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Part I: Basic definitions



Simple normal crossing divisor

Let X be a smooth variety. A divisor D is called a simple normal
crossing divisor if

D = ∪n
i=1Di ,

where
• Di ’s are all smooth divisors and
• every Di and Dj intersect transversally for every i , j.

A divisor D is called normal crossing divisor if etale locally the
divisor is a simple normal crossing divisor i.e., there exists a etale
surjective map from a variety π : U → X such that π−1(D) is a
simple normal crossing divisor in U.
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Examples of Vector bundles:Log-Cotangent bundle

• Let X be a smooth variety and D be a normal crossing
divisor.

Let us denote U := X \ D and τ : U → X is the
inclusion.

Ωn
X (log D) denotes the subsheaf of Ωn

X (∗D) := τ∗Ωn
U of

differential; forms with logarithmic poles along D, i.e., if V ⊆ X is
open, then

Γ(V ,Ωn
X (log D)) =

{α ∈ Γ(V ,Ωn
X (∗D)) : α and dα have simple poles along D}
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Log-Cotangent bundle

Consider the particular case

X = Cn and D = ∪r
i=1Di ,

where D1, . . . ,Dr are the first r coordinate hyperplanes, where
1 ≤ r ≤ n.

Then Ω1
X (log D) is freely generated as OX -module by

dx1
x1
, . . . , dxr

xr
, dxr+1, . . . , dxn.
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Semistable degeneration

A semistable degeneration is a flat morphism p : X → S
varieties such that
• X is a smooth variety,

• S is a discrete valuation ring, and
• generic fibre is smooth and
• the special fibre D is a normal crossing divisor in X .
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Examples of Vector bundles:Relative Log-Cotangent
bundle

Given a semistable degeneration we define

• the relative log cotangent bundle
Ω1

X/S(log D) := Ω1
X (log D)

p∗Ω1
S (log 0) ,

where ”0” denotes the closed point of the d.v.r S .

• The restriction of the bundle Ω1
X/S(log D) to the divisor D

is called the log cotangent bundle of D. We denote this by
Ω1

D(log ∂D).

• Dualizing sheaf of D

ωD := det Ω1
D(log ∂D)
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Higgs bundles on a Smooth/ Nodal curve

A nodal curve C is a curve with finitely many nodes, i.e., points
{x1, · · · , xn} such that the analytic local ring

ÔC,xi �
C[|t1, t2|]

t1 · t2
, ∀i = 1, . . . , n (1)

A Higgs bundle on a prestable (i.e., connected+ smooth/ nodal)
curve C is a pair (E , φ), where

• E is a vector bundle on C , and

• φ : E → E ⊗ωC is any bundle homomorphism. Here ωC

denotes the dualizing sheaf of C
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Part II. Moduli functors and corresponding moduli spaces for
smooth curves



Moduli of vector bundles and Higgs bundles on smooth
curves

FVB : Sch→ Sets, (FHB)
T 7→ {Isomorphism classes of vector (Higgs) bundles on X ×

T of rank r and degree d}

• There is an obvious forgetful map F : FHB → FVB and a map
(by adding the ”0”-Higgs field) Z : FVB → FHB and F ◦ Z is
the identity transformation on FVB .
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Stability and representability of the functors

A Higgs bundle (E , φ) on a smooth/ irreducible nodal curve is
called stable (semi-stable) if for any non zero and φ-invariant
subsheaf F (i.e., φ(F ) ⊆ F ⊗ωC ) we have

deg F
rank F < deg E

rank E
(≤)

• The subfunctors FHBst and FHBss of FHB consisting of all the
stable and semistable Higgs bundles always have coarse
moduli spaces. The moduli functor FVBss are always proper.
• If the rank and degree are coprime, then the functors FHBst

and FVBst are representable by smooth varietiesMHB and
MVB , respectively. Moreover,MVB is a proper variety.
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Moduli of vector bundles and Higgs bundles on smooth
curves

• The tangent space of the functor FVB at a point [E ] is
FVB(Speck [ε]) � H1(EndE).

• Therefore the cotangent space of the functor FVB at a point
[E ] is isomorphic to

H1(EndE)∨ � H0(EndE ⊗ωC) = Hom(E , E ⊗ωC),
i.e., the space of all Higgs fields on the vector bundle [E ].

