Integral counterpart of Gromov-Witten invariants

Shaoyun Bai (Princeton University)

Seminar in Real & Complex Geometry April 28, 2022

(Based on joint work with Guangbo Xu) Preprint available on arXiv:2201.02688

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Background and results

Gromov-Witten invariants in symplectic geometry

Table of Contents

Background and results

Gromov-Witten invariants in symplectic geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 \mathbb{Z} -valued Gromov–Witten invariants

Refined curve-counting from bordism

Moduli spaces as derived orbifolds Stable complex derived orbifold bordism

Discussion of the proof

Overview of the proof Normally complex sections Difficulties of local-to-global

• Let (X, ω) be a closed symplectic manifold of dimension 2n.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Let (X, ω) be a closed symplectic manifold of dimension 2n.
 ω ∈ Ω²(X), dω = 0, for ∀x ∈ X, the restriction ω_x : T_xX ⊗ T_xX → ℝ is a skew-symmetric non-degenerate bilinear form.

- Let (X, ω) be a closed symplectic manifold of dimension 2n.
 ω ∈ Ω²(X), dω = 0, for ∀x ∈ X, the restriction ω_x : T_xX ⊗ T_xX → ℝ is a skew-symmetric non-degenerate bilinear form.
- ► $J : TX \to TX$ an ω -compatible almost complex structure: $J^2 = -Id, \ \omega(\cdot, \cdot) = \omega(J \cdot, J \cdot).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Let (X, ω) be a closed symplectic manifold of dimension 2n.
 ω ∈ Ω²(X), dω = 0, for ∀x ∈ X, the restriction ω_x : T_xX ⊗ T_xX → ℝ is a skew-symmetric non-degenerate bilinear form.

► $J : TX \to TX$ an ω -compatible almost complex structure: $J^2 = -Id, \ \omega(\cdot, \cdot) = \omega(J \cdot, J \cdot).$

Given a (nodal) Riemann surface (Σ, j), a map u : Σ → X is J-holomorphic if

$$du \circ j = J \circ du$$
, equivalently $\overline{\partial}_J u = \frac{1}{2}(du + J \circ du \circ j) = 0$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

e.g. algebraic curves in smooth projective varieties.

• Given $A \in H_2(X; \mathbb{Z})$, consider the moduli space

 $\overline{\mathcal{M}}_{g,k}(X,J,A) := \{ u : \Sigma \to X | (\Sigma,j) \in \overline{\mathcal{M}}_{g,k}, \overline{\partial}_J u, u \text{ stable} \}.$

• Given $A \in H_2(X; \mathbb{Z})$, consider the moduli space

$$\overline{\mathcal{M}}_{g,k}(X,J,A) := \{ u : \Sigma \to X | (\Sigma,j) \in \overline{\mathcal{M}}_{g,k}, \overline{\partial}_J u, u \text{ stable} \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• stability \Leftrightarrow finite automorphism group.

• Given $A \in H_2(X; \mathbb{Z})$, consider the moduli space

$$\overline{\mathcal{M}}_{g,k}(X,J,A) := \{ u : \Sigma \to X | (\Sigma,j) \in \overline{\mathcal{M}}_{g,k}, \overline{\partial}_J u, u \text{ stable} \}.$$

- stability \Leftrightarrow finite automorphism group.
- ► M_{g,k}(X, J, A) is a compact Hausdorff space with expected dimension

$$\operatorname{vdim}_{\mathbb{R}} = 2(n-3)(1-g) + 2k + 2c_1(A).$$

• Given $A \in H_2(X; \mathbb{Z})$, consider the moduli space

$$\overline{\mathcal{M}}_{g,k}(X,J,A) := \{ u : \Sigma \to X | (\Sigma,j) \in \overline{\mathcal{M}}_{g,k}, \overline{\partial}_J u, u \text{ stable} \}.$$

• stability \Leftrightarrow finite automorphism group.

► M_{g,k}(X, J, A) is a compact Hausdorff space with expected dimension

$$\mathrm{vdim}_{\mathbb{R}}=2(n-3)(1-g)+2k+2c_1(A).$$

It is a singular space in general: non-triviality of autmorphism group ⇒ "orbifold" singularity;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Given $A \in H_2(X; \mathbb{Z})$, consider the moduli space

$$\overline{\mathcal{M}}_{g,k}(X,J,A) := \{ u : \Sigma \to X | (\Sigma,j) \in \overline{\mathcal{M}}_{g,k}, \overline{\partial}_J u, u \text{ stable} \}.$$

• stability \Leftrightarrow finite automorphism group.

► M_{g,k}(X, J, A) is a compact Hausdorff space with expected dimension

$$\mathrm{vdim}_{\mathbb{R}}=2(n-3)(1-g)+2k+2c_1(A).$$

It is a singular space in general: non-triviality of autmorphism group ⇒ "orbifold" singularity; failure of transversality of ∂_J ⇒ non-smoothness.

Theorem (Fukaya–Ono, Li–Tian, Ruan, Siebert, Pardon...) The space $\overline{\mathcal{M}}_{g,k}(X, J, A)$ carries a \mathbb{Q} -valued virtual fundamental cycle $[\overline{\mathcal{M}}_{g,k}(X, J, A)]^{vir}$ of expected dimension.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Theorem (Fukaya–Ono, Li–Tian, Ruan, Siebert, Pardon...) The space $\overline{\mathcal{M}}_{g,k}(X, J, A)$ carries a \mathbb{Q} -valued virtual fundamental cycle $[\overline{\mathcal{M}}_{g,k}(X, J, A)]^{vir}$ of expected dimension.

• The cobordism class of $[\overline{\mathcal{M}}_{g,k}(X, J, A)]^{vir}$ is independent of J.

