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The Kadomtsev-Petviashvili equation

The KP equation is a PDE
that describes the motion of
water waves

∂

∂x

(
4pt −6ppx −pxxx

) = 3pyy

where p = p(x,y, t)
Taken in Nuevo Vallarta, Mexico by Mark J. Ablowitz
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Connection to Algebraic Curves

We seek solutions of the form

p(x,y, t) = 2
∂2

∂x2 logτ(x,y, t)

where τ(x,y, t) satisfies the Hirota’s differential equation

ττxxxx − 4τxxxτx + 3τ2
xx + 4τxτt − 4ττxt + 3ττyy −3τ2

y = 0

One can construct τ-functions from an algebraic curve C of genus g
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Connection to Algebraic Curves

Definition
The Riemann theta function is the complex analytic function

θ = θ(z |B) = ∑
c∈Zg

exp

[
1

2
cT Bc +cT z

]
where z ∈Cg and B is a Riemann matrix, a g ×g symmetric matrix
normalized to have negative definite real part.
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Connection to Algebraic Curves

In 1997, Krichever proved that the KP equation has solutions of the form

p(x,y, t) = 2
∂2

∂x2 logθ(ux+vy+wt,B)

for certain vectors u = (u1, . . . ,ug ),v = (v1, . . . ,vg ),w = (w1, . . . ,wg ) ∈Cg .

Now, for a specific curve C of genus g with Riemann matrix B, we can look
for τ of the form

τ(x,y, t) = θ(ux+vy+wt,B).
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Connection to Algebraic Curves

Consider (u1, . . . ,ug ,v1, . . . ,vg ,w1, . . . ,wg ) as a point in WP3g−1 such that

deg(ui) = 1, deg(vi) = 2, deg(wi) = 3 for i = 1,2, . . . ,g

Definition (Agostini-Çelik-Sturmfels, 2020)

The Dubrovin threefold DC comprises all points (u,v,w) in WP3g−1 such
that τ(x,y, t) satisfies the Hirota’s differential equation.
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Soliton Solutions

Fix k < n and a vector of parameters κ= (κ1,κ2, . . . ,κn) ∈Rn and consider

τ(x,y, t) = ∑
I∈([n]

k )
pI ·

∏
i,j∈I
i<j

(κj −κi) ·exp
[

x ·∑
i∈I
κi + y ·∑

i∈I
κ2

i + t ·∑
i∈I
κ3

i

]

Proposition (Sato)

The function τ is a solution to Hirota’s differential equation if and only if
the point p = (pI )I∈([n]

k ) lies in the Grassmannian Gr(k,n).

Definition
We define a (k,n)-soliton to be any function τ(x,y, t) where κ ∈Rn and
p ∈ Gr(k,n).
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Main Idea

We study solutions to the KP equations arising from algebraic curves
defined over a non-archimedean field K, like Q(ϵ) or C{{ϵ}}.

A curve over K can be thought of as a family of curves depending on a
parameter ϵ

θ(z) = ∑
c∈Zg

exp

[
1

2
cT Bc +cT z

]
⇝ θC (x) = ∑

c∈C

ac exp
[
cT z

]
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Main Idea

We study solutions to the KP equation arising from algebraic curves
defined over a non-archimedean field K, like Q(ϵ) or C{{ϵ}}.

For ϵ→ 0

The theta function becomes a finite sum of exponentials
The function

p(x,y, t) = 2
δ2

δx2 logτ(x,y, t)

becomes a soliton solution of the KP equation
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Degenerations of Theta Functions

Let X be a smooth curve of genus g over K. The metric graph is Trop(X).

The metric graph Γ= (V ,E) of a
genus 2 hyperelliptic curve

H1(Γ,Z) = 〈γ1, . . . ,γg〉
is a free abelian group of rank g

e := |E|
Λ := g ×e matrix whose i-th row records the coordinate of γi with
respect to the standard basis of Ze

∆ := diagonal e×e matrix that records edge lengths of the metric
graph.

Definition
The Riemann matrix of Γ= (V ,E) is

Q =Λ∆ΛT
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Example (g=2)

Consider X := { y 2 = f (x ) } where

f (x) = (x−1)(x−1−ϵ)(x−2)(x−2−ϵ)(x−3)(x−3−ϵ)

The six roots determine a subtree with six leaves which has a unique
hyperelliptic covering by a metric graph of genus 2

1

1
1 2

2

2

From the graph we can read off the tropical Riemann matrix Q

Q =Λ∆ΛT =
[

1 −1 0
0 1 −1

]2 0 0
0 2 0
0 0 2

 1 0
−1 1

0 −1

=
[

4 −2
−2 4

]
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Degenerations of Theta Functions

Consider

Bϵ =−1

ϵ
Q+R(ϵ)

