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I Let (X , ω) be a closed symplectic manifold of dimension 2n.

I ω ∈ Ω2(X ), dω = 0, for ∀x ∈ X , the restriction
ωx : TxX ⊗ TxX → R is a skew-symmetric non-degenerate
bilinear form.

I J : TX → TX an ω-compatible almost complex structure:
J2 = −Id , ω(·, ·) = ω(J·, J·).

I Given a (nodal) Riemann surface (Σ, j), a map u : Σ→ X is
J-holomorphic if

du ◦ j = J ◦ du, equivalently ∂Ju =
1

2
(du + J ◦ du ◦ j) = 0,

e.g. algebraic curves in smooth projective varieties.
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I Given A ∈ H2(X ;Z), consider the moduli space

Mg ,k(X , J,A) := {u : Σ→ X |(Σ, j) ∈Mg ,k , ∂Ju, u stable}.

I stability ⇔ finite automorphism group.

I Mg ,k(X , J,A) is a compact Hausdorff space with expected
dimension

vdimR = 2(n − 3)(1− g) + 2k + 2c1(A).

I It is a singular space in general: non-triviality of autmorphism
group ⇒ “orbifold” singularity; failure of transversality of ∂J
⇒ non-smoothness.
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Theorem (Fukaya–Ono, Li–Tian, Ruan, Siebert, Pardon...)

The space Mg ,k(X , J,A) carries a Q-valued virtual fundamental
cycle [Mg ,k(X , J,A)]vir of expected dimension.

I The cobordism class of [Mg ,k(X , J,A)]vir is independent of J.

I

Mg ,k(X , J,A)

Mg ,k X k

st ev

I By pairing with classes in H∗(Mg ,k ;Q) and H∗(X ;Q)⊗k using
st and ev, we obtain the so-called Gromov–Witten invariants.
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Question
Why are the Gromov–Witten invariants Q-valued?

I Moral reason: given a finite group Γ, the orbispace ∗/Γ should
be counted with weight 1/|Γ|.

I Local model of Mg ,k(X , J,A) : s−1(0) for

E

D

π s , where D

is an orbifold, E is an orbi-bundle, s is an “equivariant”
section.

I Fukaya–Ono, Li–Tian: use multi-valued perturbation of s to
achieve transverslity.

I Pardon: Poincaré duality for orbifolds holds only over Q.
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Theorem (B–Xu, 2022)

Suppose (X , ω) is a closed symplectic manifold and A ∈ H2(X ;Z).
Fix a non-negative integer k . Then there is a well-defined integral
homology class

[M0,k(X , J,A)]virfree ∈ H∗(M0,k × X k ;Z)

defined by virtually “counting” J-holomorphic maps in
M0,k(X , J,A) with trivial automorphism group.

I Not true on the nose: we need to perturb the ∂J -equation
abstractly.

I This realizes a proposal of Fukaya–Ono back in the 1990s.
I Coincides with the ordinary fundamental class in the

semi-positive case, which is known to be integral by
Ruan–Tian.
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I Based on work in progress of Hirschi–Swaminathan, we can
define higher genus Z-valued Gromov–Witten type invariants
along the same line as well.

I These invariants are expected to satisfy certain variants of the
Kontsevich–Manin axioms.

I The same technique could be applied to define Hamiltonian
Floer theory with Z coefficients, or Lagrangian Floer theory
with Z/2 coefficients, modulo smoothness issues of
(thickened) moduli spaces.

I In principle, such definitions would allow us to prove the
Arnol’d conjecture over Z, improving the best result so far by
Abouzaid–Blumberg (over Fp).
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A general scheme of refining Gromov–Witten invariants

Question
How to construct refinements of the Q-valued virtual fundamental
cycle?

I Slogan: one should do it in two steps.

I Step 1: Show that

Mg ,k(X , J,A)

Mg ,k × X k

st×ev defines an element in

Ω
C,der
∗ (Mg ,k × X k) ⇒ complex derived orbifold bordism.

I Step 2: Construct natural transformations between

generalized homology theories Ω
C,der
∗ → MU∗,KU∗,Z,Q...
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Moduli spaces as derived orbifolds

Definition
A derived orbifold chart is a triple (D,E , s) where D is a smooth
orbifold, E → D is a smooth orbibundle and s : D → E is a smooth
section. (D,E , s) is said to be compact if s−1(0) is compact.

