Shiri Artstein-Avidan
- publications
[1] Shiri Artstein,
Proportional concentration
phenomena on the sphere,
[Pdf]
[2] Shiri Artstein,
Keith M. Ball, Franck Barthe and Assaf Naor,
Solution of
J. Amer. Math. Soc., Vol. 17
(2004), 975-982.
[3] Shiri Artstein,
Keith M. Ball, Franck Barthe and Assaf Naor,
On the rate of convergence
in the entropic central limit theorem,
Probability
Theory and Related Fields, Vol. 129, no. 3, (2004), 381-390.
[4] Shiri Artstein,
The change in the diameter
of a convex body under a random sign-projection,
Geometric
Aspects of Functional
(Eds. Milman-Schechtman.), Springer Lect.
Notes series 1850, 31-40.
[PostScript]
[5] Shiri Artstein,
Vitali D. Milman and
Stanislaw J. Szarek,
More on the duality
conjecture for entropy numbers,
Comptes Rendus Mathematique, Vol. 336, Issue 6 (2003), 479-482.
[6] Shiri Artstein,
Vitali D. Milman and
Stanislaw J. Szarek,
Duality of metric entropy
in Euclidean space,
Comptes Rendu Mathematique, Vol. 337, Issue 11 (2003), 711-714.
[7] Shiri Artstein,
Vitali D. Milman and
Stanislaw J. Szarek,
Duality of metric entropy,
Annals of
Math., Vol. 159 (2004) 1313-1328.
[Pdf]
[8] Shiri Artstein,
Vitali D. Milman, Stanislaw
J. Szarek and N. Tomczak-Jaegermann
On convexified
packing and duality,
Geometric and Functional
Anal. Vo. 14, (2004), 1134-1141.
[9] Shiri Artstein, Boaz Klartag and Vitali D. Milman,
On the Santalo
point of a function and a functional Santalo
inequality,
Mathematika 54 (2004), 33-48.
[10] Shiri Artstein-Avidan, Omer Friedland and Vitali D. Milman,
Geometric applications of Chernoff-type inequalities and a ZigZag
approximation for balls,
Proc. Amer. Math. Soc. 134
(2006),1735-1742.
[11] Shiri Artstein-Avidan,
A Bernstein-Chernoff
deviation inequality and geometric properties of random families of operators,
Israel J. Math 156 (2006), 187-204.
[12] Shiri Artstein-Avidan and Vitali D. Milman,
Logarithmic reduction of the level of
randomness in some probabilistic geometric constructions,
Journal of Functional Analysis,
Volume 235 Issue 1 (2006), 297-329.
[13] Shiri Artstein-Avidan,
Yaron Ostrover,
On symplectic Capcities and Volume Radius,
Math.SG/0603411
[14] Shiri Artstein-Avidan,
Omer Friedland, Vitali D. Milman and Sasha Sodin
Polynomial bounds for large Bernoulli
sections of the cross polytope
Israel J. Math 156 (2006),
141-151.
[15] Shiri Artstein-Avidan, Omer Friedland and Vitali D. Milman,
Geometric applications of Chernoff-type
estimates,
Geometric Aspects of Functional
Seminar Notes (2004-2006), Springer Lect.
Notes series.1910, 45-75.
[16] Shiri Artstein-Avidan
and Vitali D. Milman
Using Rademacher
Permutations to reduce randomness,
Algebra & Analysis, Vol. dedicated to 85th birthday of V.A. Zalgaller,
Algebra
i Analiz 19 (2007), no.
1, 23--45
To appear also in an English version:
[17] Shiri Artstein-Avidan,
Vitali D. Milman and Yaron Ostrover
The M-ellipsoid, symplectic
capacities and volume,
Comment. Math. Helv. 83 (2008), 359–369.