Therefore, informally speaking the forgetful functor
F : FHB → FVB is actually like the cotangent bundle map and Z is
like the zero section.
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Liouville form and the natural symplectic form on any
cotangent bundle ?

Let X be any smooth variety. Then

ΩX ×X ΩX π∗ΩX ΩY

Y := ΩX

X

�

p

∆

• the section λ : Y → ΩY is called the Liouville 1-form.
• The 2-form ω := −dλ is a symplectic form on Y .

(symplectic:=non-degenerate and skew-symmetric 2-form)
• ThereforeMHB has a symplectic form.
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Log-symplectic form

Let X be a smooth variety and D a normal crossing divisor on X .

A log-symplectic form on X is an element ω ∈ Ω2
X (log D) which

is closed and non-degenerate (on TX (−log D)).

Let π : X → S be a semistable degeneration and D denote the
closed fibre.

• A relative log-symplectic form on X over S is an element
ω ∈ Ω2

X/S(log D) which is closed and non-degenerate (on
TX/S(−log D)).
• A log-symplectic form on D is an element ω ∈ Ω2

D(log ∂D)
which is closed and non-degenerate (on TD(−log ∂D)).



Relative log-symplectic form

Theorem
• Let X be a smooth variety, then ΩX has a natural symplectic

form.
• Given a semistable degeneration p : X → S there exists a

relative log-symplectic form on ΩX/S(log D).

Remark: The relative log symplectic form is not unique i.e., there
are other natural such forms on X
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Hitchin map and complete integrability (rank and
degree coprime case)

(Hitchin87)

• The moduliMHB has a natural symplectic form ω,

• We have natural morphism
h :MHB → ⊕i=n

i=0H0(X ,ω⊗i
X )

which maps (E , φ) to the coefficients of the characteristic
polynomial of the Higgs field φ. This is known as the
Hitchin map.
• the map is proper.
• the triple (MHB ,ω, h) is an example of an algebraically

complete integrable system.
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Tangent and cotangent space of the moduli of vector
bundles at a point ?

• T[E ]MVB �MVB(Spec k [ε]) =
Isomorphism classes of families of
vector bundles on X × Spec k [ε]
such that the closed fiber is E



• On a suitable affine cover U := {Ui}I of X , the first order
deformation of the bundle is given by

{Aij + εBij},
where
• {Aij} is the original transition functions of E and
• {Bij} ∈ ∏i,j Γ(Uij , EndE) such that

Ajk Bij + Bjk Aij = Bik .

• T[E ]MVB � H1(X , EndE)
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Tangent and cotangent space of the moduli of Higgs
bundles at a point (Hitchin, Biswas-Ramanan, Bottacin)

• T[(E ,φ)]MHB �MHB(k [ε]).

• Intuitively, it should have two parts, deformation of the
bundle and deformation of the Higgs field, and they should
be compatible in some sense.
• On a suitable affine cover U := {Ui}I, the first order

deformation of the bundle is given by {Aij + εBij}, where
• {Aij} is the original transition functions of E and
• {Bij} ∈ H1(U , EndE)

• The deformation of the Higgs field is given by {φ|Ui + εsi},
where {si} ∈ ∏i∈I H0(Ui, EndE ⊗ωC) should satisfy the
following condition

si − sj = [Aij, φ]
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Tangent and cotangent space of the moduli of Higgs
bundles at a point (Hitchin, Biswas-Ramanan, Bottacin)

• Giving the data {(U ,Bij, si)} is equivalent to giving an
element of

H1(C•),
where C• is the following complex of vector bundles

EndE [•,φ]−−→ EndE ⊗ωC

• Therefore, the tangent space at (E , φ) is isomorphic to
H1(C•).
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Description of the Liouville form on moduli of Higgs
bundles (Hitchin, Biswas-Ramanan, Bottacin)

The Liouville form is given by the composition

H1(C•)→ H1(End E) evaluation at φ−−−−−−−→ H1(X ,ωX ) � C.

