Counting isolated points outside the image of a polynomial map

Boulos El Hilany

Seminar in Real and Complex Geometry

May 25, 2020

JOHANN:RADON.INSTITUTE FOR COMPUTATIONAL AND APPLIED MATHEMATICS

A polynomial map $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is said to be dominant if $f\left(\mathbb{C}^{2}\right)$ is an open dense subset of \mathbb{C}^{2}.

Example (A)

Consider the map

$$
(u, v) \mapsto f(u, v)=(u v, u v+u(1-u v))
$$

For a generic point $(a, b) \in \mathbb{C}^{2}$, we have $f^{-1}(a, b)=\left(\frac{b-a}{1-a}, \frac{a(1-a)}{b-a}\right)$

- For $b \neq 0$, 1 , we have $f^{-1}(1, b)=\emptyset$, and $f^{-1}(b, b)=\emptyset$.

A polynomial map $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is said to be dominant if $f\left(\mathbb{C}^{2}\right)$ is an open dense subset of \mathbb{C}^{2}.

Example (A)

Consider the map

$$
(u, v) \mapsto f(u, v)=(u v, u v+u(1-u v))
$$

For a generic point $(a, b) \in \mathbb{C}^{2}$, we have

$$
f^{-1}(a, b)=\left(\frac{b-a}{1-a}, \frac{a(1-a)}{b-a}\right)
$$

- For $b \neq 0$, 1 , we have $f^{-1}(1, b)=\emptyset$, and $f^{-1}(b, b)=\emptyset$.

The degree $\operatorname{deg} f$ of f is the maximum of the degrees of f_{1}, and f_{2}.

A polynomial map $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is said to be dominant if $f\left(\mathbb{C}^{2}\right)$ is an open dense subset of \mathbb{C}^{2}.

Example (A)

Consider the map

$$
(u, v) \mapsto f(u, v)=(u v, u v+u(1-u v))
$$

- For a generic point $(a, b) \in \mathbb{C}^{2}$, we have

$$
f^{-1}(a, b)=\left(\frac{b-a}{1-a}, \frac{a(1-a)}{b-a}\right)
$$

- For $b \neq 0$, 1 , we have $f^{-1}(1, b)=\emptyset$, and

$$
f^{-1}(b, b)=\emptyset
$$

The degree $\operatorname{deg} f$ of f is the maximum of the degrees of f_{1}, and f_{2}.

Problem

Given $d \in \mathbb{N}^{*}$. Characterize the invariants of $\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)$ (e.g. number of components, singularities, etc..) for maps above having degree d.

A polynomial map $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is said to be dominant if $f\left(\mathbb{C}^{2}\right)$ is an open dense subset of \mathbb{C}^{2}.

Fact

The set $\overline{\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)}$ is a (possibly empty) finite collection of algebraic curves, and isolated points.

Example (B)

Consider the map

$$
(u, v) \mapsto f(u, v)=(u v, u(1+u v)-v)
$$

- For a generic point $(a, b) \in \mathbb{C}^{2}$, we have $\left|f^{-1}(a, b)\right|=2$, but
- we also have $f^{-1}(-1,0)=\emptyset$

A polynomial map $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is said to be dominant if $f\left(\mathbb{C}^{2}\right)$ is an open dense subset of \mathbb{C}^{2}.

Fact

The set $\overline{\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)}$ is a (possibly empty) finite collection of algebraic curves, and isolated points.

Example (B)

Consider the map

$$
(u, v) \mapsto f(u, v)=(u v, u(1+u v)-v)
$$

For a generic point $(a, b) \in \mathbb{C}^{2}$, we have $\left|f^{-1}(a, b)\right|=2$, but
we also have $f^{-1}(-1,0)=\emptyset$

Question

Given $d \in \mathbb{N}^{*}$. How many isolated points can $\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)$ have for any map f above of degree d?

Motivation

■ The largeness of $\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)$ measures the "extremeness" of a maps' topology.

