1. נשים בפשפש קושי, והדר עָם העונבשת טסטיפס פאה של הקוביה ה-\(n\)-המימית לח:
\[
\int_{S^n-1} \text{Vol}(P_u Q)du = \text{Vol}(\partial Q)^{\kappa_n-1} = \frac{2n \cdot 2^{n-1}\kappa_{n-1}}{n\kappa_n} = \frac{2^n\kappa_{n-1}}{\kappa_n}
\]
ועל כן, \([-1,1]^n\) קאואר הקוביה ה-\(n\)-המימית \(P_u(Q) = h_Q(u) + h_Q(-u) = 2h_Q(u)\) (בנזכר כי הראו עָם עָם במשוים).

(ב) ננuerdo במשוים יסודcci ה-\(S^n\) \(n\)-המימית٬ \(n\) אינר אנרגיה
\[
\int_{S^n-1} \text{Vol}(P_u Q)du = \int_{S^n-1} h_Q(u) + h_Q(-u)du = \int_{S^n-1} 2\|u\|Q\cdot du = \int_{S^n-1} \|u\|du
\]
\[
= 2\int_{S^n-1} |x_1|du = 2n\int_{S^n-1} |x_1|dx
\]

لعب.: הנלוכי
\[
\int_{S^n-1} \text{Vol}_{n-1}(P_u Q)d\sigma(u) = \frac{1}{2} \text{Vol}(\partial Q) \cdot \int_{S^n-1} |x_1|d\sigma(u)
\]
ולכן
\[
\int_{S^n-1} |x_1|d\sigma(u) = \frac{2\kappa_{n-1}}{n\kappa_n}
\]

ндזיש.
2. נראה את וארוקדיצה: \(n = 1\) מתקיים
\[
\int_{E^n} \|\epsilon_1 y_1\| d\epsilon = \frac{1}{2} \|y_1\| + \frac{1}{2} \| - y_1\| \geq \|y_1\|
\]

נדווש. \(n = k\) מתקיים, \(n = k - 1\) ונראה עָם, \(n = k\) מתקיים
\[
\int_{E^n} \|\sum_i \epsilon_1 y_i\| d\epsilon = \frac{1}{2} \int_{E^n} \| \sum_{i=1}^{n-1} \epsilon_i y_i + y_n\| + \frac{1}{2} \int_{E^n} \| \sum_{i=1}^{n-1} \epsilon_i y_i - y_n\| =
\]
\[
= \frac{1}{2} \int_{E^n} \| \sum_{i=1}^{n-1} \epsilon_i y_i + y_n\| + \| \sum_{i=1}^{n-1} \epsilon_i y_i - y_n\| \geq
\]
\[
\geq \frac{1}{2} \int_{E^n} \| \sum_{i=1}^{n-1} \epsilon_i y_i\| = \int_{E^n} \| \sum_{i=1}^{n-1} \epsilon_i y_i\| \geq \|y_j\|
\]

1

1. For each group y_i, consider $x_1 + B \cup \ldots \cup x_k + B$ as a set of points in \mathbb{R}^d.

2. If $k + 1 \geq n$ and $x_i \notin x + B$, then $x_i \notin x + B$, for all $x_i \in \{y_1, y_2, \ldots, y_k\}$.

3. Therefore, $N(A, B) \leq M(A, B)$. Then, $M(A, B) = \min\{k \geq 1 : \exists B \subseteq A, B \cap A = \emptyset\}$.

4. Consider x_1, x_2, \ldots, x_k as a set of points in \mathbb{R}^d. Then, $N(K, T) = \sum_{i=1}^{k} \text{Vol}(x_i + T) \leq k \text{Vol}(T) < \text{Vol}(K)$.

5. Therefore, $N(K, T) = k$ for all k.

6. Consider x_1, x_2, \ldots, x_k as a set of points in \mathbb{R}^d.

7. Then, $N(K, T) = k$ for all k.

8. Consider x_1, x_2, \ldots, x_k as a set of points in \mathbb{R}^d.

9. Therefore, $N(K, T) = k$ for all k.

10. Consider x_1, x_2, \ldots, x_k as a set of points in \mathbb{R}^d.

11. Therefore, $N(K, T) = k$ for all k.
$x_j + t_1 = x_i + t_2$
$x_j - x_1 = t_2 - t_1$

כל השיטות \(T \) מככ \(t_2 - t_1 \in T \) כך \(x_j - x_i \in T \)

כלומר \(x_j \in x_i + T \)

בנוסף של \(x_j + \frac{T}{2} \cap x_i + \frac{T}{2} = \emptyset \)

לכל \(x_i \in K \) קיים \(x_i + \frac{T}{2} \in K \) כך \(x_i + \frac{T}{2} \in K \)