{(Bij, si)} 7→ {Bij} 7→ {Trace(φ ◦ Bij)}

Notice φ ∈ Hom(E , E ⊗ωX ) � H1(End E)∨
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′
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By Serre duality, H2(ωX [−1]) � H1(X ,ωX ) � H0(X ,OX )∨ � C
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Set up for a degeneration of the moduli of vector
(Higgs) bundles on a smooth curve

• Fix a flat family of curves X over a d.v.r S such that
• X is regular over C,
• the generic fibre is a smooth curve,
• the closed fibre X0 is a nodal curve with single node.
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Moduli of vector (Higgs) bundles on a nodal curve (a
single node)

Fix X/S , r ≥ 2, d, (r , d) = 1. Define
FVB/S : Sch/S → Sets, (FHB/S)

T 7→ { vector (Higgs) bundles of rank r and degree d on X ×S T}

Pros.
• The moduli functors are represented by a smooth variety.
• It gives a flat degeneration of the moduli of vector (Higgs)

bundles on smooth curves.

Cons.
• FVB/S is not proper.
• The Hitchin map is not proper.
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Gieseker’s Moduli of Higgs bundles on a nodal curve (a
single node) ?

So basically we want to compactify the moduliMVB/S and the
Hitchin map on the moduliMHB/S . So we will have to introduce
new objects in the moduli.
Let X0 be a nodal curve with only one node.

Gieseker-Higgs bundle
A Gieseker-Higgs bundle of rank n and degree d is a triple
(πr : Xr → X0, E , φ), where

• πr : Xr → X0 is a semistable model of X0, i.e., Xr is obtained
by replacing the node with a chain of P1’s of length r . The
map πr is the contraction of the rational chain. we also call
it modification of the nodal curve X0.
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Gieseker’s Moduli of Higgs bundles on a nodal curve (a
single node) ?

Gieseker-Higgs bundle

• E is a vector bundle of rank r with the following special
properties

• E|Ri � O⊕ai ⊕O(1)⊕bi , bi > 0, and

• (πr )∗E is a torsion-free sheaf on the nodal curve X0.

We call them Gieseker vector bundle/ Admissible vector
bundle

• φ : E → E ⊗ (πr)∗ωX0 Notice ωXr � (πr)∗ωX0



Gieseker’s Moduli of Higgs bundles on a nodal curve (a
single node) ?

Gieseker-Higgs bundle

• E is a vector bundle of rank r with the following special
properties

• E|Ri � O⊕ai ⊕O(1)⊕bi , bi > 0, and

• (πr )∗E is a torsion-free sheaf on the nodal curve X0.

We call them Gieseker vector bundle/ Admissible vector
bundle

• φ : E → E ⊗ (πr)∗ωX0 Notice ωXr � (πr)∗ωX0



Gieseker’s Moduli of Higgs bundles on a nodal curve (a
single node) ?

Gieseker-Higgs bundle

• E is a vector bundle of rank r with the following special
properties

• E|Ri � O⊕ai ⊕O(1)⊕bi , bi > 0, and

• (πr )∗E is a torsion-free sheaf on the nodal curve X0.

We call them Gieseker vector bundle/ Admissible vector
bundle

• φ : E → E ⊗ (πr)∗ωX0 Notice ωXr � (πr)∗ωX0



Gieseker’s Moduli of Higgs bundles on a nodal curve (a
single node) ?

Gieseker-Higgs bundle

• E is a vector bundle of rank r with the following special
properties

• E|Ri � O⊕ai ⊕O(1)⊕bi , bi > 0, and

• (πr )∗E is a torsion-free sheaf on the nodal curve X0.

We call them Gieseker vector bundle/ Admissible vector
bundle

• φ : E → E ⊗ (πr)∗ωX0 Notice ωXr � (πr)∗ωX0



Gieseker’s Moduli of Higgs bundles on a nodal curve (a
single node) ?

Gieseker-Higgs bundle

• E is a vector bundle of rank r with the following special
properties

• E|Ri � O⊕ai ⊕O(1)⊕bi , bi > 0, and

• (πr )∗E is a torsion-free sheaf on the nodal curve X0.

We call them Gieseker vector bundle/ Admissible vector
bundle

• φ : E → E ⊗ (πr)∗ωX0 Notice ωXr � (πr)∗ωX0



Gieseker’s Moduli of Higgs bundles on a nodal curve (a
single node) ?

Gieseker-Higgs bundle

• E is a vector bundle of rank r with the following special
properties

• E|Ri � O⊕ai ⊕O(1)⊕bi , bi > 0, and

• (πr )∗E is a torsion-free sheaf on the nodal curve X0.

