Counting isolated points outside the image of a polynomial map

Boulos El Hilany

Seminar in Real and Complex Geometry

May 25, 2020

Example (A)

Consider the map

$$(u, v) \mapsto f(u, v) = (uv, uv + u(1 - uv)).$$

For a generic point $(a, b) \in \mathbb{C}^2$, we have $f^{-1}(a, b) = \left(\frac{b-a}{1-a}, \frac{a(1-a)}{b-a}\right)$

For
$$b \neq 0, 1$$
, we have $f^{-1}(1, b) = \emptyset$, and $f^{-1}(b, b) = \emptyset$.

Example (A)

Consider the map

$$(u, v) \mapsto f(u, v) = (uv, uv + u(1 - uv)).$$

For a generic point $(a, b) \in \mathbb{C}^2$, we have $f^{-1}(a, b) = \left(\frac{b-a}{1-a}, \frac{a(1-a)}{b-a}\right)$

For
$$b \neq 0, 1$$
, we have $f^{-1}(1, b) = \emptyset$, and $f^{-1}(b, b) = \emptyset$.

The **degree** deg *f* of *f* is the maximum of the degrees of f_1 , and f_2 .

Example (A)

Consider the map

$$(u, v) \mapsto f(u, v) = (uv, uv + u(1 - uv)).$$

For a generic point $(a, b) \in \mathbb{C}^2$, we have $f^{-1}(a, b) = \left(\frac{b-a}{1-a}, \frac{a(1-a)}{b-a}\right)$

For
$$b \neq 0, 1$$
, we have $f^{-1}(1, b) = \emptyset$, and $f^{-1}(b, b) = \emptyset$.

The degree deg *f* of *f* is the maximum of the degrees of f_1 , and f_2 .

Problem

Given $d \in \mathbb{N}^*$. Characterize the invariants of $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$ (e.g. number of components, singularities, etc..) for maps above having degree d.

Fact

The set $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$ is a (possibly empty) finite collection of algebraic curves, and isolated points.

Example (B)

Consider the map

$$(u, v) \mapsto f(u, v) = (uv, u(1+uv) - v).$$

For a generic point $(a, b) \in \mathbb{C}^2$, we have $|f^{-1}(a, b)| = 2$, but

we also have
$$f^{-1}(-1,0) = \emptyset$$

Fact

The set $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$ is a (possibly empty) finite collection of algebraic curves, and isolated points.

Example (B)

Consider the map

$$(u, v) \mapsto f(u, v) = (uv, u(1+uv) - v).$$

For a generic point $(a, b) \in \mathbb{C}^2$, we have $|f^{-1}(a, b)| = 2$, but we also have $f^{-1}(-1, 0) = \emptyset$

Question Given $d \in \mathbb{N}^*$. How many isolated points can $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$ have for any map f above of degree d?

The largeness of $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$ measures the "extremeness" of a maps' topology.

- The largeness of $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$ measures the "extremeness" of a maps' topology.
- Polynomial maps $F : X \to Y$ appear as models for many real-life problems:
 - In Multiview Geometry: Given a fixed number of cameras, we have
 - $X \rightsquigarrow$ Space of camera configurations + the data determining the 3D object O.
 - $Y \rightsquigarrow$ Space of sets of images taken from the cameras.
 - If y is a set of images, then $F^{-1}(y)$ is the camera positions + object reconstruction.

- The largeness of $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$ measures the "extremeness" of a maps' topology.
- Polynomial maps $F : X \to Y$ appear as models for many real-life problems:
 - In **Multiview Geometry**: Given a fixed number of cameras, we have *X* → Space of camera configurations + the data determining the 3D object *O*. *Y* → Space of sets of images taken from the cameras.
 - If y is a set of images, then $F^{-1}(y)$ is the camera positions + object reconstruction.

- In **Rigidity Theory**: Given a fixed number of edges in a Laman graph *G*, we have
 - $X \rightsquigarrow$ Space of coordinates of vertices of \mathcal{G} .
 - $Y \rightsquigarrow$ Space of edge-length of \mathcal{G} .

If y is a set of edge-lengths, then $F^{-1}(y)$ is the set of all possible corresponding Laman graphs.

- The largeness of $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$ measures the "extremeness" of a maps' topology.
- Polynomial maps $F : X \to Y$ appear as models for many real-life problems:
 - In **Multiview Geometry**: Given a fixed number of cameras, we have $X \rightsquigarrow$ Space of camera configurations + the data determining the 3D object *O*. $Y \rightsquigarrow$ Space of sets of images taken from the cameras.
 - If y is a set of images, then $F^{-1}(y)$ is the camera positions + object reconstruction.

■ In **Rigidity Theory**: Given a fixed number of edges in a Laman graph *G*, we have

 $X \rightsquigarrow$ Space of coordinates of vertices of \mathcal{G} .