Theorem (Fukaya–Ono, Li–Tian, Ruan, Siebert, Pardon...) The space $\overline{\mathcal{M}}_{g,k}(X, J, A)$ carries a \mathbb{Q} -valued virtual fundamental cycle $[\overline{\mathcal{M}}_{g,k}(X, J, A)]^{vir}$ of expected dimension.

• The cobordism class of $[\overline{\mathcal{M}}_{g,k}(X, J, A)]^{vir}$ is independent of J.

Theorem (Fukaya–Ono, Li–Tian, Ruan, Siebert, Pardon...) The space $\overline{\mathcal{M}}_{g,k}(X, J, A)$ carries a \mathbb{Q} -valued virtual fundamental cycle $[\overline{\mathcal{M}}_{g,k}(X, J, A)]^{vir}$ of expected dimension.

• The cobordism class of $[\overline{\mathcal{M}}_{g,k}(X, J, A)]^{vir}$ is independent of J.

By pairing with classes in H^{*}(M_{g,k}; Q) and H^{*}(X; Q)^{⊗k} using st and ev, we obtain the so-called Gromov–Witten invariants. Background and results

Gromov-Witten invariants in symplectic geometry

Gromov-Witten invariants in symplectic geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question Why are the Gromov–Witten invariants Q-valued?

Gromov-Witten invariants in symplectic geometry

Question

Why are the Gromov–Witten invariants \mathbb{Q} -valued?

Moral reason: given a finite group Γ, the orbispace */Γ should be counted with weight 1/|Γ|.

Gromov-Witten invariants in symplectic geometry

Question

Why are the Gromov–Witten invariants \mathbb{Q} -valued?

Moral reason: given a finite group Γ, the orbispace */Γ should be counted with weight 1/|Γ|.

• Local model of
$$\overline{\mathcal{M}}_{g,k}(X, J, A) : s^{-1}(0)$$
 for $\pi \left(\int_{D}^{\infty} s^{s} \right)$, where D
is an orbifold, E is an orbi-bundle, s is an "equivariant" section.

Gromov-Witten invariants in symplectic geometry

Question

Why are the Gromov–Witten invariants Q-valued?

Moral reason: given a finite group Γ, the orbispace */Γ should be counted with weight 1/|Γ|.

► Local model of
$$\overline{\mathcal{M}}_{g,k}(X, J, A) : s^{-1}(0)$$
 for $\pi \begin{pmatrix} E \\ f \end{pmatrix}^s$, where D
is an orbifold, E is an orbi-bundle, s is an "equivariant"

section.

 Fukaya–Ono, Li–Tian: use multi-valued perturbation of s to achieve transverslity.

Background and results

Gromov-Witten invariants in symplectic geometry

Gromov-Witten invariants in symplectic geometry

Question

Why are the Gromov–Witten invariants \mathbb{Q} -valued?

Moral reason: given a finite group Γ, the orbispace */Γ should be counted with weight 1/|Γ|.

• Local model of
$$\overline{\mathcal{M}}_{g,k}(X, J, A) : s^{-1}(0)$$
 for $\pi \left(\int_{D}^{B} s \right)$, where D

is an orbifold, E is an orbi-bundle, s is an "equivariant" section.

- Fukaya–Ono, Li–Tian: use multi-valued perturbation of s to achieve transverslity.
- ▶ Pardon: Poincaré duality for orbifolds holds only over Q.

Table of Contents

Background and results

Gromov–Witten invariants in symplectic geometry \mathbb{Z} -valued Gromov–Witten invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Refined curve-counting from bordism

Moduli spaces as derived orbifolds Stable complex derived orbifold bordism

Discussion of the proof

Overview of the proof Normally complex sections Difficulties of local-to-global

Theorem (B–Xu, 2022)

Suppose (X, ω) is a closed symplectic manifold and $A \in H_2(X; \mathbb{Z})$. Fix a non-negative integer k. Then there is a well-defined integral homology class

 $[\overline{\mathcal{M}}_{0,k}(X,J,A)]_{free}^{vir} \in H_*(\overline{\mathcal{M}}_{0,k} \times X^k;\mathbb{Z})$

defined by virtually "counting" J-holomorphic maps in $\overline{\mathcal{M}}_{0,k}(X, J, A)$ with trivial automorphism group.

Theorem (B–Xu, 2022)

Suppose (X, ω) is a closed symplectic manifold and $A \in H_2(X; \mathbb{Z})$. Fix a non-negative integer k. Then there is a well-defined integral homology class

$$[\overline{\mathcal{M}}_{0,k}(X,J,A)]_{free}^{vir} \in H_*(\overline{\mathcal{M}}_{0,k} \times X^k;\mathbb{Z})$$

defined by virtually "counting" J-holomorphic maps in $\overline{\mathcal{M}}_{0,k}(X, J, A)$ with trivial automorphism group.

► Not true on the nose: we need to perturb the ∂_J-equation abstractly.

Theorem (B–Xu, 2022)

Suppose (X, ω) is a closed symplectic manifold and $A \in H_2(X; \mathbb{Z})$. Fix a non-negative integer k. Then there is a well-defined integral homology class

$$[\overline{\mathcal{M}}_{0,k}(X,J,A)]_{free}^{vir} \in H_*(\overline{\mathcal{M}}_{0,k} \times X^k;\mathbb{Z})$$

defined by virtually "counting" J-holomorphic maps in $\overline{\mathcal{M}}_{0,k}(X, J, A)$ with trivial automorphism group.

- ► Not true on the nose: we need to perturb the ∂_J-equation abstractly.
- This realizes a proposal of Fukaya–Ono back in the 1990s.