We call them Gieseker vector bundle/ Admissible vector
bundle

• φ : E → E ⊗ (πr)∗ωX0 Notice ωXr � (πr)∗ωX0



Modifications/ Gieseker curves



Modifications/ Gieseker curves



Functor of Gieseker-Higgs bundles

We define Functor of Gieseker-Higgs bundles

FGHB/S : Sch → Sets

T 7→ {Equivalence classes of Gieseker-Higgs bundles over T}

Equivalence classes Two Gieseker-Higgs bundles (Xr , E1, φ1)
and (Xr , E2, φ2) are said to be equivalent if there exists an
isomorphism σ ∈ Aut(Xr /X0) such that

• σ∗E1 � E2, and

• σ∗φ1 = φ2

Notice that the equivalence class is stronger than the usual
isomorphism class
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Semistability and Representability of the functor

We define the degree and rank of the Gieseker vector bundle
(πr : Xr → X0, E) to be the same as the degree and rank of the
torsion-free sheaf (πr)∗E .

From here onwards we assume that the rank and degree are
coprime.

We call a Gieseker-Higgs bundle (πr : Xr → X0, E) stable if the
torsion-free Higgs pair ((πr)∗E , (πr)∗φ) is stable.
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Representability of the functor of Gieseker-Higgs
bundles (Balaji-Barik-Nagaraj) ?

Let S be a d.v.r and X → S be a flat family of curves whose
• X is a smooth surface,
• generic fibre is smooth projective curve,
• closed fibre is a nodal curve with a single node.

Theorem
(Gieseker, Balaji-Barik-Nagaraj) There exists a flat family of
varietiesMGHB/S over S which represents the functor Funcst

GHB/S .
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Functor of Gieseker curves and its versal family ?

Define FGC/S : Art-Sch/S → Sets

(T → S) 7→ {Isom. classes of Gieseker curves Xmod
T → X ×S T

such that the closed fiber is Xn }

Theorem
(Gieseker, Nagaraj-Seshadri)
• It has a versal family
Cver → V := Spec C[|z1, · · · , zn+1|]→ S := Spec C[|t |]

of deformations of the curve Xn. In particular, FGC/S is
formally smooth over S ,
• the restriction Cver |Hi on i-th hyperplane Hi is the smoothing of

the i-th node of Xn. In other words, the equation of the i-th
node is zi = 0.
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is a normal crossing divisor and hence it gives a semistable
degneration of the moduli of Higgs bundles.
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Part IV: Log schemes and log structures on the moduli of
Gieseker-Higgs bundles



Log Schemes

A log scheme is a triple (X ,M, α) where
• X is a scheme,
• M is a etale sheaf of monoids, and
• α :M→ OX is a morphism of sheaves of monoids such

that
α−1(O∗X )→ O∗X

is an isomorphism.

A chart for a log scheme (X ,M) is a monoid P with a map of
sheaves of monoids PX →M which induces isomorphism
between the associated log structures.
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Morphism of log schemes

A log morphism between two log schemes (X ,MX , αX ) and
(Y ,MY , αY ) is a pair (f , f ], f [) where
• f : X → Y and f ] : f−1OY → OX define a morphism of

schemes,
• f [ : f−1MY →MX is a morphism of sheaves of monoids

which is compatible with f−1αY , αX and f ].

A chart for a morphism of log schemes f : (X ,M)→ (Y ,N )
consists of a pair of charts for the two log schemes which is
compatible with the log morphism f .
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Example of Log Schemes

Example 1:
Let X be a smooth variety and D be a normal crossing divisor.
Define U := X \D. Then for any etale open set V ⊆ X we define

M(V) := {f ∈ Γ(V ,OX )|f |U∩V ∈ Γ(V ∩ U,O∗X )}

This is a sheaf of monoids. The map α is the obvious inclusion
map. Then (X ,M, α) is a log scheme.

If x belongs to exactly r number of local components of D, then
the chart is given by Nr → C[x1, . . . , xn] sending ei 7→ xi for
i = 1, . . . , r .
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Example of Log Schemes.

Example 2:
Theorem. (S. Mochizuki, F. Kato) Let f : X → S be flat family of
prestable curves. Then there exists a natural log structure on X ,
a log structure on S and a log morphism from X to S such that
the underlying morphism of ordinary schemes is the same as f .