 $Y \rightsquigarrow$ Space of edge-length of \mathcal{G} .

If y is a set of edge-lengths, then $F^{-1}(y)$ is the set of all possible corresponding Laman graphs.

In general, if $y \in Y \setminus F(X)$, then the problem has no solutions.

For any map $f : \mathbb{C}^2 \to \mathbb{C}^2$, let $\mathcal{I}_f^{\emptyset}$ denote the set of isolated points in $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$.

For any map $f : \mathbb{C}^2 \to \mathbb{C}^2$, let $\mathcal{I}_f^{\emptyset}$ denote the set of isolated points in $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$.

Theorem (Jelonek, 1999)

A dominant polynomial map $f : \mathbb{C}^2 \to \mathbb{C}^2$ of degree d satisfies $|\mathcal{I}_f^{\emptyset}| \leq (d-1)^2$.

For any map $f : \mathbb{C}^2 \to \mathbb{C}^2$, let $\mathcal{I}_f^{\emptyset}$ denote the set of isolated points in $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$.

Theorem (Jelonek, 1999)

A dominant polynomial map $f : \mathbb{C}^2 \to \mathbb{C}^2$ of degree d satisfies $|\mathcal{I}_f^{\emptyset}| \leq (d-1)^2$.

Is this upper bound sharp?

For any map $f : \mathbb{C}^2 \to \mathbb{C}^2$, let $\mathcal{I}_f^{\emptyset}$ denote the set of isolated points in $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$.

Theorem (Jelonek, 1999)

A dominant polynomial map $f : \mathbb{C}^2 \to \mathbb{C}^2$ of degree d satisfies $|\mathcal{I}_f^{\emptyset}| \leq (d-1)^2$.

Is this upper bound sharp?

Theorem (E, 2019)

- **There exists a large family**^{*} of dominant polynomial maps $f : \mathbb{C}^2 \to \mathbb{C}^2$ of degree d, for which we have $|\mathcal{I}_f^{\emptyset}| < 5d$, and
- **2** for any $n \in \mathbb{N}^*$, there exists a map f in this family of degree 2n + 2 such that $|\mathcal{I}_{f}^{\emptyset}| = 2n$.

For any map $f : \mathbb{C}^2 \to \mathbb{C}^2$, let $\mathcal{I}_f^{\emptyset}$ denote the set of isolated points in $\mathbb{C}^2 \setminus f(\mathbb{C}^2)$.

Theorem (Jelonek, 1999)

A dominant polynomial map $f : \mathbb{C}^2 \to \mathbb{C}^2$ of degree d satisfies $|\mathcal{I}_f^{\emptyset}| \leq (d-1)^2$.

Is this upper bound sharp?

Theorem (E, 2019)

- **1** There exists a large family* of dominant polynomial maps $f : \mathbb{C}^2 \to \mathbb{C}^2$ of degree d, for which we have $|\mathcal{I}_f^{\emptyset}| < 5d$, and
- **2** for any $n \in \mathbb{N}^*$, there exists a map f in this family of degree 2n + 2 such that $|\mathcal{I}_t^{\emptyset}| = 2n$.

Example (C)

Let $p, q \in \mathbb{C}[t]$ be any two univariate complex polynomials of the same degree n, such that $p(0) \neq 0$, $q(0) \neq 0$, and gcd(p, q) = 1. Let $f_1 := uv$, and $f_2 := uv + v \cdot p(uv) + v^2 \cdot q(uv)$. Then, we have $\mathcal{I}_f^{\emptyset} = \{(a, a)\}_{p(a)=0} \cup \{(b, b)\}_{q(b)=0} \subset (\mathbb{C}^*)^2.$

Boulos El Hilany RICAM

Isolated missing points

Jelonek's set

Given a dominant polynomial map $f : \mathbb{C}^2 \to \mathbb{C}^2$ of degree d, the set $\overline{\mathbb{C}^2 \setminus f(\mathbb{C}^2)}$ consists of finitely-many algebraic curves, and at most $(d-1)^2$ isolated points.

Definition

Jelonek's set S_f of f is defined as

$$\left\{y\in\mathbb{C}^2|\;\exists\;\{x_k\}_{k\in\mathbb{N}}\subset\mathbb{C}^2;\;|x_k| o\infty,\;f(x_k) oy
ight\}.$$

Jelonek's set

Given a dominant polynomial map $f : \mathbb{C}^2 \to \mathbb{C}^2$ of degree d, the set $\overline{\mathbb{C}^2 \setminus f(\mathbb{C}^2)}$ consists of finitely-many algebraic curves, and at most $(d-1)^2$ isolated points.

