i2\F j3 , for i; j = 1; 2, denotethe four verti
es of Q, and let sij = w1 \ F i2 \ F j3 denote the edge of C emanating from pij `away'from Q. Let t denote the total number of interse
tions of the edges sij with fa
es of other wedges.Fix some threshold parameter k, to be spe
i�ed later, and 
onsider the following two sub
ases:(i) t > k: We 
harge Q to the �rst k interse
tions en
ountered along the in
oming edges, and notethat ea
h of the 
harged verti
es is a vertex of the arrangement at level at most k. Moreover, anysu
h vertex v 
an be 
harged by at most six spe
ial quadrilaterals. Indeed, any su
h quadrilateral
ontains a vertex (at level 0) that lies on one of the interse
tion edges in
ident to v, and the portionof that edge between the quadrilateral and v does not 
ontain any other vertex at level 0.Denote by C�(n) (and C��(n)) the maximum number of verti
es at level � (resp., at most �) inan arrangement of n �-fat wedges. Applying Clarkson-Shor's probabilisti
 analysis te
hnique [6℄,we have C�k(n) = kX�=0C�(n) = O(k3C0(n=k)) :This, and the argument in the pre
eding paragraph, imply that the number of spe
ial quadrilateralsof this type is O(k2C0(n=k)). 21



(ii) t � k: Suppose �rst that C is 
rossed by an edge of some polyhedron in W (that is, the edgeinterse
ts �C at two points). We 
laim that there exists an interse
tion point q between su
h anedge and �C that lies at level � k in A(W). Indeed, if an edge e 
rosses �C then, sin
e it does not
ross Q, it must 
ross one of the four `side fa
es' of C adja
ent to Q. Let F be su
h a fa
e. Thereexist at most k polyhedra that 
ross the two side edges of F (those adja
ent to Q). The 
rossse
tion of any other polyhedron with F must be a 
onvex polygon whi
h is either fully 
ontainedin F or `exits' it only through its bottom edge. It is easily veri�ed that the boundary of the unionof the 
ross se
tions F \ w, over all su
h polyhedra w, must 
ontain a vertex v, whi
h is thus aninterse
tion of a polyhedron edge with F that lies at level at most k in A(W). We then 
harge Q tov, and note that v 
an be 
harged by at most O(k2) spe
ial quadrilaterals Q. Indeed, v determinesthe fa
e F and thus one of the three polyhedra that indu
e Q. The other two must be two of theat most k other polyhedra that 
ontain v in their interior. The number of interse
tions betweenedges and fa
es of polyhedra is O(n2), whi
h implies that the number of spe
ial quadrilaterals Qunder 
onsideration is O(k2n2).Suppose next that C is interse
ted by an edge e of a polyhedron in W whi
h has an endpointinside v. By assumption, the polyhedron bounded by e is either fully 
ontained within C or `exits'C only through its bottom fa
e (the one opposite to Q). As above, the boundary of the union ofthe portions within C of all su
h polyhedra must 
ontain a vertex of one of them, whi
h is thus avertex at level at most k in A(W). Arguing as above, the number of spe
ial quadrilaterals Q forwhi
h this sub
ase applies is only O(k2n).We may thus assume that C is not 
rossed by any edge of a polyhedron in W, so the onlypolyhedra that interse
t C are those t � k polyhedra that interse
t some of the four side edgesof C. De�ne the level of a 
ube C that satis�es 
onditions (i) and (ii) of De�nition 1.5 to be thenumber of polyhedra of W, that interse
t C. other than those three that de�ne C. Hen
e, in the
ase at hand, C is a 
ube at level at most k. We 
harge Q to C (whi
h 
an be 
harged in thismanner at most six times). Denote the maximum number of 
ubes at level � (resp., at most �) ina 
olle
tion of n �-fat wedges by  �(n) (resp., by  ��(n)). In parti
ular,  0 bounds the number ofspe
ial 
ubes in the given 
olle
tion. Applying again Clarkson-Shor's te
hnique, we obtain �k(n) = kX�=0 �(n) = O(k3 0(n=k))Hen
e, the number of spe
ial quadrilaterals under 
onsideration is O(k3 0(n=k)).Case (b): C does not have the 
ombinatorial stru
ture of a 
ube. (This 
ase is easy to analyze inthe 
ase of wedges, and most of the foregoing analysis is not required for that spe
ial 
ase.)For 
onvenien
e, assume that the fa
e F a1 of w1 that 
ontains Q is F 11 . Denote by F 12 ; F 22 thetwo fa
es of w2 that 
ontain two opposite edges of Q and by F 13 ; F 23 the two fa
es of w3 that 
ontainthe other two opposite edges of Q. If C is not a 
ube then one of the following 
ases has to arise:(i) One of the four interse
tion edges w1 \ F i2 \ F j3 , for i; j = 1; 2, is unbounded.(ii) One of those four interse
tion edges ends within the interior of w1.(iii) Not all four of those interse
tion edges leave w1 from the same fa
e.(Note that 
ase (iii) 
annot o