Motivation

■ The largeness of $\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)$ measures the "extremeness" of a maps' topology.
■ Polynomial maps $F: X \rightarrow Y$ appear as models for many real-life problems:

- In Multiview Geometry: Given a fixed number of cameras, we have
$X \rightsquigarrow$ Space of camera configurations + the data determining the 3D object O.
$Y \rightsquigarrow$ Space of sets of images taken from the cameras.
If y is a set of images, then $F^{-1}(y)$ is the camera positions + object reconstruction.

Motivation

■ The largeness of $\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)$ measures the "extremeness" of a maps' topology.
■ Polynomial maps $F: X \rightarrow Y$ appear as models for many real-life problems:
■ In Multiview Geometry: Given a fixed number of cameras, we have
$X \rightsquigarrow$ Space of camera configurations + the data determining the 3D object O.
$Y \rightsquigarrow$ Space of sets of images taken from the cameras.
If y is a set of images, then $F^{-1}(y)$ is the camera positions + object reconstruction.

- In Rigidity Theory: Given a fixed number of edges in a Laman graph \mathcal{G}, we have $X \rightsquigarrow$ Space of coordinates of vertices of \mathcal{G}.
$Y \rightsquigarrow$ Space of edge-length of \mathcal{G}.
If y is a set of edge-lengths, then $F^{-1}(y)$ is the set of all possible corresponding Laman graphs.

Motivation

■ The largeness of $\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)$ measures the "extremeness" of a maps' topology.
■ Polynomial maps $F: X \rightarrow Y$ appear as models for many real-life problems:
■ In Multiview Geometry: Given a fixed number of cameras, we have
$X \rightsquigarrow$ Space of camera configurations + the data determining the 3D object O.
$Y \rightsquigarrow$ Space of sets of images taken from the cameras.
If y is a set of images, then $F^{-1}(y)$ is the camera positions + object reconstruction.

■ In Rigidity Theory: Given a fixed number of edges in a Laman graph \mathcal{G}, we have $X \rightsquigarrow$ Space of coordinates of vertices of \mathcal{G}.
$Y \rightsquigarrow$ Space of edge-length of \mathcal{G}.
If y is a set of edge-lengths, then $F^{-1}(y)$ is the set of all possible corresponding Laman graphs.

In general, if $y \in Y \backslash F(X)$, then the problem has no solutions.

Main result

For any map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, let $\mathcal{I}_{f}^{\emptyset}$ denote the set of isolated points in $\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)$.

Main result

For any map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, let $\mathcal{I}_{f}^{\emptyset}$ denote the set of isolated points in $\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)$.

```
Theorem (Jelonek, 1999)
A dominant polynomial map \(f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}\) of degree \(d\) satisfies \(\left|\mathcal{I}_{f}^{\emptyset}\right| \leq(d-1)^{2}\).
```


Main result

For any map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, let $\mathcal{I}_{f}^{\emptyset}$ denote the set of isolated points in $\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)$.

```
Theorem (Jelonek, 1999)
A dominant polynomial map \(f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}\) of degree \(d\) satisfies \(\left|\mathcal{I}_{f}^{\emptyset}\right| \leq(d-1)^{2}\).
```

Is this upper bound sharp?

Main result

For any map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, let $\mathcal{I}_{f}^{\emptyset}$ denote the set of isolated points in $\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)$.

Theorem (Jelonek, 1999)

A dominant polynomial map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ of degree d satisfies $\left|\mathcal{I}_{f}^{\emptyset}\right| \leq(d-1)^{2}$.
Is this upper bound sharp?

Theorem (E, 2019)

1 There exists a large family* of dominant polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ of degree d, for which we have $\left|\mathcal{I}_{f}^{\emptyset}\right|<5 d$, and
2 for any $n \in \mathbb{N}^{*}$, there exists a map f in this family of degree $2 n+2$ such that $\left|\mathcal{I}_{f}^{\emptyset}\right|=2 n$.

Main result

For any map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, let $\mathcal{I}_{f}^{\emptyset}$ denote the set of isolated points in $\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)$.

