Curves, degenerations, and Hirota varieties

Yelena Mandelshtam
University of California, Berkeley

March 10, 2022

Works featured

- KP Solitons from Tropical Limits with Daniele Agostini, Claudia Fevola, and Bernd Sturmfels (arxiv 2101.10392)
- Code can be found at https://mathrepo.mis.mpg.de/KPSolitonsFromTropicalLimits
- The Hirota Variety of a Rational Nodal Curve with Claudia Fevola (arxiv 2203.00203)
- Code can be found at https://mathrepo.mis.mpg.de/HirotaVarietyRationalNodalCurve

The Kadomtsev-Petviashvili equation

The KP equation is a PDE that describes the motion of water waves
$\frac{\partial}{\partial x}\left(4 p_{t}-6 p p_{x}-p_{x x x}\right)=3 p_{y y}$
where $p=p(x, y, t)$

Taken in Nuevo Vallarta, Mexico by Mark J. Ablowitz

Connection to Algebraic Curves

We seek solutions of the form

$$
p(x, y, t)=2 \frac{\partial^{2}}{\partial x^{2}} \log \tau(x, y, t)
$$

where $\tau(x, y, t)$ satisfies the Hirota's differential equation

$$
\tau \tau_{x x x x}-4 \tau_{x x x} \tau_{x}+3 \tau_{x x}^{2}+4 \tau_{x} \tau_{t}-4 \tau \tau_{x t}+3 \tau \tau_{y y}-3 \tau_{y}^{2}=0
$$

- One can construct τ-functions from an algebraic curve C of genus g

Connection to Algebraic Curves

Definition

The Riemann theta function is the complex analytic function

$$
\theta=\theta(\mathbf{z} \mid B)=\sum_{\mathbf{c} \in \mathbb{Z}^{g}} \exp \left[\frac{1}{2} \mathbf{c}^{T} B \mathbf{c}+\mathbf{c}^{T} \mathbf{z}\right]
$$

where $\mathbf{z} \in \mathbb{C}^{g}$ and B is a Riemann matrix, a $g \times g$ symmetric matrix normalized to have negative definite real part.

Connection to Algebraic Curves

In 1997, Krichever proved that the KP equation has solutions of the form

$$
p(x, y, t)=2 \frac{\partial^{2}}{\partial x^{2}} \log \theta(\mathbf{u} x+\mathbf{v} y+\mathbf{w} t, B)
$$

for certain vectors $\mathbf{u}=\left(u_{1}, \ldots, u_{g}\right), \mathbf{v}=\left(\nu_{1}, \ldots, v_{g}\right), \mathbf{w}=\left(w_{1}, \ldots, w_{g}\right) \in \mathbb{C}^{g}$.

Connection to Algebraic Curves

In 1997, Krichever proved that the KP equation has solutions of the form

$$
p(x, y, t)=2 \frac{\partial^{2}}{\partial x^{2}} \log \theta(\mathbf{u} x+\mathbf{v} y+\mathbf{w} t, B)
$$

for certain vectors $\mathbf{u}=\left(u_{1}, \ldots, u_{g}\right), \mathbf{v}=\left(v_{1}, \ldots, v_{g}\right), \mathbf{w}=\left(w_{1}, \ldots, w_{g}\right) \in \mathbb{C}^{g}$.

Now, for a specific curve C of genus g with Riemann matrix B, we can look for τ of the form

$$
\tau(x, y, t)=\theta(\mathbf{u} x+\mathbf{v} y+\mathbf{w} t, B) .
$$

Connection to Algebraic Curves

Consider ($u_{1}, \ldots, u_{g}, v_{1}, \ldots, v_{g}, w_{1}, \ldots, w_{g}$) as a point in $\mathbb{W W P}^{3 g-1}$ such that $\operatorname{deg}\left(u_{i}\right)=1, \quad \operatorname{deg}\left(v_{i}\right)=2, \quad \operatorname{deg}\left(w_{i}\right)=3 \quad$ for $i=1,2, \ldots, g$

Connection to Algebraic Curves

Consider $\left(u_{1}, \ldots, u_{g}, v_{1}, \ldots, v_{g}, w_{1}, \ldots, w_{g}\right)$ as a point in $\mathbb{W W P}^{3 g-1}$ such that

$$
\operatorname{deg}\left(u_{i}\right)=1, \quad \operatorname{deg}\left(v_{i}\right)=2, \quad \operatorname{deg}\left(w_{i}\right)=3 \quad \text { for } i=1,2, \ldots, g
$$

Definition (Agostini-Çelik-Sturmfels, 2020)
The Dubrovin threefold \mathscr{D}_{C} comprises all points ($\mathbf{u}, \mathbf{v}, \mathbf{w}$) in $\mathbb{W W P}^{3 g-1}$ such that $\tau(x, y, t)$ satisfies the Hirota's differential equation.