ur for dihedral wedges, sin
e any su
h wedge has only two fa
es.)In sub
ases (i) and (ii) we 
an 
harge Q to the 
orresponding interse
tion edge F i2 \ F j3 . It is
lear that any su
h edge 
an be 
harged in this manner at most twi
e. Indeed, if it is 
harged by a22



spe
ial quadrilateral Q as above, then the portion of the edge between its interse
tion point v withQ and its endpoint, or from v to in�nity, is fully 
ontained in the third polyhedron w1. Sin
e v isa vertex at level 0, the 
laim is immediate. It follows that the number of spe
ial quadrilaterals insub
ases (i) and (ii) is O(n2).In sub
ase (iii) at least one of the `side fa
es' F i2, F j3 (say, F 12 ), has the property that ' = C\F 12is not a quadrilateral. Moreover, if e is the edge of ' that is also an edge of Q, then the edges of 'adja
ent to e both lie on �w3 and the two (ne
essarily distin
t!) edges adja
ent to these edges lieon �w1; ' may have additional edges that lie on either boundary.We �rst assume that neither of the two edges w1 \ F 12 \ F j3 is 
rossed by more than k otherpolyhedra, for the threshold parameter k that we have 
hosen. If this does o

ur, we use the same
harging s
heme employed in Case (a) above.Suppose that the remaining portion of �' 
ontains two su

essive edges that lie on �w1. Then' has a vertex that is an interse
tion of an edge of w1 with F 12 . We 
an then 
harge Q to su
h aninterse
tion v, and note that v 
annot be 
harged more than 2k times. Indeed, 
onsider the fa
eK = F 12 \w1. This is a 
onvex polygon with O(1) edges and with v as a vertex, and ' is obtainedby interse
ting K with w3. Let w be another polyhedron in W that 
ontains v and indu
es a fa
e'0 = K \ w with the same stru
ture as above, so that '0 is adja
ent to a spe
ial quadrilateral Q0along some edge of K. Then, as is easily veri�ed, at least one of the two edges of ' lying on �w3and one of the two edges of '0 lying on �w must 
ross ea
h other (see Figure 8(a)), whi
h impliesthe asserted property. Hen
e, the number of spe
ial quadrilaterals Q in this sub
ase is O(n2k).Consider next the 
ase where ' has two su

essive edges that lie on �w3. In this 
ase ' hasa vertex that is an interse
tion of an edge of w3 with F 12 . We 
harge Q to su
h an interse
tionv. Given v, we know w3 and F 12 . Their interse
tion is a 
onvex polygon K 0 with O(1) sides,and ' tou
hes at least three of its sides, so that one of the `
hords' of ', i.e., an edge of ' lyingin the interior of K 0, is disjoint from any other polyhedron|this is the edge in
ident to Q (seeFigure 8(b)). It is easily 
he
ked that, on
e the two edges of K 0 
onne
ted by this 
hord are �xed(there are O(1) 
hoi
es for su
h a pair of edges) the 
hord is unique, from whi
h the 
laim follows.Hen
e, the number of spe
ial quadrilaterals Q in this sub
ase is only O(n2).Otherwise, the edges of ' alternate between edges in
ident to �w1 and edges in
ident to �w3,and their total number is at least six. We 
laim that, when F 12 and w3 are �xed, there 
an be onlyO(1) polyhedra w1 that generate a spe
ial quadrilateral Q with F 12 and w3, as above. Indeed, putK = F 12 \w3. K is a 
onvex polygon with O(1) edges but with at least three edges that lie on �w3,and �' has at least three 
hords of �w1 that 
onne
t pairs of these edges, with one of the 
hords(the one in
ident to Q) being disjoint from any other polyhedron. Arguing as above, it is easy tosee that, on
e the two edges of K 
onne
ted by this 
hord are �xed (there are O(1) 
hoi
es for su
ha pair of edges), the 
hord is unique (see Figure 8(
)). Indeed, if two 
hords 
onne
t the same pairof edges of K 0 then one of them bounds a quadrilateral within K 0, 
ontrary to assumption. Thisimplies that the number of spe
ial quadrilaterals Q in this sub
ase is only O(n2).Thus, if we add all the bounds obtained so far, we obtain the following re
urren
e for themaximum number Q(n) of spe
ial quadrilaterals:Q(n) = O(k2n2 + k2C0(n=k) + k3 0(n=k)) :By assumption,  0(n=k) = O((n=k)
), so we haveQ(n) = O(k2n2 + k3�
n
 + k2C0(n=k)): (5)23
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Figure 8: The 
ases where ' is not a quadrilateral: (a) ' has a vertex lying on an edge of w1; (b) 'has a vertex lying on an edge of w3; (
) �' alternates between edges lying on �w1 and edges lyingon �w3.Arguing as in [15℄, for example, and using the fa
t that 
 > 2, the solution of the 
ombinedre
urren
es (3), (4) and (5) 
an be shown to be O(n
). This 
ompletes the proof of Theorem 1.6.2Referen
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