Theorem (B-Xu, 2022)

Suppose (X, ω) is a closed symplectic manifold and $A \in H_2(X; \mathbb{Z})$. Fix a non-negative integer k. Then there is a well-defined integral homology class

$$[\overline{\mathcal{M}}_{0,k}(X,J,A)]_{free}^{vir} \in H_*(\overline{\mathcal{M}}_{0,k} \times X^k;\mathbb{Z})$$

defined by virtually "counting" J-holomorphic maps in $\overline{\mathcal{M}}_{0,k}(X, J, A)$ with trivial automorphism group.

- Not true on the nose: we need to perturb the ∂_I -equation abstractly.
- This realizes a proposal of Fukaya–Ono back in the 1990s.
- Coincides with the ordinary fundamental class in the semi-positive case, which is known to be integral by Ruan-Tian. ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Based on work in progress of Hirschi–Swaminathan, we can define higher genus Z-valued Gromov–Witten type invariants along the same line as well.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Based on work in progress of Hirschi–Swaminathan, we can define higher genus Z-valued Gromov–Witten type invariants along the same line as well.
- These invariants are expected to satisfy certain variants of the Kontsevich–Manin axioms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Based on work in progress of Hirschi–Swaminathan, we can define higher genus Z-valued Gromov–Witten type invariants along the same line as well.
- These invariants are expected to satisfy certain variants of the Kontsevich–Manin axioms.
- The same technique could be applied to define Hamiltonian Floer theory with Z coefficients, or Lagrangian Floer theory with Z/2 coefficients, modulo smoothness issues of (thickened) moduli spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Based on work in progress of Hirschi–Swaminathan, we can define higher genus Z-valued Gromov–Witten type invariants along the same line as well.
- These invariants are expected to satisfy certain variants of the Kontsevich–Manin axioms.
- ► The same technique could be applied to define Hamiltonian Floer theory with Z coefficients, or Lagrangian Floer theory with Z/2 coefficients, modulo smoothness issues of (thickened) moduli spaces.
- In principle, such definitions would allow us to prove the Arnol'd conjecture over Z, improving the best result so far by Abouzaid–Blumberg (over F_p).

Question How to construct refinements of the \mathbb{Q} -valued virtual fundamental cycle?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Question

How to construct refinements of the $\mathbb{Q}\text{-valued virtual fundamental cycle?}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Slogan: one should do it in two steps.

Question

How to construct refinements of the $\mathbb{Q}\text{-valued virtual fundamental cycle?}$

Slogan: one should do it in two steps.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Question

How to construct refinements of the \mathbb{Q} -valued virtual fundamental cycle?

Slogan: one should do it in two steps.

$$\begin{array}{c} \overline{\mathcal{M}}_{g,k}(X,J,A) \\ \blacktriangleright & \text{Step 1: Show that} & \downarrow_{\mathsf{st}\times\mathsf{ev}} & \text{defines an element in} \\ & \overline{\mathcal{M}}_{g,k} \times X^k \\ & \overline{\Omega}^{\mathbb{C},\mathsf{der}}_*(\overline{\mathcal{M}}_{g,k} \times X^k) \Rightarrow \text{complex derived orbifold bordism.} \end{array}$$

Question

How to construct refinements of the \mathbb{Q} -valued virtual fundamental cycle?

Slogan: one should do it in two steps.

Step 1: Show that
$$\overline{\mathcal{M}}_{g,k}(X, J, A)$$

 $\downarrow_{st \times ev}$ defines an element in
 $\overline{\mathcal{M}}_{g,k} \times X^k$

 $\overline{\Omega}^{\mathbb{C},\mathsf{der}}_*(\overline{\mathcal{M}}_{g,k}\times X^k)\Rightarrow \mathsf{complex} \text{ derived orbifold bordism}.$

Step 2: Construct natural transformations between generalized homology theories Ω^{C,der}_{*} → MU_{*}, KU_{*}, ℤ, ℚ... Refined curve-counting from bordism

Moduli spaces as derived orbifolds

Table of Contents

Background and results

Gromov–Witten invariants in symplectic geometry Z-valued Gromov–Witten invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Refined curve-counting from bordism Moduli spaces as derived orbifolds

Stable complex derived orbifold bordism

Discussion of the proof

Overview of the proof Normally complex sections Difficulties of local-to-global \mathbb{Z} -valued Gromov–Witten

Refined curve-counting from bordism

└─Moduli spaces as derived orbifolds

Moduli spaces as derived orbifolds

Definition

A *derived orbifold chart* is a triple (D, E, s) where D is a smooth orbifold, $E \to D$ is a smooth orbibundle and $s : D \to E$ is a smooth section. (D, E, s) is said to be compact if $s^{-1}(0)$ is compact.
\mathbb{Z} -valued Gromov–Witten

Refined curve-counting from bordism

└─Moduli spaces as derived orbifolds

Moduli spaces as derived orbifolds

Definition

A derived orbifold chart is a triple (D, E, s) where D is a smooth orbifold, $E \to D$ is a smooth orbibundle and $s : D \to E$ is a smooth section. (D, E, s) is said to be compact if $s^{-1}(0)$ is compact.

► The Kuranishi models of M_{g,k}(X, J, A) present it locally as the zero locus of derived orbifold charts.

└─Moduli spaces as derived orbifolds

Moduli spaces as derived orbifolds

Definition

A derived orbifold chart is a triple (D, E, s) where D is a smooth orbifold, $E \to D$ is a smooth orbibundle and $s : D \to E$ is a smooth section. (D, E, s) is said to be compact if $s^{-1}(0)$ is compact.