Soliton Solutions

Fix $k<n$ and a vector of parameters $\kappa=\left(\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}\right) \in \mathbb{R}^{n}$ and consider

$$
\tau(x, y, t)=\sum_{I \in\binom{[n]}{k}} p_{I} \cdot \prod_{\substack{i, j \in I \\ i \leqslant j}}\left(\kappa_{j}-\kappa_{i}\right) \cdot \exp \left[x \cdot \sum_{i \in I} \kappa_{i}+y \cdot \sum_{i \in I} \kappa_{i}^{2}+t \cdot \sum_{i \in I} \kappa_{i}^{3}\right]
$$

Soliton Solutions

Fix $k<n$ and a vector of parameters $\kappa=\left(\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}\right) \in \mathbb{R}^{n}$ and consider

$$
\tau(x, y, t)=\sum_{I \in\binom{[n]}{k}} p_{I} \cdot \prod_{\substack{i, j \in I \\ i<j}}\left(\kappa_{j}-\kappa_{i}\right) \cdot \exp \left[x \cdot \sum_{i \in I} \kappa_{i}+y \cdot \sum_{i \in I} \kappa_{i}^{2}+t \cdot \sum_{i \in I} \kappa_{i}^{3}\right]
$$

Proposition (Sato)
The function τ is a solution to Hirota's differential equation if and only if the point $p=\left(p_{I}\right)_{I \in\binom{[n]}{k}}$ lies in the Grassmannian $\operatorname{Gr}(k, n)$.

Definition

We define a (k, n)-soliton to be any function $\tau(x, y, t)$ where $\kappa \in \mathbb{R}^{n}$ and $p \in \operatorname{Gr}(k, n)$.

Main Idea

We study solutions to the KP equations arising from algebraic curves defined over a non-archimedean field \mathbb{K}, like $\mathbb{Q}(\epsilon)$ or $\mathbb{C}\{\{\epsilon\}$.

A curve over \mathbb{K} can be thought of as a family of curves depending on a parameter ϵ

Main Idea

We study solutions to the KP equation arising from algebraic curves defined over a non-archimedean field \mathbb{K}, like $\mathbb{Q}(\epsilon)$ or $\mathbb{C}\{\{\epsilon\}$.

For $\epsilon \rightarrow 0$

- The theta function becomes a finite sum of exponentials
- The function

$$
p(x, y, t)=2 \frac{\delta^{2}}{\delta x^{2}} \log \tau(x, y, t)
$$

becomes a soliton solution of the KP equation

Degenerations of Theta Functions

Let X be a smooth curve of genus g over \mathbb{K}. The metric graph is $\operatorname{Trop}(X)$.

The metric graph $\Gamma=(V, E)$ of a genus 2 hyperelliptic curve

$$
H_{1}(\Gamma, \mathbb{Z})=\left\langle\gamma_{1}, \ldots, \gamma_{g}\right\rangle
$$

is a free abelian group of rank g
:= |E|

- $\Lambda:=g \times e$ matrix whose i -th row records the coordinate of γ_{i} with respect to the standard basis of \mathbb{Z}^{e}
- $\Delta:=$ diagonal $e \times e$ matrix that records edge lengths of the metric graph.

Definition

The Riemann matrix of $\Gamma=(V, E)$ is

$$
Q=\Lambda \Delta \Lambda^{T}
$$

Example ($\mathrm{g}=2$)
Consider $X:=\left\{y^{2}=f(x)\right\}$ where

$$
f(x)=(x-1)(x-1-\epsilon)(x-2)(x-2-\epsilon)(x-3)(x-3-\epsilon)
$$

The six roots determine a subtree with six leaves which has a unique hyperelliptic covering by a metric graph of genus 2