Definition

Jelonek's set S_f of f is defined as

$$\left\{ y \in \mathbb{C}^2 | \exists \{x_k\}_{k \in \mathbb{N}} \subset \mathbb{C}^2; |x_k| \to \infty, f(x_k) \to y
ight\}.$$

Example (A, ctnd)

For a generic point
$$(a, b) \in \mathbb{C}^2$$
, we have $f^{-1}(a, b) = \left(\frac{b-a}{1-a}, \frac{a(1-a)}{b-a}\right)$.

Then, we have $S_f = \{y \in \mathbb{C}^2 | y_1 = 1, \text{ or } y_1 = y_2\}.$

The Topology of Polynomial Maps

The topology of a polynomial map $f = (f_1, f_2) : \mathbb{C}^2 \to \mathbb{C}^2$ can be characterized by the projection of its graph $(x_1, x_2, f(x_1, x_2)) \subset \mathbb{C}^4$, onto the last two coordinates.

The Topology of Polynomial Maps

The topology of a polynomial map $f = (f_1, f_2) : \mathbb{C}^2 \to \mathbb{C}^2$ can be characterized by the projection of its graph $(x_1, x_2, f(x_1, x_2)) \subset \mathbb{C}^4$, onto the last two coordinates.

The Topology of Polynomial Maps

The topology of a polynomial map $f = (f_1, f_2) : \mathbb{C}^2 \to \mathbb{C}^2$ can be characterized by the projection of its graph $(x_1, x_2, f(x_1, x_2)) \subset \mathbb{C}^4$, onto the last two coordinates.

The support supp P of a bivariate polynomial

$$\mathsf{P} = \sum_{w \in \mathbb{N}^2} c_w x^w$$

is the set $\{w \in \mathbb{N}^2 | c_w \neq 0\}$ (here, $x^w = x_1^{w_1} x_2^{w_2}$).

For any $S \subset \mathbb{N}^2$, let $\mathbb{C}[S] \cong \mathbb{C}^{|S|}$ denote the space of all complex polynomials P above such that supp $P \subset S$.

Let A_1, A_2 be two finite subsets in \mathbb{N}^2 , and let $\mathbb{C}[A_1, A_2] := \mathbb{C}[A_1] \oplus \mathbb{C}[A_2]$ denote the space of all polynomial couples (f_1, f_2) such that supp $f_1 \subset A_1$, and supp $f_2 \subset A_2$.

Example (B, cntd, cntd)

If
$$A_1 = \{(1,1)\}$$
, and $A_2 = \{(1,0), (2,1), (0,1)\}$, then
 $f = (f_1, f_2) : (u, v) \mapsto (uv, u(1+uv) - v)$ satisfies supp $f_1 = A_1$, supp $f_2 = A_2$, and
 $f \leftrightarrow (1, 1, 1, -1) \in \mathbb{C}[A_1, A_2] \cong \mathbb{C}^4$.

Theorem (E, part 1)

There exists a large family (called generically non-proper) of dominant polynomial maps $f : \mathbb{C}^2 \to \mathbb{C}^2$ with given degree d, satisfying $|\mathcal{I}_{\ell}^{\emptyset}| < 5d$.

Theorem (E, part 1)

There exists a large family (called generically non-proper) of dominant polynomial maps $f : \mathbb{C}^2 \to \mathbb{C}^2$ with given degree d, satisfying $|\mathcal{I}_{\ell}^{\emptyset}| < 5d$.

We say that $f = (f_1, f_2) : \mathbb{C}^2 \to \mathbb{C}^2$ is generically non-proper if the polynomials f_1, f_2 are "nice enough" outside \mathbb{C}^2 .

Nice enough: We have

 $\mathbb{V}(f_1,f_2)\cap (\mathbb{C}^*)^2 = \mathsf{MV}(A_1,A_2) \quad \text{and} \quad \mathbb{V}(f_i,|\operatorname{Jac} f|)\cap (\mathbb{C}^*)^2 = \mathsf{MV}(A_i,B),$

where $| \operatorname{Jac} f |$ is the determinant of *f*'s Jacobian matrix, $B \subset \mathbb{N}^2$ is its support, and MV(S_1, S_2) is the mixed volume of $\operatorname{conv}(S_1), \operatorname{conv}(S_2)$.

Theorem (E, part 1)

There exists a large family (called generically non-proper) of dominant polynomial maps $f : \mathbb{C}^2 \to \mathbb{C}^2$ with given degree d, satisfying $|\mathcal{I}_{\ell}^{\emptyset}| < 5d$.

We say that $f = (f_1, f_2) : \mathbb{C}^2 \to \mathbb{C}^2$ is generically non-proper if the polynomials f_1, f_2 are "nice enough" outside \mathbb{C}^2 .