[18] Shiri Artstein-Avidan
and Vitali Milman,
A characterization of the concept of duality
Electronic Research Anouncements in
Mathematical Sciences,
Volume 14, Pages 48–65, AIMS (2007)
[19] Shiri Artstein-Avidan,
Aviezri Fraenkel and Vera Sos,
A two parameter family of an extension of
Beatty sequences,
Discrete Mathematics, 308
(2008) 4578 – 4588.
[20] Shiri Artstein-Avidan
and Vitali Milman,
The concept of duality in asymptotic
geometric analysis, and the characterization of the Legendre
transform,
Annals of Mathematics Vol. 169, No. 2, (2009) 661--674.
[21] Shiri Artstein-Avidan and Vitali Milman,
The
concept of duality for measure projections of convex bodies,
Journal of Functional Analysis (2007) Vol
254/10 pp 2648-2666.
[22] Shiri Artstein-Avidan
and Yaron Ostrover,
A Brunn-Minkowski Inequality for Symplectic Capacities of Convex Domains.
International Mathematics
Research Notices 2008 : rnn044-31
[23] Semyon
Alesker, Shiri Artstein-Avidan and Vitali Milman,
On a characterization of the Fourier
transform,
C. R. Acad. Sci.
Paris, Ser. I 346 (2008).
[24] Shiri Artstein-Avidan
and Vitali Milman,
A new duality transform; Une Nouvelle Transformee de Dualite.
C. R. Math. Acad. Sci. Paris 346 (2008), no. 21-22, 1143-1148
[25] Semyon
Alesker, Shiri Artstein-Avidan and Vitali Milman,
A
characterization of the Fourier transform and related topics
Amer. Math. Soc. Transl. (2) Vol.
(2009) 11-26.
[26] Shiri Artstein-Avidan
and Vitali Milman,
A
characterization of the support map.
Adv. Math. 223 (2010) no. 1. 379{391
[27] Shiri Artstein-Avidan
Hermann Koenig and Vitali Milman,
The
chain rule as a functional equation
Journal of Functional
Analysis (2010) Vol 259 pp 2999-3024..
[28] Shiri Artstein-Avidan and Vitali Milman,
Hidden
structures in convex functions and a new duality transform
Eur. Math. Soc. (JEMS) 13
(2011), no. 4, 975--1004
[29] Shiri
Artstein-Avidan and Orit Raz,
Weighted
Covering Numbers of Convex Sets.
Advances in
Mathematics 227 (2011) 730--744.
[30] Semyon
Alesker, Shiri Artstein-Avidan Dmitry
Faifman and Vitali Milman,
A
characterization of product preserving maps with applications to a
characterization of the Fourier transform.
Accepted to
[31] Shiri
Artstein-Avidan and Vitali Milman,
Stability
results for some classical convexity operations.
To
appear in Advances in Geometry.
[32] Shiri Artstein-Avidan Dmitry Faifman and Vitali Milman,
On
Multiplicative Maps of Continuous and Smooth Functions
.
To appear in forthcoming Geometric Aspects of Functional
Analysis, Israel Seminar
Notes.
[33] Shiri Artstein-Avidan Dan Florentin and
Vitali Milman,
Order isomorphisms on convex functions in windows
.
To appear in Electronic Research Announcements
[34] Shiri Artstein-Avidan and Boaz Slomka,
Order Isomorphisms in cones and a characterization of duality for
ellipsoids
To appear in
Selecta Mathematica.
[35] Shiri Artstein-Avidan Dan Florentin and
Vitali Milman,
Order isomorphisms on convex functions in windows
.
To appear in forthcoming Geometric Aspects of Functional
Analysis, Israel Seminar
Notes.
Submitted or in final preparation
[1] Shiri Artstein-Avidan and Boaz Slomka,
A
new fundamental theorem of affine geometry and applications to order isomorphisms in cones.
In preparation
[2] Shiri
Artstein-Avidan and Yaron Ostrover,
On lengths of Billiards in
convex bodies.
Submitted
[3] Shiri
Artstein-Avidan and Yanir
Rubinstein,
Differential
Analysis of Polarity.
In preparation