Example of Log Schemes

Brief outline of the log structure :
Let s ∈ S be a point such that Xs is a nodal curve with nodes
{p1, · · · , pn+1}.

The Henselian local ring of X at pi is

Oh
X ,pi

�
A [x,y]
xy−ti

for some ti ∈ mA ,s .
The log structure of S at s is N := N1 ⊕O∗S · · · ⊕O∗S Nn+1 where
Ni is induced by

N→ A which sends e 7→ ti .
(Ni can be thought as the log structure due to the node pi ) �
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Two Log structures on the moduli of Higgs bundles

There are two log structures on the relative moduli spaces
MGHB/S andMGVB/S .
• The universal curve Cuniv defines log structures on itself and

onMGHB/S andMGVB/S .
• The special fibresMGHB andMGVB are normal crossing

divisors on their respective relative moduli spaces.
Therefore they also define log structures on the relative
moduli spaces.
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Equivalence of the two log structures

Outline of the proof. Recall that we have the relative picture

Cuniv →MGHB/S → S

here S is a d.v.r with parameter t . (e.g. spec C[|t |])

One can show that at a point (Xn, E , φ) ∈ MGHB ,
• there are exactly n + 1 components that intersect each

other transversally.
Let z1, . . . , zn+1 are the local equations of the components
passing through the point (Xn, E , φ).

To prove that the two log structures are the same it is enough to
show that the local equations of nodes and the local equations
of the components are the same.
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Equivalence of the two log structures

This is because, etale locally, the curve Cuniv � f∗Cver for some
canonical local map f :MGHB/S → V .
So it is enough to check it for the versal family, which follows
from its construction.Therefore the two log structures are the
same. �

Theorem
(Gieseker, Nagaraj-Seshadri)
• It has a versal family
Cver → V := Spec C[|z1, · · · , zn+1|]→ S := Spec C[|t |]

of deformations of the curve Xn. In particular, FGC/S is
formally smooth over S ,
• the restriction Cver |Hi on i-th hyperplane Hi is the smoothing of

the i-th node of Xn. In other words, the equation of the i-th
node is zi = 0.
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Part V: Log deformations and log-tangent space of the moduli
of Gieseker-Higgs bundles



Log tangent space

Let (X ,M, α) be a log scheme and x ∈ X be any point.

The inclusion x : Spec k ↪→ X induces a log structure on the
point by pulling back the sheaf of monoids. We denote this
pulled back log scheme by (x,Mx , αx).
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Log tangent space

The inclusion i : Spec k ↪→ Spec k [ε] induces a log structure on
Spec k [ε] by composition x∗M→ k → k [ε].

Let us denote this
log scheme by (Spec k [ε],Mε, αε).

Then the log tangent space is defined to be the space of log
morphisms

T log
x := Hom(x,Mx ,αx )((Spec k [ε],Mε, αε), (X ,M, α)),

which are also (log)-liftings of the log-morphism x ↪→ X .
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Olsson’s Log stack

Let (S,L) be a fine log scheme. (fine:= finite type and integral
monoid, M is integral if the map M → Mgp is injective)

Define a fibered category

Log(S,L) → (Sch/S)

as follows.
• The objects of Log(S,L) are morphisms of fine log schemes

(X ,M)→ (S,L), and
• a morphism h : (X ′,M′)→ (X ,M) in Log(S,L) is a

morphism of (S,L)-log-schemes for which h[ : h∗M → M′

is an isomorphism.



Olsson’s Log stack

Let (S,L) be a fine log scheme. (fine:= finite type and integral
monoid, M is integral if the map M → Mgp is injective)

Define a fibered category

Log(S,L) → (Sch/S)

as follows.
• The objects of Log(S,L) are morphisms of fine log schemes

(X ,M)→ (S,L), and
• a morphism h : (X ′,M′)→ (X ,M) in Log(S,L) is a

morphism of (S,L)-log-schemes for which h[ : h∗M → M′

is an isomorphism.



Olsson’s Log stack

Let (S,L) be a fine log scheme. (fine:= finite type and integral
monoid, M is integral if the map M → Mgp is injective)

Define a fibered category

Log(S,L) → (Sch/S)

as follows.

• The objects of Log(S,L) are morphisms of fine log schemes
(X ,M)→ (S,L), and

• a morphism h : (X ′,M′)→ (X ,M) in Log(S,L) is a
morphism of (S,L)-log-schemes for which h[ : h∗M → M′

is an isomorphism.