Theorem (Jelonek, 1999)

A dominant polynomial map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ of degree d satisfies $\left|\mathcal{I}_{f}^{\emptyset}\right| \leq(d-1)^{2}$.
Is this upper bound sharp?

Theorem (E, 2019)

1 There exists a large family* of dominant polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ of degree d, for which we have $\left|\mathcal{I}_{f}^{\emptyset}\right|<5 d$, and
2 for any $n \in \mathbb{N}^{*}$, there exists a map f in this family of degree $2 n+2$ such that $\left|\mathcal{I}_{f}^{\emptyset}\right|=2 n$.

Example (C)

Let $p, q \in \mathbb{C}[t]$ be any two univariate complex polynomials of the same degree n, such that $p(0) \neq 0, q(0) \neq 0$, and $\operatorname{gcd}(p, q)=1$.
Let $f_{1}:=u v$, and $f_{2}:=u v+v \cdot p(u v)+v^{2} \cdot q(u v)$.
Then, we have

$$
\mathcal{I}_{f}^{\emptyset}=\{(a, a)\}_{p(a)=0} \cup\{(b, b)\}_{q(b)=0} \subset\left(\mathbb{C}^{*}\right)^{2}
$$

Jelonek's set

Given a dominant polynomial map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ of degree d, the set $\overline{\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)}$ consists of finitely-many algebraic curves, and at most $(d-1)^{2}$ isolated points.

Definition

Jelonek's set S_{f} of f is defined as

$$
\left\{y \in \mathbb{C}^{2}\left|\exists\left\{x_{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{C}^{2} ;\left|x_{k}\right| \rightarrow \infty, f\left(x_{k}\right) \rightarrow y\right\}\right.
$$

Jelonek's set

Given a dominant polynomial map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ of degree d, the set $\overline{\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)}$ consists of finitely-many algebraic curves, and at most $(d-1)^{2}$ isolated points.

Definition

Jelonek's set S_{f} of f is defined as

$$
\left\{y \in \mathbb{C}^{2}\left|\exists\left\{x_{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{C}^{2} ;\left|x_{k}\right| \rightarrow \infty, f\left(x_{k}\right) \rightarrow y\right\}\right.
$$

Example (A, ctnd)

For a generic point $(a, b) \in \mathbb{C}^{2}$, we have $f^{-1}(a, b)=\left(\frac{b-a}{1-a}, \frac{a(1-a)}{b-a}\right)$.
Then, we have $S_{f}=\left\{y \in \mathbb{C}^{2} \mid y_{1}=1\right.$, or $\left.y_{1}=y_{2}\right\}$.

The Topology of Polynomial Maps

The topology of a polynomial map $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ can be characterized by the projection of its graph $\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right) \subset \mathbb{C}^{4}$, onto the last two coordinates.

The graph $(t, p(t)) \subset \mathbb{C}^{2}$

The Topology of Polynomial Maps

The topology of a polynomial map $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ can be characterized by the projection of its graph $\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right) \subset \mathbb{C}^{4}$, onto the last two coordinates.

The graph $(t, p(t)) \subset \mathbb{C}^{2}$

The Topology of Polynomial Maps

The topology of a polynomial map $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ can be characterized by the projection of its graph $\left(x_{1}, x_{2}, f\left(x_{1}, x_{2}\right)\right) \subset \mathbb{C}^{4}$, onto the last two coordinates.

The graph $(t, p(t)) \subset \mathbb{C}^{2}$

Example (B, ctn)

The map $(u, v) \mapsto(u v, u(1+u v)-v)$ satisfies
$f^{-1}(-1,0)=\mathbb{C}^{2} \backslash f\left(\mathbb{C}^{2}\right)$, and
$S_{f}=\left\{y \in \mathbb{C}^{2} \mid y_{1}=-1\right\}$