Fix a ∈Rg

θ(z+ 1

ϵ
Qa |Bϵ) = ∑

c∈Zg

exp

[
− 1

2ϵ
cT Qc+ 1

ϵ
cT Qa

]
·exp

[
1

2
cT R(ϵ)c+cT z

]

Let ϵ→ 0. This converges provided

cT Qc−2cT Qa ≥ 0 for all c ∈Zg

or equivalently

aT Qa ≤ (a−c)T Q(a−c) for all c ∈Zg
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Voronoi and Delaunay

The condition

aT Qa ≤ (a−c)T Q(a−c) for all c ∈Zg

holds if and only if a belongs to the Voronoi cell for Q

For a in the Voronoi cell for Q,
consider the associated Delaunay set:

Da,Q = {
c ∈Zg : aT Qa = (a−c)T Q(a−c)

}
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θ(z+ 1

ϵ
Qa |Bϵ) = ∑

c∈Zg

exp

[
− 1

2ϵ
cT Qc+ 1

ϵ
cT Qa

]
·exp

[
1

2
cT R(ϵ)c+cT z

]

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)

Fix a in the Voronoi cell of the tropical Riemann matrix Q. For ϵ→ 0, the
series

θ(z+ 1

ϵ
Qa |Bϵ)

converges to the theta function supported on the Delaunay set C =Da,Q,
namely

θC (x) = ∑
c∈C

ac exp
[
cT z

]
, where ac = exp

[
1

2
cT R(0)c

]
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Example (g=2)

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)

Fix a in the Voronoi cell of Q and let C =Da,Q be the Delaunay set. As
ϵ→ 0,

θ(z+ 1

ϵ
Qa |Bϵ) → θC (x) = ∑

c∈C

ac exp
[
cT z

]
,

where ac = exp
[1

2 cT R(0)c
]

Example

For Q =
[

1 0
0 1

]
C =Da,Q = {(0,0), (1,0), (0,1), (1,1)}

The associated theta function is

θC = a00 +a10 exp[z1]+a01 exp[z2]+a11 exp[z1 +z2]
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The Hirota Variety

Let C = {c1,c2, . . . ,cm} ⊂Zg

θC (z) = a1 exp[cT
1 z ] + a2 exp[cT

2 z ] + ·· · + am exp[cT
mz ]

Consider

τ(x,y, t) = θC (ux+vy+wt) =
m∑

i=1
ai exp

[( g∑
j=1

cijuj
)

x +( g∑
j=1

cijvj
)

y +( g∑
j=1

cijwj
)

t
]

Definition

The Hirota variety HC consists of all points
(
a, (u,v,w)

)
in (K∗)m×WP3g−1

such that τ(x,y, t) satisfies Hirota’s differential equation
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Polynomials defining the Hirota Variety

Remark
Hirota’s differential equation can be written via the Hirota differential
operators as

P(Dx,Dy,Dt)τ•τ= 0

where P(x,y, t) = x4 −4xt +3y2 gives the soliton dispersion relation

For any two indices k,ℓ in {1, . . . ,m}

Pkℓ(u,v,w) := P
(

(ck −cℓ) ·u, (ck −cℓ) ·v, (ck −cℓ) ·w
)

defines a hypersurface in WP3g−1
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Polynomials defining the Hirota Variety

The polynomials defining HC correspond to points in

C [2] = {
ck +cℓ : 1 ≤ k < ℓ≤ m

} ⊂ Zg

Definition

A point d in C [2] is uniquely attained if there exists precisely one index pair
(k,ℓ) such that ck +cℓ = d. In that case, (k,ℓ) is a unique pair.
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Polynomials defining the Hirota Variety

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)

The Hirota variety HC is defined by the quartics

Pkℓ(u,v,w) := P
(

(ck −cℓ) ·u, (ck −cℓ) ·v, (ck −cℓ) ·w
)

for all unique pairs (k,ℓ) and by the polynomials∑
1≤k<ℓ≤m
ck+cℓ=d

Pkℓ(u,v,w)akaℓ

for all non-uniquely attained points d ∈C [2].
If all points in C [2] are uniquely attained then HC is defined by the

(m
2

)
quartics Pkℓ(u,v,w).
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Example (The Square)

Let g = 2 and C = {0,1}2

C [2] = {(0,1), (1,0), (1,1), (1,2), (2,1)}

There are four unique pairs (k,ℓ)

P13 = P24 = u4
1 −4u1w1 +3v2

1

P12 = P34 = u4
2 −4u2w2 +3v2

2

The point d = (1,1) is not uniquely attained in C [2]

P(u1 +u2,v1 +v2,w1 +w2)a00a11 + P(u1 −u2,v1 −v2,w1 −w2)a01a10

For any point in HC ⊂ (K∗)4×WP5, we can write τ(x,y, t) as a (2,4)-soliton

A =
[

1 1 0 0
0 0 1 1

]
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The g-Cube

Irreducible rational nodal curve with g nodes −→ metric graph is a
vertex with g loops −→ Tropical Riemann matrix is Ig .