Olsson’s Log stack

Let (S,L) be a fine log scheme. (fine:= finite type and integral
monoid, M is integral if the map M → Mgp is injective)

Define a fibered category

Log(S,L) → (Sch/S)

as follows.
• The objects of Log(S,L) are morphisms of fine log schemes

(X ,M)→ (S,L), and

• a morphism h : (X ′,M′)→ (X ,M) in Log(S,L) is a
morphism of (S,L)-log-schemes for which h[ : h∗M → M′

is an isomorphism.



Olsson’s Log stack

Let (S,L) be a fine log scheme. (fine:= finite type and integral
monoid, M is integral if the map M → Mgp is injective)

Define a fibered category

Log(S,L) → (Sch/S)

as follows.
• The objects of Log(S,L) are morphisms of fine log schemes

(X ,M)→ (S,L), and
• a morphism h : (X ′,M′)→ (X ,M) in Log(S,L) is a

morphism of (S,L)-log-schemes for which h[ : h∗M → M′

is an isomorphism.
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Olsson’s Log stack

Theorem
(Olsson) Log(S,L) is an algebraic stack locally of finite presentation
over S .

Useful properties
• Giving a log morphism of fine log schemes

f : (X ,M)→ (S,L) is equivalent to giving a morphism of
stacks fLog : X → Log(S,L).

• Ωlog
f � ΩfLog .

• The relative log tangent space for f at a point is isomorphic
to ordinary relative tangent space of fLog at the point.
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Relative log tangent space ofMGHB/S andMGVB/S

over S

Computation of the relative log tangent space :
• First of all

TMGHB/S /S(−log MGHB) � TMGHB/S /Log(S,L)

the relative log-tangent space at a point ofMGHB/S → S is
isomorphic to the rel. tangent space
ofMGHB/S → Log(S,L), where L is the log structure on S
induced by its closed point.
• Moreover,

TMGHB (−log ∂MGHB) � TMGHB /Log(s,s∗L)

here s : speck ↪→ S is the closed point and s∗L denotes the
pull back log structure.
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Relative log tangent space ofMGHB/S → S

Consider the fibre product

MGHB(k [ε]) MGHB(k [ε])×Log(s,s∗L)(k [ε])
Log(s,s∗L)(k )

Log(s,s∗L)(k [ε]) Log(s,s∗L)(k )

where
• the left vertical arrow is the differential of the map
MGHB → Log(k ,N) at the point (Xr , E , φ),

• the lower horizontal map is given by the log structure on
k [ε] induced from a log structure on k via the map
k ↪→ k [ε].
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Relative log tangent space ofMGHB/S andMGVB/S

over S

MGHB(k [ε]) MGHB(k [ε])×Log(s,s∗L)(k [ε])
Log(s,s∗L)(k )

Log(s,s∗L)(k [ε]) Log(s,s∗L)(k )

• The relative log tangent space ofMGHB/S over S at a point
(Xr , E , φ) is isomorphic to the fibre of the right vertical map
over the point of Log(s,s∗L)(k ) given by (Xr , E , φ).



Relative log tangent space ofMGHB/S andMGVB/S

over S

• Step 1. What is the log structure L?
N→ k [|t |]

e 7→ t

• Step 2. What is the log structure s∗L?
N→ k
e 7→ 0

• Step 3. What is the point of Log(s,s∗L)(k ) given by
(Xr , E , φ)?
The Gieseker-Higgs bundle p := (Xr , E , φ) gives an element
(p, p∗M) of Log(s,s∗L)(k ), whereM denotes the log
structure onMGHB/S .
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e 7→ 0

• Step 3. What is the point of Log(s,s∗L)(k ) given by
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The Gieseker-Higgs bundle p := (Xr , E , φ) gives an element
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Since there are r + 1 number of nodes in Xr therefore this
element is given by the log morphism

ei 0

(p, p∗M) ∑ ei Nr+1 k

(s, s∗L) e N k

e 0

=



• Step 4. What is the image (p, p∗M) under the lower
horizontal map Log(s,s∗L)(k [ε])← Log(s,s∗L)(k )?
It is given by

ei 0 0

(p[ε], (p∗M)ε) ∑ ei Nr+1 k k [ε]

(s, s∗L) e N k

e 0



• Step 5. What is the image of p := (Xr , E , φ) under the left
vertical mapMGHB(k [ε])→ Log(s,s∗L)(k [ε])?
An element ofMGHB(k [ε]) is a first order infinitesimal
deformation of p := (Xr → X0, E , φ). Let us denote the
deformation by pε := (Xε → X0 × spec k [ε], Eε, φε).
Let us write out the log structure on spec k [ε] induced by
the point (Xε, Eε, φε) i.e., by the family of curves Xε using
Mochizuki’s method.