- ▶ The Kuranishi models of $\overline{\mathcal{M}}_{g,k}(X, J, A)$ present it locally as the zero locus of derived orbifold charts.
- ► It is possible to patch the local charts together to get a global derived orbifold chart for M_{g,k}(X, J, A) using some recent results of Pardon, but there is a shortcut to take.

Proposition (Abouzaid–McLean–Smith, 2021)

After choosing certain auxiliary data, there exists a smooth derived orbifold chart (D, E, s) along with a map

$$\widetilde{st} imes \widetilde{ev} : D o \overline{\mathcal{M}}_{0,k} imes X^k$$

such that the zero locus $s^{-1}(0)$ is isomorphic to $\overline{\mathcal{M}}_{0,k}(X, J, A)$ and the restriction of $\widetilde{st} \times \widetilde{ev}$ along $s^{-1}(0)$ coincides with the product of the stabilization map and the evaluation map.

Proposition (Abouzaid–McLean–Smith, 2021)

After choosing certain auxiliary data, there exists a smooth derived orbifold chart (D, E, s) along with a map

$$\widetilde{st} imes \widetilde{ev} : D o \overline{\mathcal{M}}_{0,k} imes X^k$$

such that the zero locus $s^{-1}(0)$ is isomorphic to $\overline{\mathcal{M}}_{0,k}(X, J, A)$ and the restriction of $\widetilde{st} \times \widetilde{ev}$ along $s^{-1}(0)$ coincides with the product of the stabilization map and the evaluation map.

Actually TD and E are complex vector bundles.

Proposition (Abouzaid–McLean–Smith, 2021)

After choosing certain auxiliary data, there exists a smooth derived orbifold chart (D, E, s) along with a map

$$\widetilde{st} imes \widetilde{ev} : D o \overline{\mathcal{M}}_{0,k} imes X^k$$

such that the zero locus $s^{-1}(0)$ is isomorphic to $\overline{\mathcal{M}}_{0,k}(X, J, A)$ and the restriction of $\widetilde{st} \times \widetilde{ev}$ along $s^{-1}(0)$ coincides with the product of the stabilization map and the evaluation map.

- Actually TD and E are complex vector bundles.
- The work in progress by Hirschi–Swaminathan generalizes this result to the higher genus moduli spaces.

Proposition (Abouzaid–McLean–Smith, 2021)

After choosing certain auxiliary data, there exists a smooth derived orbifold chart (D, E, s) along with a map

$$\widetilde{st} imes \widetilde{ev} : D o \overline{\mathcal{M}}_{0,k} imes X^k$$

such that the zero locus $s^{-1}(0)$ is isomorphic to $\overline{\mathcal{M}}_{0,k}(X, J, A)$ and the restriction of $\widetilde{st} \times \widetilde{ev}$ along $s^{-1}(0)$ coincides with the product of the stabilization map and the evaluation map.

- Actually TD and E are complex vector bundles.
- The work in progress by Hirschi–Swaminathan generalizes this result to the higher genus moduli spaces.
- The quadruple (D, E, s, st × ev) is independent of various choices as an element in Ω^{C,der}_{*}(M_{0,k} × X^k).

Stable complex derived orbifold bordism

Table of Contents

Background and results

Gromov–Witten invariants in symplectic geometry Z-valued Gromov–Witten invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Refined curve-counting from bordism

Moduli spaces as derived orbifolds Stable complex derived orbifold bordism

Discussion of the proof

Overview of the proof Normally complex sections Difficulties of local-to-global

Stable complex derived orbifold bordism

Stable complex derived orbifold bordism

Suppose M is a topological space. We consider quadruples (D, E, s, f) such that: (D, E, s) is a compact derived orbifold chart, f : D → M is a continuous map.

Stable complex derived orbifold bordism

Stable complex derived orbifold bordism

Suppose M is a topological space. We consider quadruples (D, E, s, f) such that: (D, E, s) is a compact derived orbifold chart, f : D → M is a continuous map.

Introduce the following relations:

1. (*Restriction*) $(D, E, s, f) \sim (D', E', s', f')$ if $D' \subset D$ is an open subset with $s^{-1}(0) \subset D'$ and $E' = E|_{D'}$, $s' = s|_{D'}$, and $f' = f|_{D'}$.

Stable complex derived orbifold bordism

Stable complex derived orbifold bordism

Suppose M is a topological space. We consider quadruples (D, E, s, f) such that: (D, E, s) is a compact derived orbifold chart, f : D → M is a continuous map.

Introduce the following relations:

- 1. (*Restriction*) $(D, E, s, f) \sim (D', E', s', f')$ if $D' \subset D$ is an open subset with $s^{-1}(0) \subset D'$ and $E' = E|_{D'}$, $s' = s|_{D'}$, and $f' = f|_{D'}$.
- 2. (Stabilization) $(D, E, s, f) \sim (D', E', s', f')$ if D' is the total space of a vector bundle $\pi_F : F \to D$, $E' = \pi_F^* E \oplus \pi_F^* F$, $s' = \pi_F^* s \oplus \tau_F$ where $\tau_F : F \to \pi_F^* F$ is the tautological section, and $f' = f \circ \pi_F$.

Stable complex derived orbifold bordism

Stable complex derived orbifold bordism

Suppose M is a topological space. We consider quadruples (D, E, s, f) such that: (D, E, s) is a compact derived orbifold chart, f : D → M is a continuous map.