Example ($\mathrm{g}=2$)
Consider $X:=\left\{y^{2}=f(x)\right\}$ where

$$
f(x)=(x-1)(x-1-\epsilon)(x-2)(x-2-\epsilon)(x-3)(x-3-\epsilon)
$$

The six roots determine a subtree with six leaves which has a unique hyperelliptic covering by a metric graph of genus 2

From the graph we can read off the tropical Riemann matrix Q

$$
Q=\Lambda \Delta \Lambda^{T}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
4 & -2 \\
-2 & 4
\end{array}\right]
$$

Degenerations of Theta Functions

Consider

$$
B_{\epsilon}=-\frac{1}{\epsilon} Q+R(\epsilon)
$$

Fix $\mathbf{a} \in \mathbb{R}^{g}$

$$
\theta\left(\left.\mathbf{z}+\frac{1}{\epsilon} Q \mathbf{a} \right\rvert\, B_{\epsilon}\right)=\sum_{\mathbf{c} \in \mathbb{Z} g} \exp \left[-\frac{1}{2 \epsilon} \mathbf{c}^{T} Q \mathbf{c}+\frac{1}{\epsilon} \mathbf{c}^{T} Q \mathbf{a}\right] \cdot \exp \left[\frac{1}{2} \mathbf{c}^{T} R(\epsilon) \mathbf{c}+\mathbf{c}^{T} \mathbf{z}\right]
$$

Degenerations of Theta Functions

Consider

$$
B_{\epsilon}=-\frac{1}{\epsilon} Q+R(\epsilon)
$$

Fix $\mathbf{a} \in \mathbb{R}^{g}$

$$
\theta\left(\left.\mathbf{z}+\frac{1}{\epsilon} Q \mathbf{a} \right\rvert\, B_{\epsilon}\right)=\sum_{\mathbf{c} \in \mathbb{Z}^{g}} \exp \left[-\frac{1}{2 \epsilon} \mathbf{c}^{T} Q \mathbf{c}+\frac{1}{\epsilon} \mathbf{c}^{T} Q \mathbf{a}\right] \cdot \exp \left[\frac{1}{2} \mathbf{c}^{T} R(\epsilon) \mathbf{c}+\mathbf{c}^{T} \mathbf{z}\right]
$$

Let $\epsilon \rightarrow 0$. This converges provided

$$
\mathbf{c}^{T} Q \mathbf{c}-2 \mathbf{c}^{T} Q \mathbf{a} \geq 0 \text { for all } \mathbf{c} \in \mathbb{Z}^{g}
$$

or equivalently

$$
\mathbf{a}^{T} Q \mathbf{a} \leq(\mathbf{a}-\mathbf{c})^{T} Q(\mathbf{a}-\mathbf{c}) \quad \text { for all } \mathbf{c} \in \mathbb{Z}^{g}
$$

Voronoi and Delaunay

The condition

$$
\mathbf{a}^{T} Q \mathbf{a} \leq(\mathbf{a}-\mathbf{c})^{T} Q(\mathbf{a}-\mathbf{c}) \quad \text { for all } \mathbf{c} \in \mathbb{Z}^{g}
$$

holds if and only if a belongs to the Voronoi cell for Q

For a in the Voronoi cell for Q, consider the associated Delaunay set:
$\mathscr{D}_{\mathbf{a}, Q}=\left\{\mathbf{c} \in \mathbb{Z}^{g}: \mathbf{a}^{T} Q \mathbf{a}=(\mathbf{a}-\mathbf{c})^{T} Q(\mathbf{a}-\mathbf{c})\right\}$

$$
\theta\left(\left.\mathbf{z}+\frac{1}{\epsilon} Q \mathbf{a} \right\rvert\, B_{\epsilon}\right)=\sum_{\mathbf{c} \in \mathbb{Z}^{g}} \exp \left[-\frac{1}{2 \epsilon} \mathbf{c}^{T} Q \mathbf{c}+\frac{1}{\epsilon} \mathbf{c}^{T} Q \mathbf{a}\right] \cdot \exp \left[\frac{1}{2} \mathbf{c}^{T} R(\epsilon) \mathbf{c}+\mathbf{c}^{T} \mathbf{z}\right]
$$