Remember that the closed fibre of X is Xr . Let us denote its
nodes by {p1, . . . , pr+1}. The henselian local ring at the
node pi is the henselisation of

k [xi ,yi ,ε]
xi ·yi−λi ·ε

at the maximal ideal (xi, yi, ε).
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Relative log tangent space ofMGHB/S → S

The log structure on spec k [ε] induced by the node pi :

αi : N→ k [ε]
e 7→ λiε

Let us denote the log structure by Li .
Finally the induced log structure on spec k [ε] is the
amulgumated sum

Lk [ε] := L1 ⊕k [ε]∗ · · · ⊕k [ε]∗ Lr+1

It is isomorphic to the log structure associated with the prelog
structure

Nr+1 → k [ε]

ei 7→ λiε
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Therefore the image of p := (Xr , E , φ) under the map
MGHB(k [ε])→ Log(s,s∗L)(k [ε]) is given by the following log
morphism

ei ε · λi

(pε, p∗εM) ∑ ei Nr+1 k [ε]

(s, s∗L) e N k

e 0



Relative log tangent space ofMGHB/S → S

• Step 6. Elements of the fibre product :

MGHB(k [ε]) MGHB(k [ε])×Log(s,s∗L)(k [ε])
Log(s,s∗L)(k )

Log(s,s∗L)(k [ε]) Log(s,s∗L)(k )

Therefore, by equating the log structures in Step4. and
Step5., we conclude that an infinitesimal deformation
(Xε → X0 × spec k [ε], Eε, φε) of (Xr → X0, E , φ) is an
element of the fibre product if and only if λi = 0 for all
i = 1, . . . , r + 1.



Relative log tangent space ofMGHB/S → S

• Step 6. Elements of the fibre product :

MGHB(k [ε]) MGHB(k [ε])×Log(s,s∗L)(k [ε])
Log(s,s∗L)(k )

Log(s,s∗L)(k [ε]) Log(s,s∗L)(k )

Therefore, by equating the log structures in Step4. and
Step5., we conclude that an infinitesimal deformation
(Xε → X0 × spec k [ε], Eε, φε) of (Xr → X0, E , φ) is an
element of the fibre product if and only if λi = 0 for all
i = 1, . . . , r + 1.



Relative log tangent space ofMGHB/S → S

Step 7.
Lemma: Such deformations are trivial i.e., Xε � Xr × spec k [ε].
Proof. The space of first order infinitesimal deformations of the
nodal curve Xr is isomorphic to

Ext1(ΩXr ,OXr )

Now we use the following short exact sequence

Since λi = 0 for all i = 1, . . . , r + 1, it follows that the
infinitesimal deformation Xε ∈ H1(Xr ,Hom(ΩXr ,OXr )).
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Modifications/ Gieseker curves



Relative log tangent space ofMGHB/S → S

We have a natural map
π[

r : Hom(ΩXr ,OXr )→ Hom(π∗r ΩX0 ,OXr ). (2)
and the induced map

H1(π[
r ) : H1(Xr ,Hom(ΩXr ,OXr ))→ H1(Xr ,Hom(π∗r ΩX0 ,OXr ))

(3)

Moreover, given [X ′ε ] ∈ H1(Xr ,Hom(ΩXr ,OXr )),
H1(π[

r )([X ′ε ]) = the obstruction to extending the map Xr →
X0 to a map X ′ε → X0 × spec k [ε].

But since our deformation Xε ∈ FGHB/S(k [ε]), by definition,
comes with a morphism to X0 × spec k [ε], therefore

H1(π[
r )([Xε]) = 0
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It is not difficult to see that
Ker(π[

r : Hom(ΩXr ,OXr )→ Hom(π∗r ΩX0 ,OXr )) � ⊕r
i=1ORi .