Introduce the following relations:

- 1. (*Restriction*) $(D, E, s, f) \sim (D', E', s', f')$ if $D' \subset D$ is an open subset with $s^{-1}(0) \subset D'$ and $E' = E|_{D'}$, $s' = s|_{D'}$, and $f' = f|_{D'}$.
- 2. (Stabilization) $(D, E, s, f) \sim (D', E', s', f')$ if D' is the total space of a vector bundle $\pi_F : F \to D$, $E' = \pi_F^* E \oplus \pi_F^* F$, $s' = \pi_F^* s \oplus \tau_F$ where $\tau_F : F \to \pi_F^* F$ is the tautological section, and $f' = f \circ \pi_F$.
- 3. (Cobordism) $(D, E, s, f) \sim (D', E', s', f')$ if there is a bordism between them.

Stable complex derived orbifold bordism

Stable complex derived orbifold bordism

Definition

A stable complex structure on (D, E, s) is a lifting of TD - E from KO to the complex K-theory.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Stable complex derived orbifold bordism

Stable complex derived orbifold bordism

Definition

A stable complex structure on (D, E, s) is a lifting of TD - E from KO to the complex K-theory.

Definition

The stable complex derived orbifold bordism of M, denoted by $\overline{\Omega}_*^{\mathbb{C},\text{der}}(Y)$, is defined to be the equivalence classes of (D, E, s, f) endowed with a stable complex structure modulo the relations introduced before.

Stable complex derived orbifold bordism

Stable complex derived orbifold bordism

Definition

A stable complex structure on (D, E, s) is a lifting of TD - E from KO to the complex K-theory.

Definition

The stable complex derived orbifold bordism of M, denoted by $\overline{\Omega}_*^{\mathbb{C},\text{der}}(Y)$, is defined to be the equivalence classes of (D, E, s, f) endowed with a stable complex structure modulo the relations introduced before.

This definition was first considered by Joyce and is developed further by Pardon.

Stable complex derived orbifold bordism

Stable complex derived orbifold bordism

Definition

A stable complex structure on (D, E, s) is a lifting of TD - E from KO to the complex K-theory.

Definition

The stable complex derived orbifold bordism of M, denoted by $\overline{\Omega}_*^{\mathbb{C},\text{der}}(Y)$, is defined to be the equivalence classes of (D, E, s, f) endowed with a stable complex structure modulo the relations introduced before.

- This definition was first considered by Joyce and is developed further by Pardon.
- Abouzaid–McLean–Smith's result actually shows that $\overline{\mathcal{M}}_{0,k}(X, J, A)$ uniquely defines an element in $\overline{\Omega}^{\mathbb{C}, \text{der}}_{*}(\overline{\mathcal{M}}_{0,k} \times X^{k}).$

Stable complex derived orbifold bordism

Stable complex derived orbifold bordism

Theorem (B–Xu, 2022) Denote by $\tilde{\Gamma}$ the set of isomorphism classes of finite groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Stable complex derived orbifold bordism

Stable complex derived orbifold bordism

Theorem (B–Xu, 2022)

Denote by $\tilde{\Gamma}$ the set of isomorphism classes of finite groups. For any $[\gamma] \in \tilde{\Gamma}$, there is a natural transformation between (generalized) homology theories

$$\mathcal{FOP}_{[\gamma]}:\overline{\Omega}^{\mathbb{C},\mathrm{der}}_*(Y) \to H_*(Y;\mathbb{Z})$$

by "recording" the contribution to the Euler class by points with stabilizer in the class $[\gamma]$.

Stable complex derived orbifold bordism

Stable complex derived orbifold bordism

Theorem (B–Xu, 2022)

Denote by $\tilde{\Gamma}$ the set of isomorphism classes of finite groups. For any $[\gamma] \in \tilde{\Gamma}$, there is a natural transformation between (generalized) homology theories

$$\mathcal{FOP}_{[\gamma]}:\overline{\Omega}^{\mathbb{C},\mathrm{der}}_*(Y) o H_*(Y;\mathbb{Z})$$

by "recording" the contribution to the Euler class by points with stabilizer in the class $[\gamma]$.

Applying *FOP*_[γ] to the global chart of *M*_{g,k}(X, J, A), we obtain ℤ-valued Gromov–Witten type invariants.

Stable complex derived orbifold bordism

Stable complex derived orbifold bordism

Theorem (B–Xu, 2022)

Denote by $\tilde{\Gamma}$ the set of isomorphism classes of finite groups. For any $[\gamma] \in \tilde{\Gamma}$, there is a natural transformation between (generalized) homology theories

$$\mathcal{FOP}_{[\gamma]}: \overline{\Omega}^{\mathbb{C}, \mathrm{der}}_*(Y) \to H_*(Y; \mathbb{Z})$$

by "recording" the contribution to the Euler class by points with stabilizer in the class $[\gamma]$.

- Applying *FOP*_[γ] to the global chart of *M*_{g,k}(X, J, A), we obtain ℤ-valued Gromov–Witten type invariants.
- Work in progress: a decomposition of Q-valued invariants into a weighted sum of integers.

Table of Contents

Background and results

Gromov–Witten invariants in symplectic geometry Z-valued Gromov–Witten invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Refined curve-counting from bordism

Moduli spaces as derived orbifolds Stable complex derived orbifold bordism

Discussion of the proof

Overview of the proof

Normally complex sections Difficulties of local-to-global

▶ To be more concrete, let us focus on a special case.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- To be more concrete, let us focus on a special case.
- Suppose X is a compact effective almost complex orbifold: X is locally modeled on U/Γ, the Γ-action is faithful; ∃J : TX → TX such that J² = −Id.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- To be more concrete, let us focus on a special case.
- Suppose X is a compact effective almost complex orbifold: X is locally modeled on U/Γ, the Γ-action is faithful; ∃J : TX → TX such that J² = -Id.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $E \rightarrow X$ is a complex orbifold vector bundle.