(**Separation**

לכל \(x_i \in K \) קיים \(x_i + \frac{T}{2} \in K \) כך \(x_i + \frac{T}{2} \in K \)

\[
\bigcup x_i + \frac{T}{2} \subset K + \frac{T}{2}
\]

לכל \(x_i \in K \) קיים \(x_i + \frac{T}{2} \in K \) כך \(x_i + \frac{T}{2} \in K \)

\[
Vol\big(\bigcup x_i + \frac{T}{2}\big) \leq Vol(K + \frac{T}{2}) = Vol(K - \frac{T}{2})
\]

(למбриיה). כלומר \(N \cdot Vol(\frac{T}{2}) \leq Vol(K - \frac{T}{2}) \)

(למбриיה). כלומר \(N \leq \frac{Vol(K - \frac{T}{2})}{Vol(\frac{T}{2})} = \frac{Vol(2K - T)}{Vol(T)} \)

(למбриיה). כלומר

3
$N(K, T) \leq N(K, K \cap T)$, לכל K. $N(K, B) \leq N(K, A)$ אם $A \subset B$.

נשי ול כי bipartisan $Centrally Symmetric$ הם K, T וולן גם $N(K, A)$.

כעת, לפי משפט בלאנקה 4. מתקיימים כי $N(K, T) \leq N(K, K \cap T)$, שאז $A \subset B$.

ראשית, ברוורכיהם $K \cap T$ ולכן גם $Centrally Symmetric$ הם K, T וולן לבכי 4.

כעת, נשתמש במשפט $N(K, K \cap T) \leq \frac{Vol(K - \frac{K \cap T}{2})}{Vol(K)} = 2^n \frac{Vol(K - \frac{K \cap T}{2})}{Vol(K \cap T)}$.

$N(K, K \cap T) \leq 2^n \frac{Vol(K - \frac{K \cap T}{2})}{Vol(K \cap T)} = 2^n \frac{Vol(1.5K)}{Vol(K \cap T)} = 3^n \frac{Vol(K)}{Vol(K \cap T)}$.

וזכולם麦ך K, T.

נ碙 את הדרוש $N(K, T) \leq N(K, K \cap T)$ ומכך ש

ועברו $0 < \epsilon < 1$ ועבור $\{int(Q_n) + \epsilon u_k; k = 1, ..., 2^n\}$:

וא מתקיימות התכונות הבאות לכל k:

$0 \in (int(Q_n) + \epsilon u_k) \cap Q_n$

$u_k \in (int(Q_n) + \epsilon u_k) \cap Q_n$

נסמן: k מתקיים לכל $u_k = (u^1_k, ..., u^n_k)$

$\prod_{i=1}^n [0, u^i_k] \subseteq (int(Q_n) + \epsilon u_k) \cap Q_n$

וא صلى נ碙してしまう:

$Q_n = \bigcup_{k=1}^{2^n} \left(\prod_{i=1}^n [0, u^i_k] \right)$

$\subseteq \bigcup_{k=1}^{2^n} (int(Q_n) + \epsilon u_k) \cap Q_n$

$\subseteq \bigcup_{k=1}^{2^n} (int(Q_n) + \epsilon u_k)$

כלה מקיימה Q_n לכל k.

נ碙 כי $int(Q_n) \leq 2^n$ לכל k.

$N(Q_n, int(Q_n)) \leq 2^n$

ופכים שלושת כל $int(Q_n)$ קודקודים אדירים לכל היוהות. פריך למשתתף 2^n לווה כל codewords אדירי כל kodkodes.

וכל בפרת כי כל codeword יכול כל Q_n נ碙: $N(Q_n, int(Q_n)) = 2^n$.
בזורה.

$N(K, B) \leq N(K, A)$ לא $A \subset B$ לכל מספר חדש בכל שמה

לכל

$N(K, int(K)) \leq N(K, (1-\epsilon)K) \leq \frac{\text{Vol}(2K - (1-\epsilon)K)}{\text{Vol}((1-\epsilon)K)}\]

חזרה בפ' Rogers – Shephard

 resets נקבל

$\text{Vol}(2K - (1-\epsilon)K) \leq \left(\frac{2n}{n}\right)\frac{\text{Vol}(2K)\text{Vol}((1-\epsilon)K)}{\text{Vol}((1-\epsilon)K)} \leq \left(\frac{2n}{n}\right)\text{Vol}(2K)$

ולכן לכל 0 < ϵ < 1 מתקיים:

$N(K, int(K)) \leq \left(\frac{2n}{n}\right)\frac{\text{Vol}(2K)}{\text{Vol}((1-\epsilon)K)} = \left(\frac{2n}{n}\right)\frac{2^n}{(1-\epsilon)^n}$

ולכן

$N(K, int(K)) \leq \left(\frac{2n}{n}\right)^2n$