1

1

1

1

1

fix the point a = ( 1
2 , 1

2 , . . . , 1
2 ) ∈Rg −→ corresponding Delaunay set

C =Da,Q = {0,1}g

θC = a00...0 + a10...0 exp[z1] + a010...0 exp[z2] +·· ·+ a0...01 exp[zg ]+
+a110...0 exp[z1 +z2] + a1010...0 exp[z1 +z3] + a0...011 exp[zg−1 +zg ]+

+·· ·+ a11...1 exp[z1 +z2 +·· ·+zg ].

For the equations cutting out the Hirota Variety, we are interested in the
combinatorics of C [2] (coming soon!)
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The main component

The Hirota variety HC lives in the space (C∗)2g ×WP3g−1 with
coordinate ring C[a±,u,v,w], where deg(ui) = 1,deg(vi) = 2, and
deg(wi) = 3, for i = 1,2, . . . ,g.
We investigate the subvariety denoted by
H I

C
= cl(

{
(a, (u,v,w)) ∈HC : u ̸= 0

}
)

H I
C

contains an irreducible subvariety of HC which we call the main
component, denoted by H M

C
.
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The parameterization map

Consider the map

φ : C3g+1 99K (C∗)2g ×WP3g−1 (1)
(λ0,λ1, . . . ,λg ,κ1,κ2, . . . ,κ2g ) −→ (ac1 ,ac2 , . . . ,ac2g ,u,v,w)

where the coordinates a = (ac1 ,ac2 , . . . ,ac2g ) are indexed by the points in
C = {0,1}g .

The image of φ is defined as

ui = κ2i−1 −κ2i, vi = κ2
2i−1 −κ2

2i, wi = κ3
2i−1 −κ3

2i, for all i = 1, . . . ,g,

ac =λ0
∏

i,j∈I
i<j

(κi −κj)
∏

i:ci=1
λi where I = {2i : ci = 0}∪ {2i−1 : ci = 1},

for all c ∈C .
(2)

H M
C

= (im(φ)).
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Motivation for the map (g=3)

Let X be a rational nodal curve, where n1,n2,n3 are its nodes. The
normalization of ν : X̃ → X that separates the 3 nodes of X is given by
a projective line.
We can consider κ1,κ2, . . . ,κ6 to be points on P1 and set
ν−1(ni) := {κ2i−1,κ2i}.
a basis of canonical differentials is

ω1 = 1

y

(
1

1−κ2y
− 1

1−κ1y

)
dy, ω2 = 1

y

(
1

1−κ4y
− 1

1−κ3y

)
dy,

ω3 = 1

y

(
1

1−κ6y
− 1

1−κ5y

)
dy.

when fixing y = 1/x as local coordinate.
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Motivation for the map (g=3)

The canonical differentials define a map α′ : (P1)2 99KC3 such that

(y1,y2) 7−→
(

g−1∑
i=1

∫ yi

0
ωj

)
, where

∫ yi

0
ωj = log

(
1−κ2j−1yi

1−κ2jyi

)
.

Exponentiation allows to map directly in the Jacobian through the
map C3 → (C∗)3 given by ((z1,z2,z3) 7→ (exp(z1),exp(z2),exp(z3))). The
composition gives the Abel map α : (P1)2 99K (C∗)3 given by

(y1,y2) 7→
((

1−κ1y1

1−κ2y1

)
·
(

1−κ1y2

1−κ2y2

)
,

(
1−κ3y1

1−κ4y1

)
·
(

1−κ3y2

1−κ4y2

)
,

(
1−κ5y1

1−κ6y1

)
·
(

1−κ5y2

1−κ6y2

))
.

The theta divisor of X is the image of the Abel map α up to translation.
One can find the implicitizing equation cutting out the image of this map in
Macaulay2. The resulting equation exactly gives the familiar theta function
for g = 3, with the ac parametrized by the κi’s as in φ.
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Motivation for the map (g=3)

we consider the theta functions

θ(z) = a000 +a100 exp(z1)+a010 exp(z2)+a001 exp(z3)+a110 exp(z1 +z2)

+a101 exp(z1 +z3)+a011 exp(z2 +z3)+a111 exp(z1 +z2 +z3).

and

θ(z+h) = a000 +a100 exp(h1)exp(z1)+a010 exp(h2)exp(z2)+a001 exp(h3)exp(z3)

+a110 exp(h1 +h2)exp(z1 +z2)+a101 exp(h1 +h3)exp(z1 +z3)

+a011 exp(h2 +h3)exp(z2 +z3)+a111 exp(h1 +h2 +h3)exp(z1 +z2 +z3).