Nice enough: We have

 $\mathbb{V}(f_1,f_2)\cap (\mathbb{C}^*)^2 = \mathsf{MV}(A_1,A_2) \quad \text{and} \quad \mathbb{V}(f_i,|\operatorname{Jac} f|)\cap (\mathbb{C}^*)^2 = \mathsf{MV}(A_i,B),$

where $| \operatorname{Jac} f |$ is the determinant of f's Jacobian matrix, $B \subset \mathbb{N}^2$ is its support, and $\operatorname{MV}(S_1, S_2)$ is the mixed volume of $\operatorname{conv}(S_1)$, $\operatorname{conv}(S_2)$.

For i = 1, 2, let $A_i \subset \mathbb{N}^2$ denote the support of f_i .

Proposition

Generically non-proper polynomial maps in $\mathbb{C}[A_1, A_2]$ form an open dense subset.

Geometric part

Let $f = (f_1, f_2) : \mathbb{C}^2 \to \mathbb{C}^2$ be a generically non-proper polynomial map.

- $\mu(f) \rightsquigarrow$ the number $|f^{-1}(y)|$, for any generic y in \mathbb{C}^2 (i.e. the topological degree).
- $N_{\mu}(f) \rightsquigarrow$ nodes of S_{f} having multiplicity at least $\mu(f)$ (Jelonek's set S_{f} is a finite union of regular rational curves [Jelonek, 1993]).
- $\mathcal{M}_{\infty}(f) \rightsquigarrow$ points $y \in \mathbb{C}^2$ for $f^{-1}(y)$ has a critical point at infinity.

Geometric part

Let $f = (f_1, f_2) : \mathbb{C}^2 \to \mathbb{C}^2$ be a generically non-proper polynomial map.

- $\mu(f) \rightsquigarrow$ the number $|f^{-1}(y)|$, for any generic y in \mathbb{C}^2 (i.e. the topological degree).
- $\mathcal{N}_{\mu}(f) \rightsquigarrow$ nodes of S_f having multiplicity at least $\mu(f)$ (Jelonek's set S_f is a finite union of regular rational curves [Jelonek, 1993]).
- $\mathcal{M}_{\infty}(f) \rightsquigarrow$ points $y \in \mathbb{C}^2$ for $f^{-1}(y)$ has a critical point at infinity.

Proposition

A generically non-proper map $f : \mathbb{C}^2 \to \mathbb{C}^2$ satisfies $\mathcal{I}_f^{\emptyset} \subset \mathcal{N}_{\mu}(f) \cup \mathcal{M}_{\infty}(f)$.

Geometric part

Let $f = (f_1, f_2) : \mathbb{C}^2 \to \mathbb{C}^2$ be a generically non-proper polynomial map.

- $\mu(f) \rightsquigarrow$ the number $|f^{-1}(y)|$, for any generic y in \mathbb{C}^2 (i.e. the topological degree).
- $\mathcal{N}_{\mu}(f) \rightsquigarrow$ nodes of S_f having multiplicity at least $\mu(f)$ (Jelonek's set S_f is a finite union of regular rational curves [Jelonek, 1993]).
- $\mathcal{M}_{\infty}(f) \rightsquigarrow$ points $y \in \mathbb{C}^2$ for $f^{-1}(y)$ has a critical point at infinity.

Proposition

A generically non-proper map $f : \mathbb{C}^2 \to \mathbb{C}^2$ satisfies $\mathcal{I}_f^{\emptyset} \subset \mathcal{N}_{\mu}(f) \cup \mathcal{M}_{\infty}(f)$.

Example (C, ctnd)

The map in Example *C* satisfies $\mu(f) = 2$.

Combinatorial part

For i = 1, 2, let A_i be the support of f_i , and let T_i be the set

$$\{X+Y=\deg f_i\}\cup\{X=0\}\cup\{Y=0\}\subset\mathbb{R}^2.$$

Proposition

Let $f = (f_1, f_2) : \mathbb{C}^2 \to \mathbb{C}^2$ be a generically non-proper map such that $A_i = \text{supp } f_i$, i = 1, 2. Then, we have

 $|\mathcal{I}_{f}^{\emptyset}| \leq |\mathcal{N}_{\mu}(f)| + |\mathcal{M}_{\infty}(f)| < 5 \cdot \max_{i=1,2} |(\partial \operatorname{conv}(A_{i}) \setminus T_{i}) \cap \mathbb{N}^{2}| \leq 5 \cdot \deg f.$

Further investigate isolated missing points for:

- arbitrary dominant polynomial maps $\mathbb{C}^2 \to \mathbb{C}^2$,
- rational maps $\mathbb{C}^2 \to \mathbb{C}^2$, and
- polynomial maps $F : \mathbb{C}^3 \to \mathbb{C}^3$;

Here, the set $\overline{\mathbb{C}^3 \setminus F(\mathbb{C}^3)}$ has components of pure dimensions 0, 1, and 2.

Thank you!

ArXiv:1909.08339