- To be more concrete, let us focus on a special case.
- Suppose X is a compact effective almost complex orbifold: X is locally modeled on U/Γ, the Γ-action is faithful; ∃J : TX → TX such that J² = -Id.
- $E \rightarrow X$ is a complex orbifold vector bundle.

Theorem (B-Xu)

Denote by $X^{\text{free}} \subset X$ the suborbifold consisting of points with trivial isotropy group. Then there exist normally complex smooth sections $s : X \to \mathcal{E}$ such that $s^{-1}(0) \cap X^{\text{free}}$ defines a pseudocycle. Moreover, given a pair of such sections s_1 and s_2 , the pseudocycles $s_1^{-1}(0) \cap X^{\text{free}}$ and $s_2^{-1}(0) \cap X^{\text{free}}$ are cobordant.

▶ $s^{-1}(0) \cap X^{\text{free}}$ is a pseudocycle $\Leftrightarrow s^{-1}(0) \cap X^{\text{free}} \subset X^{\text{free}}$ is a smooth submanifold and the boundary $\overline{s^{-1}(0) \cap X^{\text{free}}} \setminus (s^{-1}(0) \cap X^{\text{free}})$ could be covered by submanifolds with at least 2-dimensions lower.

▶ $s^{-1}(0) \cap X^{\text{free}}$ is a pseudocycle $\Leftrightarrow s^{-1}(0) \cap X^{\text{free}} \subset X^{\text{free}}$ is a smooth submanifold and the boundary $\overline{s^{-1}(0) \cap X^{\text{free}}} \setminus (s^{-1}(0) \cap X^{\text{free}})$ could be covered by submanifolds with at least 2-dimensions lower.

▶ ⇒ $s^{-1}(0) \cap X^{\text{free}}$ defines a homology class.

s⁻¹(0) ∩ X^{free} is a pseudocycle ⇔ s⁻¹(0) ∩ X^{free} ⊂ X^{free} is a smooth submanifold and the boundary s⁻¹(0) ∩ X^{free} \ (s⁻¹(0) ∩ X^{free}) could be covered by submanifolds with at least 2-dimensions lower.
⇒ s⁻¹(0) ∩ X^{free} defines a homology class.
s⁻¹₁(0) ∩ X^{free} and s⁻¹₂(0) ∩ X^{free} are cobordant ⇒ the homology class is an invariant of E → X.

s⁻¹(0) ∩ X^{free} is a pseudocycle ⇔ s⁻¹(0) ∩ X^{free} ⊂ X^{free} is a smooth submanifold and the boundary s⁻¹(0) ∩ X^{free} \ (s⁻¹(0) ∩ X^{free}) could be covered by submanifolds with at least 2-dimensions lower.
 ⇒ s⁻¹(0) ∩ X^{free} defines a homology class.
 s⁻¹₁(0) ∩ X^{free} and s⁻¹₂(0) ∩ X^{free} are cobordant ⇒ the homology class is an invariant of E → X. ⇒ "integral Euler class"

- ▶ $s^{-1}(0) \cap X^{\text{free}}$ is a pseudocycle $\Leftrightarrow s^{-1}(0) \cap X^{\text{free}} \subset X^{\text{free}}$ is a smooth submanifold and the boundary $\overline{s^{-1}(0) \cap X^{\text{free}}} \setminus (s^{-1}(0) \cap X^{\text{free}})$ could be covered by submanifolds with at least 2-dimensions lower.
- ► $\Rightarrow s^{-1}(0) \cap X^{\text{free}}$ defines a homology class.
- s₁⁻¹(0) ∩ X^{free} and s₂⁻¹(0) ∩ X^{free} are cobordant ⇒ the homology class is an invariant of E → X. ⇒ "integral Euler class"
- We can drop the compactness of X by considering almost complex compact derived orbifold chart (D, E, s). The section s is perturbed in a neighborhood of s⁻¹(0).

Overview of the proof

Question Why could this sort of equivariant transversality be achieved?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Why could this sort of equivariant transversality be achieved?

Lemma (Fukaya–Ono)

Given a finite group Γ , suppose V and W are finite dimensional complex Γ representations. If V is faithful, then there exists $d \gg 1$ such that for a generic $p \in \operatorname{Poly}_d^{\Gamma}(V, W)$, the zero locus $p^{-1}(0)$ is a smooth algebraic variety over \mathbb{C} .

Question

Why could this sort of equivariant transversality be achieved?

Lemma (Fukaya–Ono)

Given a finite group Γ , suppose V and W are finite dimensional complex Γ representations. If V is faithful, then there exists $d \gg 1$ such that for a generic $p \in \operatorname{Poly}_d^{\Gamma}(V, W)$, the zero locus $p^{-1}(0)$ is a smooth algebraic variety over \mathbb{C} .

Proof.

For $d \gg 1$, W is a sub-representation of $\text{Sym}^d(V)$.

Question

Why could this sort of equivariant transversality be achieved?

Lemma (Fukaya–Ono)

Given a finite group Γ , suppose V and W are finite dimensional complex Γ representations. If V is faithful, then there exists $d \gg 1$ such that for a generic $p \in \operatorname{Poly}_d^{\Gamma}(V, W)$, the zero locus $p^{-1}(0)$ is a smooth algebraic variety over \mathbb{C} .

Proof.

For $d \gg 1$, W is a sub-representation of $\text{Sym}^d(V)$.

▶ For p generic, the boundary of p⁻¹(0) is of real codimension at least 2.

• Our result is a globalization of Fukaya–Ono's lemma.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Our result is a globalization of Fukaya–Ono's lemma.
- We make use of a special class of sections of E → X, whose existence crucially relies on the (almost) complex structures, so that the zero loci along X^{free} of these sections are (families of) smooth complex algebraic varieties.