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)
Fix \mathbf{a} in the Voronoi cell of the tropical Riemann matrix Q. For $\epsilon \rightarrow 0$, the series

$$
\theta\left(\left.\mathbf{z}+\frac{1}{\epsilon} Q \mathbf{a} \right\rvert\, B_{\epsilon}\right)
$$

converges to the theta function supported on the Delaunay set $\mathscr{C}=\mathscr{D}_{\mathbf{a}, Q}$, namely

$$
\theta_{\mathscr{C}}(\mathbf{x})=\sum_{\mathbf{c} \in \mathscr{C}} a_{\mathbf{c}} \exp \left[\mathbf{c}^{T} \mathbf{z}\right], \quad \text { where } \quad a_{\mathbf{c}}=\exp \left[\frac{1}{2} \mathbf{c}^{T} R(0) \mathbf{c}\right]
$$

Example ($\mathrm{g}=2$)

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)
Fix \mathbf{a} in the Voronoi cell of Q and let $\mathscr{C}=\mathscr{D}_{\mathbf{a}, Q}$ be the Delaunay set. As $\epsilon \rightarrow 0$,

$$
\theta\left(\left.\mathbf{z}+\frac{1}{\epsilon} Q \mathbf{a} \right\rvert\, B_{\epsilon}\right) \rightarrow \theta_{\mathscr{C}}(\mathbf{x})=\sum_{\mathbf{c} \in \mathscr{C}} a_{\mathbf{c}} \exp \left[\mathbf{c}^{T} \mathbf{z}\right],
$$

where $a_{\mathbf{c}}=\exp \left[\frac{1}{2} \mathbf{c}^{T} R(0) \mathbf{c}\right]$

Example ($\mathrm{g}=2$)

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)
Fix \mathbf{a} in the Voronoi cell of Q and let $\mathscr{C}=\mathscr{D}_{\mathbf{a}, Q}$ be the Delaunay set. As $\epsilon \rightarrow 0$,

$$
\theta\left(\left.\mathbf{z}+\frac{1}{\epsilon} Q \mathbf{a} \right\rvert\, B_{\epsilon}\right) \rightarrow \theta_{\mathscr{C}}(\mathbf{x})=\sum_{\mathbf{c} \in \mathscr{C}} a_{\mathbf{c}} \exp \left[\mathbf{c}^{T} \mathbf{z}\right],
$$

where $a_{\mathbf{c}}=\exp \left[\frac{1}{2} \mathbf{c}^{T} R(0) \mathbf{c}\right]$
Example
For $Q=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\mathscr{C}=\mathscr{D}_{\mathbf{a}, Q}=\{(0,0),(1,0),(0,1),(1,1)\}
$$

The associated theta function is

$$
\theta_{\mathscr{C}}=a_{00}+a_{10} \exp \left[z_{1}\right]+a_{01} \exp \left[z_{2}\right]+a_{11} \exp \left[z_{1}+z_{2}\right]
$$

The Hirota Variety

$$
\text { Let } \mathscr{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{m}\right\} \subset \mathbb{Z}^{g}
$$

$$
\theta_{\mathscr{C}}(\mathbf{z})=a_{1} \exp \left[\mathbf{c}_{1}^{T} \mathbf{z}\right]+a_{2} \exp \left[\mathbf{c}_{2}^{T} \mathbf{z}\right]+\cdots+a_{m} \exp \left[\mathbf{c}_{m}^{T} \mathbf{z}\right]
$$

Consider

$$
\tau(x, y, t)=\theta_{\mathscr{C}}(\mathbf{u} x+\mathbf{v} y+\mathbf{w} t)=\sum_{i=1}^{m} a_{i} \exp \left[\left(\sum_{j=1}^{g} c_{i j} u_{j}\right) x+\left(\sum_{j=1}^{g} c_{i j} v_{j}\right) y+\left(\sum_{j=1}^{g} c_{i j} w_{j}\right) t\right]
$$

The Hirota Variety

$$
\text { Let } \mathscr{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{m}\right\} \subset \mathbb{Z}^{g}
$$

$$
\theta_{\mathscr{C}}(\mathbf{z})=a_{1} \exp \left[\mathbf{c}_{1}^{T} \mathbf{z}\right]+a_{2} \exp \left[\mathbf{c}_{2}^{T} \mathbf{z}\right]+\cdots+a_{m} \exp \left[\mathbf{c}_{m}^{T} \mathbf{z}\right]
$$