I The Kuranishi models of Mg ,k(X , J,A) present it locally as
the zero locus of derived orbifold charts.

I It is possible to patch the local charts together to get a global
derived orbifold chart for Mg ,k(X , J,A) using some recent
results of Pardon, but there is a shortcut to take.
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Moduli spaces as derived orbifolds

Proposition (Abouzaid–McLean–Smith, 2021)

After choosing certain auxiliary data, there exists a smooth derived
orbifold chart (D,E , s) along with a map

s̃t× ẽv : D →M0,k × X k

such that the zero locus s−1(0) is isomorphic to M0,k(X , J,A)
and the restriction of s̃t× ẽv along s−1(0) coincides with the
product of the stabilization map and the evaluation map.

I Actually TD and E are complex vector bundles.

I The work in progress by Hirschi–Swaminathan generalizes this
result to the higher genus moduli spaces.

I The quadruple (D,E , s, s̃t× ẽv) is independent of various

choices as an element in Ω
C,der
∗ (M0,k × X k).
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s̃t× ẽv : D →M0,k × X k

such that the zero locus s−1(0) is isomorphic to M0,k(X , J,A)
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Stable complex derived orbifold bordism

I Suppose M is a topological space. We consider quadruples
(D,E , s, f ) such that: (D,E , s) is a compact derived orbifold
chart, f : D → M is a continuous map.

I Introduce the following relations:

1. (Restriction) (D,E , s, f ) ∼ (D ′,E ′, s ′, f ′) if D ′ ⊂ D is an
open subset with s−1(0) ⊂ D ′ and E ′ = E |D′ , s ′ = s|D′ , and
f ′ = f |D′ .

2. (Stabilization) (D,E , s, f ) ∼ (D ′,E ′, s ′, f ′) if D ′ is the total
space of a vector bundle πF : F → D, E ′ = π∗FE ⊕ π∗FF ,
s ′ = π∗F s ⊕ τF where τF : F → π∗FF is the tautological
section, and f ′ = f ◦ πF .

3. (Cobordism) (D,E , s, f ) ∼ (D ′,E ′, s ′, f ′) if there is a bordism
between them.
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Stable complex derived orbifold bordism

Definition
A stable complex structure on (D,E , s) is a lifting of TD − E from
KO to the complex K -theory.

Definition
The stable complex derived orbifold bordism of M, denoted by

Ω
C,der
∗ (Y ), is defined to be the equivalence classes of (D,E , s, f )

endowed with a stable complex structure modulo the relations
introduced before.

I This definition was first considered by Joyce and is developed
further by Pardon.

I Abouzaid–McLean–Smith’s result actually shows that
M0,k(X , J,A) uniquely defines an element in

Ω
C,der
∗ (M0,k × X k).
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Stable complex derived orbifold bordism

Theorem (B–Xu, 2022)

Denote by Γ̃ the set of isomorphism classes of finite groups.

For
any [γ] ∈ Γ̃, there is a natural transformation between
(generalized) homology theories

FOP [γ] : Ω
C,der
∗ (Y )→ H∗(Y ;Z)

by “recording” the contribution to the Euler class by points with
stabilizer in the class [γ].

I Applying FOP [γ] to the global chart of Mg ,k(X , J,A), we
obtain Z-valued Gromov–Witten type invariants.

I Work in progress: a decomposition of Q-valued invariants into
a weighted sum of integers.
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Overview of the proof

I To be more concrete, let us focus on a special case.

I Suppose X is a compact effective almost complex orbifold: X
is locally modeled on U/Γ, the Γ-action is faithful;
∃J : TX → TX such that J2 = −Id .

I E → X is a complex orbifold vector bundle.

Theorem (B–Xu)

Denote by X free ⊂ X the suborbifold consisting of points with
trivial isotropy group. Then there exist normally complex smooth
sections s : X → E such that s−1(0) ∩ X free defines a pseudocycle.
Moreover, given a pair of such sections s1 and s2, the pseudocycles
s−1

1 (0) ∩ X free and s−1
2 (0) ∩ X free are cobordant.
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Overview of the proof

I s−1(0) ∩ X free is a pseudocycle ⇔ s−1(0) ∩ X free ⊂ X free is a
smooth submanifold and the boundary
s−1(0) ∩ X free \ (s−1(0) ∩ X free) could be covered by
submanifolds with at least 2-dimensions lower.