- Our result is a globalization of Fukaya–Ono's lemma.
- We make use of a special class of sections of E → X, whose existence crucially relies on the (almost) complex structures, so that the zero loci along X^{free} of these sections are (families of) smooth complex algebraic varieties.
- Warning: The genericity in Fukaya–Ono's result depends on the degree d and the group Γ, so much of the hard work is to remove such dependence.
Overview of the proof

- Our result is a globalization of Fukaya–Ono's lemma.
- We make use of a special class of sections of E → X, whose existence crucially relies on the (almost) complex structures, so that the zero loci along X^{free} of these sections are (families of) smooth complex algebraic varieties.
- Warning: The genericity in Fukaya–Ono's result depends on the degree d and the group Γ, so much of the hard work is to remove such dependence.
- To this end, we need to investigate Whitney stratifications on the universal zero locus

$$\mathcal{Z}_d^{\Gamma}(V,W) := \{(v,p) \in V \times \operatorname{Poly}_d^{\Gamma}(V,W) | p(v) = 0\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 \mathbb{Z} -valued Gromov–Witten

Discussion of the proof

-Overview of the proof

Thanks for your attention!

 \mathbb{Z} -valued Gromov–Witten

Discussion of the proof

Overview of the proof

Thanks for your attention! The rest is a bonus, which will be discussed only if time permits.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Normally complex sections

Table of Contents

Background and results

Gromov–Witten invariants in symplectic geometry Z-valued Gromov–Witten invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Refined curve-counting from bordism

Moduli spaces as derived orbifolds Stable complex derived orbifold bordism

Discussion of the proof

Overview of the proof Normally complex sections Difficulties of local-to-globa

└─Normally complex sections

Normally complex sections

 Suppose V, W are finite dimensional complex Γ-representations.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

└─Normally complex sections

Normally complex sections

- Suppose V, W are finite dimensional complex Γ-representations.
- Suppose the isotropy group of x ∈ V under the Γ-action is Γ' < Γ.</p>

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Normally complex sections

Normally complex sections

- Suppose V, W are finite dimensional complex Γ-representations.
- Suppose the isotropy group of x ∈ V under the Γ-action is Γ' < Γ.</p>
- Decompose the tangent space $T_x V$ as $V^{\Gamma'} \oplus (V^{\Gamma'})^{\perp}$, similarly $W = W^{\Gamma'} \oplus (W^{\Gamma'})^{\perp}$ as complex Γ' -representations.

Normally complex sections

Normally complex sections

- Suppose V, W are finite dimensional complex Γ-representations.
- Suppose the isotropy group of x ∈ V under the Γ-action is Γ' < Γ.</p>
- Decompose the tangent space $T_x V$ as $V^{\Gamma'} \oplus (V^{\Gamma'})^{\perp}$, similarly $W = W^{\Gamma'} \oplus (W^{\Gamma'})^{\perp}$ as complex Γ' -representations.

• Assume $(V^{\Gamma'})^{\perp}$ is not $\{0\}$.

Normally complex sections

Normally complex sections

- Suppose V, W are finite dimensional complex Γ-representations.
- Suppose the isotropy group of x ∈ V under the Γ-action is Γ' < Γ.</p>
- Decompose the tangent space $T_x V$ as $V^{\Gamma'} \oplus (V^{\Gamma'})^{\perp}$, similarly $W = W^{\Gamma'} \oplus (W^{\Gamma'})^{\perp}$ as complex Γ' -representations.
- Assume $(V^{\Gamma'})^{\perp}$ is not $\{0\}$.
- Identifying Nbd₀ T_xV with Nbd_xV, a smooth Γ-equivariant map s : V → W near x could be written as

$$s = s_{inv} \oplus s_{\perp}$$

under the decomposition $W = W^{\Gamma'} \oplus (W^{\Gamma'})^{\perp}$.

└─Normally complex sections

Normally complex sections

• By Γ' -equivariance, $s(V^{\Gamma'} \times \{0\}) \subset W^{\Gamma'}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

└─Normally complex sections

Normally complex sections

• By Γ' -equivariance, $s(V^{\Gamma'} \times \{0\}) \subset W^{\Gamma'}$.

Define Poly^{Γ'}_d((V^{Γ'})[⊥], (W^{Γ'})[⊥]), Γ'-equivariant complex polynomial maps of degree at most d.

Normally complex sections

Normally complex sections

- By Γ' -equivariance, $s(V^{\Gamma'} \times \{0\}) \subset W^{\Gamma'}$.
- Define Poly^{Γ'}_d((V^{Γ'})[⊥], (W^{Γ'})[⊥]), Γ'-equivariant complex polynomial maps of degree at most d.
- If we have a map s_⊥ : Nbd_{V^{Γ'}}(V) → Poly^{Γ'}_d((V^{Γ'})[⊥], (W^{Γ'})[⊥]), we can construct a section s_⊥ : Nbd_{V^{Γ'}}(V) → (W^{Γ'})[⊥] by composing s_⊥ with the evaluation map. The map s_⊥ is called a complex polynomial lifting of s_⊥.

Normally complex sections

Normally complex sections

- By Γ' -equivariance, $s(V^{\Gamma'} \times \{0\}) \subset W^{\Gamma'}$.
- Define Poly^{Γ'}_d((V^{Γ'})[⊥], (W^{Γ'})[⊥]), Γ'-equivariant complex polynomial maps of degree at most d.
- If we have a map s_⊥ : Nbd_{V^{Γ'}}(V) → Poly^{Γ'}_d((V^{Γ'})[⊥], (W^{Γ'})[⊥]), we can construct a section s_⊥ : Nbd_{V^{Γ'}}(V) → (W^{Γ'})[⊥] by composing s_⊥ with the evaluation map. The map s_⊥ is called a complex polynomial lifting of s_⊥.
- A Γ -equivariant map $s : V \to W$ is called a Fukaya–Ono–Parker map near x if s_{\perp} from the decomposition $s = s_{inv} \oplus s_{\perp}$ has a complex polynomial lifting.