Consider
$\tau(x, y, t)=\theta_{\mathscr{C}}(\mathbf{u} x+\mathbf{v} y+\mathbf{w} t)=\sum_{i=1}^{m} a_{i} \exp \left[\left(\sum_{j=1}^{g} c_{i j} u_{j}\right) x+\left(\sum_{j=1}^{g} c_{i j} v_{j}\right) y+\left(\sum_{j=1}^{g} c_{i j} w_{j}\right) t\right]$

Definition

The Hirota variety $\mathscr{H}_{\mathscr{C}}$ consists of all points $(\mathbf{a},(\mathbf{u}, \mathbf{v}, \mathbf{w}))$ in $\left(\mathbb{K}^{*}\right)^{m} \times \mathbb{W} \mathbb{P}^{3 g-1}$ such that $\tau(x, y, t)$ satisfies Hirota's differential equation

Polynomials defining the Hirota Variety

Remark
Hirota's differential equation can be written via the Hirota differential operators as

$$
P\left(D_{x}, D_{y}, D_{t}\right) \tau \bullet \tau=0
$$

where $P(x, y, t)=x^{4}-4 x t+3 y^{2}$ gives the soliton dispersion relation

Polynomials defining the Hirota Variety

Remark

Hirota's differential equation can be written via the Hirota differential operators as

$$
P\left(D_{x}, D_{y}, D_{t}\right) \tau \bullet \tau=0
$$

where $P(x, y, t)=x^{4}-4 x t+3 y^{2}$ gives the soliton dispersion relation

For any two indices k, ℓ in $\{1, \ldots, m\}$

$$
P_{k \ell}(\mathbf{u}, \mathbf{v}, \mathbf{w}):=P\left(\left(\mathbf{c}_{k}-\mathbf{c}_{\ell}\right) \cdot \mathbf{u},\left(\mathbf{c}_{k}-\mathbf{c}_{\ell}\right) \cdot \mathbf{v},\left(\mathbf{c}_{k}-\mathbf{c}_{\ell}\right) \cdot \mathbf{w}\right)
$$

defines a hypersurface in WWP ${ }^{3 g-1}$

Polynomials defining the Hirota Variety

The polynomials defining $\mathscr{H}_{\mathscr{C}}$ correspond to points in

$$
\mathscr{C}^{[2]}=\left\{\mathbf{c}_{k}+\mathbf{c}_{\ell}: 1 \leq k<\ell \leq m\right\} \subset \mathbb{Z}^{g}
$$

Definition
A point \mathbf{d} in $\mathscr{C}^{[2]}$ is uniquely attained if there exists precisely one index pair (k, ℓ) such that $\mathbf{c}_{k}+\mathbf{c}_{\ell}=\mathbf{d}$. In that case, (k, ℓ) is a unique pair.

Polynomials defining the Hirota Variety

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)
The Hirota variety $\mathscr{H}_{\mathscr{C}}$ is defined by the quartics

$$
P_{k \ell}(\mathbf{u}, \mathbf{v}, \mathbf{w}):=P\left(\left(\mathbf{c}_{k}-\mathbf{c}_{\ell}\right) \cdot \mathbf{u},\left(\mathbf{c}_{k}-\mathbf{c}_{\ell}\right) \cdot \mathbf{v},\left(\mathbf{c}_{k}-\mathbf{c}_{\ell}\right) \cdot \mathbf{w}\right)
$$

for all unique pairs (k, ℓ) and by the polynomials

$$
\sum_{\substack{1 \leq k<\ell \leq m \\ c_{k}+c_{\ell}=\mathbf{d}}} P_{k \ell}(\mathbf{u}, \mathbf{v}, \mathbf{w}) a_{k} a_{\ell}
$$

for all non-uniquely attained points $\mathbf{d} \in \mathscr{C}^{[2]}$. If all points in $\mathscr{C}^{[2]}$ are uniquely attained then $\mathscr{H}_{\mathscr{C}}$ is defined by the $\binom{m}{2}$ quartics $P_{k \ell}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.