I ⇒ s−1(0) ∩ X free defines a homology class.

I s−1
1 (0) ∩ X free and s−1

2 (0) ∩ X free are cobordant ⇒ the
homology class is an invariant of E → X . ⇒ “integral Euler
class”

I We can drop the compactness of X by considering almost
complex compact derived orbifold chart (D,E , s). The section
s is perturbed in a neighborhood of s−1(0).
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Question
Why could this sort of equivariant transversality be achieved?

Lemma (Fukaya–Ono)

Given a finite group Γ, suppose V and W are finite dimensional
complex Γ representations. If V is faithful, then there exists d � 1
such that for a generic p ∈ PolyΓ

d(V ,W ), the zero locus p−1(0) is
a smooth algebraic variety over C.

Proof.
For d � 1, W is a sub-representation of Symd(V ).

I For p generic, the boundary of p−1(0) is of real codimension
at least 2.
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I Our result is a globalization of Fukaya–Ono’s lemma.

I We make use of a special class of sections of E → X , whose
existence crucially relies on the (almost) complex structures,
so that the zero loci along X free of these sections are (families
of) smooth complex algebraic varieties.

I Warning: The genericity in Fukaya–Ono’s result depends on
the degree d and the group Γ, so much of the hard work is to
remove such dependence.

I To this end, we need to investigate Whitney stratifications on
the universal zero locus

ZΓ
d (V ,W ) := {(v , p) ∈ V × PolyΓ

d(V ,W )|p(v) = 0}.
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Normally complex sections

I Suppose V ,W are finite dimensional complex
Γ-representations.

I Suppose the isotropy group of x ∈ V under the Γ-action is
Γ′ < Γ.

I Decompose the tangent space TxV as V Γ′ ⊕ (V Γ′
)⊥, similarly

W = W Γ′ ⊕ (W Γ′
)⊥ as complex Γ′-representations.

I Assume (V Γ′
)⊥ is not {0}.

I Identifying Nbd0TxV with NbdxV , a smooth Γ-equivariant
map s : V →W near x could be written as

s = sinv ⊕ s⊥

under the decomposition W = W Γ′ ⊕ (W Γ′
)⊥.
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)⊥),

we can construct a section s⊥ : NbdV Γ′ (V )→ (W Γ′
)⊥ by

composing s⊥ with the evaluation map. The map s⊥ is called
a complex polynomial lifting of s⊥.

I A Γ-equivariant map s : V →W is called a
Fukaya–Ono–Parker map near x if s⊥ from the decomposition
s = sinv ⊕ s⊥ has a complex polynomial lifting.
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I In reality, under the decomposition s = sinv ⊕ s⊥, we can take
sinv to be constant along the normal direction (V Γ′

)⊥.

Lemma (Fukaya–Ono)

If d is sufficiently large, any generic equivariant map s admitting a
complex polynomial lifting satisfies:

1. s−1(0) ∩ V free is smooth;

2. s−1(0) ∩ V free \ (s−1(0) ∩ V free) is of codimension at least 2.

I This is the local version of our statement.

I There is a parametric version of the above lemma dealing with
cobordism invariance.
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Difficulties of local-to-global

I Fukaya–Ono’s lemma is not sufficient to establish the full
proof.

I The relevant definition of polynomial perturbation and
transversality condition in their statement is not intrinsic
enough: it depends on the cut-off degree d , the choice of
tubular neighborhoods, and the choice of local uniformizer
group of an orbifold chart.

I In other words, it was unclear about how to choose a complex
polynomial section varying coherently along different strata
indexed by isotorpy groups, and it was unclear if the
transversality is open.
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Difficulties of local-to-global

I We overcome these problems by studying a “canonical”
Whitney stratification on the universal zero locus

Zd := {(v ,P) ∈ (V Γ′
)⊥ × PolyΓ′

d ((V Γ′
)⊥, (W Γ′

)⊥)|P(v) = 0}

and study its behavior when varying d and Γ′.

I Certain aspects of the proof are inspired by an unpublished
work of Brett Parker.

I Once the openness of a suitable transversality condition is
established, a good perturbation and the relevant parametric
statement follow by the usual arguments in differential
topology.
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