└─Normally complex sections

Normally complex sections

▶ In reality, under the decomposition $s = s_{inv} \oplus s_{\perp}$, we can take s_{inv} to be constant along the normal direction $(V^{\Gamma'})^{\perp}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Normally complex sections

Normally complex sections

▶ In reality, under the decomposition $s = s_{inv} \oplus s_{\perp}$, we can take s_{inv} to be constant along the normal direction $(V^{\Gamma'})^{\perp}$.

Lemma (Fukaya–Ono)

If d is sufficiently large, any generic equivariant map s admitting a complex polynomial lifting satisfies:

-Normally complex sections

Normally complex sections

▶ In reality, under the decomposition $s = s_{inv} \oplus s_{\perp}$, we can take s_{inv} to be constant along the normal direction $(V^{\Gamma'})^{\perp}$.

Lemma (Fukaya–Ono)

If d is sufficiently large, any generic equivariant map s admitting a complex polynomial lifting satisfies:

1.
$$s^{-1}(0) \cap V^{\text{free}}$$
 is smooth;

2. $\overline{s^{-1}(0) \cap V^{\mathrm{free}}} \setminus (s^{-1}(0) \cap V^{\mathrm{free}})$ is of codimension at least 2.

A D N A 目 N A E N A E N A B N A C N

-Normally complex sections

Normally complex sections

▶ In reality, under the decomposition $s = s_{inv} \oplus s_{\perp}$, we can take s_{inv} to be constant along the normal direction $(V^{\Gamma'})^{\perp}$.

Lemma (Fukaya–Ono)

If d is sufficiently large, any generic equivariant map s admitting a complex polynomial lifting satisfies:

1.
$$s^{-1}(0) \cap V^{\text{free}}$$
 is smooth;

2. $\overline{s^{-1}(0) \cap V^{\text{free}}} \setminus (s^{-1}(0) \cap V^{\text{free}})$ is of codimension at least 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

This is the local version of our statement.

Normally complex sections

Normally complex sections

▶ In reality, under the decomposition $s = s_{inv} \oplus s_{\perp}$, we can take s_{inv} to be constant along the normal direction $(V^{\Gamma'})^{\perp}$.

Lemma (Fukaya–Ono)

If d is sufficiently large, any generic equivariant map s admitting a complex polynomial lifting satisfies:

1.
$$s^{-1}(0) \cap V^{\text{free}}$$
 is smooth;

2. $\overline{s^{-1}(0) \cap V^{\mathrm{free}}} \setminus (s^{-1}(0) \cap V^{\mathrm{free}})$ is of codimension at least 2.

- This is the local version of our statement.
- There is a parametric version of the above lemma dealing with cobordism invariance.

Difficulties of local-to-global

Table of Contents

Background and results

Gromov–Witten invariants in symplectic geometry Z-valued Gromov–Witten invariants

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Refined curve-counting from bordism

Moduli spaces as derived orbifolds Stable complex derived orbifold bordism

Discussion of the proof

Overview of the proof Normally complex sections Difficulties of local-to-global

Difficulties of local-to-global

 Fukaya–Ono's lemma is not sufficient to establish the full proof.

Difficulties of local-to-global

- Fukaya–Ono's lemma is not sufficient to establish the full proof.
- The relevant definition of polynomial perturbation and transversality condition in their statement is not intrinsic enough: it depends on the cut-off degree d, the choice of tubular neighborhoods, and the choice of local uniformizer group of an orbifold chart.

Difficulties of local-to-global

- Fukaya–Ono's lemma is not sufficient to establish the full proof.
- The relevant definition of polynomial perturbation and transversality condition in their statement is not intrinsic enough: it depends on the cut-off degree d, the choice of tubular neighborhoods, and the choice of local uniformizer group of an orbifold chart.
- In other words, it was unclear about how to choose a complex polynomial section varying coherently along different strata indexed by isotorpy groups, and it was unclear if the transversality is open.

We overcome these problems by studying a "canonical" Whitney stratification on the universal zero locus

$$Z_d := \{ (v, P) \in (V^{\Gamma'})^{\perp} \times \operatorname{Poly}_d^{\Gamma'}((V^{\Gamma'})^{\perp}, (W^{\Gamma'})^{\perp}) | P(v) = 0 \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

and study its behavior when varying d and Γ' .

We overcome these problems by studying a "canonical" Whitney stratification on the universal zero locus

$$Z_d := \{ (v, P) \in (V^{\Gamma'})^{\perp} \times \operatorname{Poly}_d^{\Gamma'}((V^{\Gamma'})^{\perp}, (W^{\Gamma'})^{\perp}) | P(v) = 0 \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

and study its behavior when varying d and Γ' .

 Certain aspects of the proof are inspired by an unpublished work of Brett Parker.

We overcome these problems by studying a "canonical" Whitney stratification on the universal zero locus

 $Z_d := \{ (v, P) \in (V^{\Gamma'})^{\perp} \times \operatorname{Poly}_d^{\Gamma'}((V^{\Gamma'})^{\perp}, (W^{\Gamma'})^{\perp}) | P(v) = 0 \}$

and study its behavior when varying d and Γ' .

- Certain aspects of the proof are inspired by an unpublished work of Brett Parker.
- Once the openness of a suitable transversality condition is established, a good perturbation and the relevant parametric statement follow by the usual arguments in differential topology.