Since H1(Ri,ORi ) = 0, the map Ker(H1(π[
r )) = 0. Therefore

[Xε] = 0 i.e., Xε � Xr × spec k [ε]. �
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Relative log tangent space ofMGHB/S → S

Theorem
• Therefore the relative log tangent space ofMGVB/S → S at a

point (Xr , E) is isomorphic to
H1(Xr , End E)

• Similarly, the relative log tangent space ofMGHB/S → S at a
point (Xr , E , φ) is isomorphic to

H1(C•)
where C• is the following complex of vector bundles on Xr

0→ End E [•,φ]−−→ End E ⊗ωXr → 0
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Part VI: Relative Log-Symplectic structure on the moduli of
Gieseker-Higgs bundles



Relative Log-Symplectic structure on the moduli of
Gieseker-Higgs bundles

We saw that the relative moduli of Gieseker-Higgs bundles
MGHB/S is (”almost”) the relative log-cotangent bundle of the
relative moduli of Gieseker vector bundlesMGVB/S .

T log
(Xr ,E) � H1(Xr , EndE)

and so
Ωlog

(Xr ,E) � H1(Xr , EndE)∨ � Hom(E , E ⊗ωXr ).

Therefore, there is a relative log-symplectic form on the moduli
MGHB/S .

Here ”almost” indicates the fact that the relative log-cotangent
bundle is a dense open subset ofMGHB/S
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Description of the log-symplectic pairing

Similarly as in the case of smooth curves, the relative
log-symplectic pairing is given by

H1(C•)⊗H1(C•)→H2(C• ⊗ C•)→H2(ωX0 [−1]) � C

((sij, ti), (s′ij, t
′
i )) 7→ sij ⊗ t ′j − ti ⊗ s′ij 7→ Trace(sij ◦ t ′j − ti ◦ s′ij)



Description of the log-symplectic pairing

Similarly as in the case of smooth curves, the relative
log-symplectic pairing is given by

H1(C•)⊗H1(C•)→H2(C• ⊗ C•)→H2(ωX0 [−1]) � C

((sij, ti), (s′ij, t
′
i )) 7→ sij ⊗ t ′j − ti ⊗ s′ij 7→ Trace(sij ◦ t ′j − ti ◦ s′ij)



Description of the log-symplectic pairing

Similarly as in the case of smooth curves, the relative
log-symplectic pairing is given by

H1(C•)⊗H1(C•)→H2(C• ⊗ C•)→H2(ωX0 [−1]) � C

((sij, ti), (s′ij, t
′
i )) 7→ sij ⊗ t ′j − ti ⊗ s′ij 7→ Trace(sij ◦ t ′j − ti ◦ s′ij)



Description of the log-symplectic pairing

Similarly as in the case of smooth curves, the relative
log-symplectic pairing is given by

H1(C•)⊗H1(C•)→H2(C• ⊗ C•)→H2(ωX0 [−1]) � C

((sij, ti), (s′ij, t
′
i )) 7→ sij ⊗ t ′j − ti ⊗ s′ij 7→ Trace(sij ◦ t ′j − ti ◦ s′ij)



Stratification by Poisson ranks

There are two stratifications
• Stratification by successive singular loci:

MGHB ⊃ ∂MGHB ⊃ · · · ⊃ ∂nMGHB

• Stratification by Poisson ranks:
MGHB ⊃ ∂θMGHB ⊃ · · · ⊃ ∂n

θMGHB

Proposition
• ∂rMGHB = ∂r

θMGHB for all 1 ≤ r ≤ n
• ∂rMGHB \ ∂r+1MGHB consists of all Gieseker-Higgs bundles

(Xr , E , φ).
• ∂n+1MGHB is empty. In particular, ∂nMGHB is a smooth

Poisson subvariety.
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Casimir functions and the symplectic leaves of a
stratum

Proposition The Casimir functions of the stratum
∂rMGHB \ ∂r+1MGHB are given by {µ1, . . . , µr}, where µi is

µi : ∂rMGHB \ ∂r+1MGHB → C

given by (Xr , E , φ) 7→ Trace(φ|Ei,2)

where Ei,2 is the non-trivial direct summand of
E|Ri � O

⊕ai
P1 ⊕OP1(1)⊕bi i.e., Ei,2 := OP1(1)⊕bi .

Remember, bi ’s are always non-zero positive integer.
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