Letting λi := exp(hi), we have

θ(z+h) = a000 +λ1a100 exp(z1)+λ2a010 exp(z2)+λ3a001 exp(z3)+λ1λ2a110 exp(z1 +z2)

+λ1λ3a101 exp(z1 +z3)+λ2λ3a011 exp(z2 +z3)+λ1λ2λ3a111 exp(z1 +z2 +z3).
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Soliton Matrix

With the parameterization given by φ, we can express

τ(x,y, t) = ∑
I∈([n]

k )
pI ·

∏
i,j∈I
i<j

(κj −κi) ·exp
[

x ·∑
i∈I
κi + y ·∑

i∈I
κ2

i + t ·∑
i∈I
κ3

i

]
,

with the pI =λ0
∏

i:ci=1λi for each I obtained from the points c ∈C by
taking the set I = {2i : ci = 0}∪ {2i−1 : ci = 1}

The corresponding soliton matrix is the g ×2g matrix
λ0λ1 λ0 0 0 0 0 . . . 0 0

0 0 λ2 1 0 0 . . . 0 0
0 0 0 0 λ3 1 . . . 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 . . . λg 1
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The main component is an irreducible subvariety

Theorem (Fevola- M., 2022)

Consider the map φ as before. This is a birational map onto its image,
which is an irreducible subvariety of HC and has dimension 3g.

Proof Idea.
Any point in the image of φ is a point in the Hirota variety HC since
it can be expressed as a (g,2g)-soliton
The map φ is invertible outside the closed set where the ui’s vanish:

κ2i−1 =
u2

i +vi

2ui
and κ2i =

vi −u2
i

2ui

We can conclude that the map φ is birational. This implies that the
closure of the image is irreducible and of dimension 3g.

Yelena Mandelshtam (UC Berkeley) Curves, Degenerations, Hirota Varieties March 10, 2022 28 / 34



The Schottky problem

Let Mg be the moduli space of curves of genus g and Ag the moduli
space of abelian varieties of dimension g.
Let J : Mg →Ag be the Torelli map, taking curves to Jacobians

The Schottky problem is to find the defining equations for the locus of
Jacobians, defined as the closure of J(Mg ) in Ag .
trivial in genus 3, solved in genus 4, hard for genus ≥ 5

The weak Schottky problem is to find an ideal whose zero locus
contains the locus of Jacobians as an irreducible component.
This is related to finding solutions to the KP equation because a theta
function satisfies the KP equation when the corresponding abelian
variety is a Jacobian of a curve
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The main component is an irreducible component?

Showing that H M
C

is an irreducible component is equivalent to solving the
Weak Schottky Problem for rational nodal curves, which can be solved by
showing that the map φ is dominant into H M

C
.

Theorem (Fevola-M., 2022)

For genus g ≤ 7, the subvariety H M
C

is an irreducible component of the
Hirota variety HC .

Conjecture (Weak Schottky Problem)

H M
C

is a 3g-dimensional irreducible component of HC with a parametric
representation given as in the map φ.

Conjecture (Strong Schottky Problem)

H M
C

=H I
C
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The g-Cube: C [2]

One can observe that C [2] is the set of lattice points in 2conv(C ) that are
not vertices, so there are 3g −2g points.
Each d−dimensional face of convC corresponds to a point that is attained
2d−1 times.
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Combinatorics of HC

Proposition (Fevola-M., 2022)

A point c = (c1, . . . ,cg ) in the set C [2] is attained exactly 2d−1 times, where
d = |{i : ci = 1}|.

Lemma (Fevola-M., 2022)

The set C [2] contains g2g−1 points which are uniquely attained. These contribute
g quartics of the form u4

j −4ujwj +3v2
j , for j = 1, . . . ,g as generators of HC .

Proof.
A point c ∈C is uniquely attained any time that the points ck,cℓ ∈C such that
ck +cℓ = c lie on same edge of the cube. Such points contribute the quartics

Pkℓ(u,v,w) := P
(

(ck −cℓ) ·u, (ck −cℓ) ·v, (ck −cℓ) ·w
)
.

The difference ck −cℓ corresponds to the direction of the edge. Hence out of
these g2g−1 quartics of this form, g of them are distinct.
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Additional Combinatorics in H M
C

A face of the g-cube is defined by fixing g −d indices of the corresponding
points. Let the non-fixed indices be given by the set I. We call this set the
direction of the face.

Theorem (Fevola-M., 2022)

There are
(g

d

)
face directions for each dimension d, and all faces with the

same direction contribute the same quartic, up to a multiple, to the ideal
defining H M

C
.
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Thank you!
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