8 Homework

Exercise 8.1. 1. Show that any compact convex set with non-empty interior has an ellipsoid of maximal volume contained in it.

2. Show that any compact convex set with non-empty interior has a parallelopotope of maximal volume contained in it.

3. Show that any compact convex set with non-empty interior has a ellipsoid of minimal volume containing it.

4. Show that any compact convex set with non-empty interior has a parallelopotope of minimal volume containing it.

Exercise 8.2. Find an inequality between Hausdorff between two convex bodies and their Banach-Mazur distances (which may involve parameters of the bodies such as in-radius). Show that these distances can be significantly different even in a fixed dimension.

Exercise 8.3. Show that every sequence of compact convex sets has a converging subsequence with respect to the Banach Mazur distance (that is, $d_{BM}(K_m, K) \to 1$).

Exercise 8.4. Find the geometric distance between ℓ_p^n and ℓ_q^n; give an example for $n = 2$ where the geometric distance is different from the Banach Mazur distance.

Exercise 8.5. Show the following fact: Let K be a convex body in \mathbb{R}^n. An ellipsoid E is the ellipsoid of maximal volume inside K if and only if E° is the ellipsoid of minimal volume outside K°.