Supports of polynomials

The support supp P of a bivariate polynomial

$$
P=\sum_{w \in \mathbb{N}^{2}} c_{w} x^{w}
$$

is the set $\left\{w \in \mathbb{N}^{2} \mid c_{w} \neq 0\right\}$ (here, $x^{w}=x_{1}^{w_{1}} x_{2}^{w_{2}}$).
For any $S \subset \mathbb{N}^{2}$, let $\mathbb{C}[S] \cong \mathbb{C}^{|S|}$ denote the space of all complex polynomials P above such that supp $P \subset S$.
Let A_{1}, A_{2} be two finite subsets in \mathbb{N}^{2}, and let $\mathbb{C}\left[A_{1}, A_{2}\right]:=\mathbb{C}\left[A_{1}\right] \oplus \mathbb{C}\left[A_{2}\right]$ denote the space of all polynomial couples $\left(f_{1}, f_{2}\right)$ such that supp $f_{1} \subset A_{1}$, and supp $f_{2} \subset A_{2}$.

Example (B, cntd, cntd)

If $A_{1}=\{(1,1)\}$, and $A_{2}=\{(1,0),(2,1),(0,1)\}$, then

- $f=\left(f_{1}, f_{2}\right):(u, v) \mapsto(u v, u(1+u v)-v)$ satisfies supp $f_{1}=A_{1}, \operatorname{supp} f_{2}=A_{2}$, and
- $f \leftrightarrow(1,1,1,-1) \in \mathbb{C}\left[A_{1}, A_{2}\right] \cong \mathbb{C}^{4}$.

Generically non-proper maps

Theorem (E, part 1)

There exists a large family (called generically non-proper) of dominant polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ with given degree d, satisfying $\left|\mathcal{I}_{f}^{\natural}\right|<5 d$.

Generically non-proper maps

Theorem (E, part 1)

There exists a large family (called generically non-proper) of dominant polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ with given degree d, satisfying $\left|\mathcal{I}_{f}^{\emptyset}\right|<5 d$.

We say that $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is generically non-proper if the polynomials f_{1}, f_{2} are "nice enough" outside \mathbb{C}^{2}.
Nice enough: We have

$$
\mathbb{V}\left(f_{1}, f_{2}\right) \cap\left(\mathbb{C}^{*}\right)^{2}=\operatorname{MN}\left(A_{1}, A_{2}\right) \text { and } \mathbb{V}\left(f_{i},|\operatorname{Jac} f|\right) \cap\left(\mathbb{C}^{*}\right)^{2}=\operatorname{MN}\left(A_{i}, B\right),
$$

where $|\operatorname{Jac} f|$ is the determinant of f 's Jacobian matrix, $B \subset \mathbb{N}^{2}$ is its support, and $\operatorname{MN}\left(S_{1}, S_{2}\right)$ is the mixed volume of $\operatorname{conv}\left(S_{1}\right), \operatorname{conv}\left(S_{2}\right)$.

Generically non-proper maps

Theorem (E, part 1)

There exists a large family (called generically non-proper) of dominant polynomial maps $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ with given degree d, satisfying $\left|\mathcal{I}_{f}^{\emptyset}\right|<5 d$.

We say that $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is generically non-proper if the polynomials f_{1}, f_{2} are "nice enough" outside \mathbb{C}^{2}.
Nice enough: We have

$$
\mathbb{V}\left(f_{1}, f_{2}\right) \cap\left(\mathbb{C}^{*}\right)^{2}=M\left(A_{1}, A_{2}\right) \quad \text { and } \quad \mathbb{V}\left(f_{i},|\operatorname{Jac} f|\right) \cap\left(\mathbb{C}^{*}\right)^{2}=\operatorname{MN}\left(A_{i}, B\right) \text {, }
$$

where $|\operatorname{Jac} f|$ is the determinant of f 's Jacobian matrix, $B \subset \mathbb{N}^{2}$ is its support, and $\operatorname{MN}\left(S_{1}, S_{2}\right)$ is the mixed volume of $\operatorname{conv}\left(S_{1}\right), \operatorname{conv}\left(S_{2}\right)$.
For $i=1,2$, let $A_{i} \subset \mathbb{N}^{2}$ denote the support of f_{i}.