Example (The Square)

Let $g=2$ and $\mathscr{C}=\{0,1\}^{2}$

$$
\mathscr{C}^{[2]}=\{(0,1),(1,0),(1,1),(1,2),(2,1)\}
$$

There are four unique pairs (k, ℓ)

$$
\begin{aligned}
& P_{13}=P_{24}=u_{1}^{4}-4 u_{1} w_{1}+3 v_{1}^{2} \\
& P_{12}=P_{34}=u_{2}^{4}-4 u_{2} w_{2}+3 v_{2}^{2}
\end{aligned}
$$

The point $\mathbf{d}=(1,1)$ is not uniquely attained in $\mathscr{C}^{[2]}$

$$
P\left(u_{1}+u_{2}, v_{1}+v_{2}, w_{1}+w_{2}\right) a_{00} a_{11}+P\left(u_{1}-u_{2}, v_{1}-v_{2}, w_{1}-w_{2}\right) a_{01} a_{10}
$$

For any point in $\mathscr{H}_{\mathscr{C}} \subset\left(\mathbb{K}^{*}\right)^{4} \times \mathbb{W} \mathbb{P}^{5}$, we can write $\tau(x, y, t)$ as a (2,4)-soliton

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

The g-Cube

- Irreducible rational nodal curve with g nodes \longrightarrow metric graph is a vertex with g loops \longrightarrow Tropical Riemann matrix is I_{g}.

The g-Cube

- Irreducible rational nodal curve with g nodes \longrightarrow metric graph is a vertex with g loops \longrightarrow Tropical Riemann matrix is I_{g}.

- fix the point $\mathbf{a}=\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right) \in \mathbb{R}^{g} \longrightarrow$ corresponding Delaunay set $\mathscr{C}=\mathscr{D}_{\mathbf{a}, Q}=\{0,1\}^{g}$

$$
\begin{gathered}
\theta_{\mathscr{C}}=\begin{array}{c}
a_{00 \ldots 0}+a_{10 \ldots 0} \exp \left[z_{1}\right]+a_{010 \ldots 0} \exp \left[z_{2}\right]+\cdots+a_{0 \ldots 01} \exp \left[z_{g}\right]+ \\
+a_{110 \ldots 0} \exp \left[z_{1}+z_{2}\right]+a_{1010 \ldots 0} \exp \left[z_{1}+z_{3}\right]+a_{00 . .011} \exp \left[z_{g-1}+z_{g}\right]+ \\
+\cdots+a_{11 \ldots 1} \exp \left[z_{1}+z_{2}+\cdots+z_{g}\right] .
\end{array}
\end{gathered}
$$

The g-Cube

- Irreducible rational nodal curve with g nodes \longrightarrow metric graph is a vertex with g loops \longrightarrow Tropical Riemann matrix is I_{g}.

- fix the point $\mathbf{a}=\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right) \in \mathbb{R}^{g} \longrightarrow$ corresponding Delaunay set $\mathscr{C}=\mathscr{D}_{\mathbf{a}, Q}=\{0,1\}^{g}$

$$
\begin{gathered}
\theta_{\mathscr{C}}=\begin{array}{c}
a_{00 \ldots 0}+a_{10 \ldots 0} \exp \left[z_{1}\right]+a_{010 \ldots 0} \exp \left[z_{2}\right]+\cdots+a_{0 \ldots 01} \exp \left[z_{g}\right]+ \\
+a_{110 \ldots 0} \exp \left[z_{1}+z_{2}\right]+a_{1010 \ldots 0} \exp \left[z_{1}+z_{3}\right]+a_{00 . .011} \exp \left[z_{g-1}+z_{g}\right]+ \\
+\cdots+a_{11 \ldots 1} \exp \left[z_{1}+z_{2}+\cdots+z_{g}\right] .
\end{array}
\end{gathered}
$$

For the equations cutting out the Hirota Variety, we are interested in the combinatorics of $\mathscr{C}^{[2]}$ (coming soon!)

The main component

- The Hirota variety $\mathscr{H}_{\mathscr{C}}$ lives in the space $\left(\mathbb{C}^{*}\right)^{2^{g}} \times \mathbb{W} \mathbb{P}^{3 g-1}$ with coordinate ring $\mathbb{C}\left[\mathbf{a}^{ \pm}, \mathbf{u}, \mathbf{v}, \mathbf{w}\right]$, where $\operatorname{deg}\left(u_{i}\right)=1, \operatorname{deg}\left(v_{i}\right)=2$, and $\operatorname{deg}\left(w_{i}\right)=3$, for $i=1,2, \ldots, g$.
- We investigate the subvariety denoted by
$\mathscr{H}_{\mathscr{C}}^{I}=\operatorname{cl}\left(\left\{(\mathbf{a},(\mathbf{u}, \mathbf{v}, \mathbf{w})) \in \mathscr{H}_{\mathscr{C}}: \mathbf{u} \neq \mathbf{0}\right\}\right)$
- $\mathscr{H}_{\mathscr{C}}^{I}$ contains an irreducible subvariety of $\mathscr{H}_{\mathscr{C}}$ which we call the main component, denoted by $\mathscr{H}_{\mathscr{C}}^{M}$.