Proposition

Generically non-proper polynomial maps in $\mathbb{C}\left[A_{1}, A_{2}\right]$ form an open dense subset.

Geometric part

Let $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a generically non-proper polynomial map.

- $\mu(f) \rightsquigarrow$ the number $\left|f^{-1}(y)\right|$, for any generic y in \mathbb{C}^{2} (i.e. the topological degree).

■ $\mathcal{N}_{\mu}(f) \rightsquigarrow$ nodes of S_{f} having multiplicity at least $\mu(f)$ (Jelonek's set S_{f} is a finite union of regular rational curves [Jelonek, 1993]).
$\square \mathcal{M}_{\infty}(f) \rightsquigarrow$ points $y \in \mathbb{C}^{2}$ for $f^{-1}(y)$ has a critical point at infinity.

Geometric part

Let $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a generically non-proper polynomial map.

- $\mu(f) \rightsquigarrow$ the number $\left|f^{-1}(y)\right|$, for any generic y in \mathbb{C}^{2} (i.e. the topological degree).

■ $\mathcal{N}_{\mu}(f) \rightsquigarrow$ nodes of S_{f} having multiplicity at least $\mu(f)$ (Jelonek's set S_{f} is a finite union of regular rational curves [Jelonek, 1993]).
$■ \mathcal{M}_{\infty}(f) \rightsquigarrow$ points $y \in \mathbb{C}^{2}$ for $f^{-1}(y)$ has a critical point at infinity.

Proposition

A generically non-proper map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ satisfies $\mathcal{I}_{f}^{\emptyset} \subset \mathcal{N}_{\mu}(f) \cup \mathcal{M}_{\infty}(f)$.

Geometric part

Let $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a generically non-proper polynomial map.
$\square \mu(f) \rightsquigarrow$ the number $\left|f^{-1}(y)\right|$, for any generic y in \mathbb{C}^{2} (i.e. the topological degree).
■ $\mathcal{N}_{\mu}(f) \rightsquigarrow$ nodes of S_{f} having multiplicity at least $\mu(f)$ (Jelonek's set S_{f} is a finite union of regular rational curves [Jelonek, 1993]).
$■ \mathcal{M}_{\infty}(f) \rightsquigarrow$ points $y \in \mathbb{C}^{2}$ for $f^{-1}(y)$ has a critical point at infinity.

Proposition

A generically non-proper map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ satisfies $\mathcal{I}_{f}^{\emptyset} \subset \mathcal{N}_{\mu}(f) \cup \mathcal{M}_{\infty}(f)$.

Example (C, ctnd)

The map in Example C satisfies $\mu(f)=2$.

Combinatorial part

For $i=1,2$, let A_{i} be the support of f_{i}, and let T_{i} be the set

$$
\left\{X+Y=\operatorname{deg} f_{i}\right\} \cup\{X=0\} \cup\{Y=0\} \subset \mathbb{R}^{2}
$$

Proposition

Let $f=\left(f_{1}, f_{2}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a generically non-proper map such that $A_{i}=\operatorname{supp} f_{i}$, $i=1,2$. Then, we have

$$
\left|\mathcal{I}_{f}^{\emptyset}\right| \leq\left|\mathcal{N}_{\mu}(f)\right|+\left|\mathcal{M}_{\infty}(f)\right|<5 \cdot \max _{i=1,2}\left|\left(\partial \operatorname{conv}\left(A_{i}\right) \backslash T_{i}\right) \cap \mathbb{N}^{2}\right| \leq 5 \cdot \operatorname{deg} f
$$

Future directions

Further investigate isolated missing points for:
■ arbitrary dominant polynomial maps $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$,
■ rational maps $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, and

- polynomial maps $F: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$;

Here, the set $\overline{\mathbb{C}^{3} \backslash F\left(\mathbb{C}^{3}\right)}$ has components of pure dimensions 0,1 , and 2 .

Thank you!

ArXiv:1909.08339