The parameterization map

Consider the map

$$
\begin{align*}
& \phi: \mathbb{C}^{3 g+1} \quad \rightarrow\left(\mathbb{C}^{*}\right)^{2 g} \times \mathbb{W} \mathbb{P}^{3 g-1} \tag{1}\\
& \left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{g}, \kappa_{1}, \kappa_{2}, \ldots, \kappa_{2 g}\right) \longrightarrow\left(a_{\mathbf{c}_{1}}, a_{\mathbf{c}_{2}}, \ldots, a_{\mathbf{c}_{2} g}, \mathbf{u}, \mathbf{v}, \mathbf{w}\right)
\end{align*}
$$

where the coordinates $\mathbf{a}=\left(a_{\mathbf{c}_{1}}, a_{\mathbf{c}_{2}}, \ldots, a_{\mathbf{c}_{2} g}\right)$ are indexed by the points in $\mathscr{C}=\{0,1\}^{g}$.

The parameterization map

Consider the map

$$
\begin{gather*}
\phi: \mathbb{C}^{3 g+1} \tag{1}\\
\longrightarrow\left(\mathbb{C}^{*}\right)^{2^{g}} \times \mathbb{W V P}^{3 g-1} \\
\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{g}, \kappa_{1}, \kappa_{2}, \ldots, \kappa_{2 g}\right)
\end{gather*}{\left(a_{\mathbf{c}_{1}}, a_{\mathbf{c}_{2}}, \ldots, a_{\mathbf{c}_{2} g}, \mathbf{u}, \mathbf{v}, \mathbf{w}\right)}^{\text {and }}
$$

where the coordinates $\mathbf{a}=\left(a_{\mathbf{c}_{1}}, a_{\mathbf{c}_{2}}, \ldots, a_{\mathbf{c}_{2} g}\right)$ are indexed by the points in $\mathscr{C}=\{0,1\}^{g}$. The image of ϕ is defined as

$$
\begin{gather*}
u_{i}=\kappa_{2 i-1}-\kappa_{2 i}, \quad v_{i}=\kappa_{2 i-1}^{2}-\kappa_{2 i}^{2}, \quad w_{i}=\kappa_{2 i-1}^{3}-\kappa_{2 i}^{3}, \quad \text { for all } i=1, \ldots, g, \\
a_{\mathbf{c}}=\lambda_{0} \prod_{\substack{i, j \in I \\
i<j}}\left(\kappa_{i}-\kappa_{j}\right) \prod_{i: c_{i}=1} \lambda_{i} \quad \text { where } I=\left\{2 i: c_{i}=0\right\} \cup\left\{2 i-1: c_{i}=1\right\}, \\
\text { for all } \mathbf{c} \in \mathscr{C} . \tag{2}
\end{gather*}
$$

The parameterization map

Consider the map

$$
\begin{gather*}
\phi: \mathbb{C}^{3 g+1} \tag{1}\\
\longrightarrow\left(\mathbb{C}^{*}\right)^{2^{g}} \times \mathbb{W V P}^{3 g-1} \\
\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{g}, \kappa_{1}, \kappa_{2}, \ldots, \kappa_{2 g}\right)
\end{gather*}{\left(a_{\mathbf{c}_{1}}, a_{\mathbf{c}_{2}}, \ldots, a_{\mathbf{c}_{2 g}}, \mathbf{u}, \mathbf{v}, \mathbf{w}\right)}^{\text {and }}
$$

where the coordinates $\mathbf{a}=\left(a_{\mathbf{c}_{1}}, a_{\mathbf{c}_{2}}, \ldots, a_{\mathbf{c}_{2} g}\right)$ are indexed by the points in $\mathscr{C}=\{0,1\}^{g}$. The image of ϕ is defined as

$$
\begin{gathered}
u_{i}=\kappa_{2 i-1}-\kappa_{2 i}, \quad v_{i}=\kappa_{2 i-1}^{2}-\kappa_{2 i}^{2}, \quad w_{i}=\kappa_{2 i-1}^{3}-\kappa_{2 i}^{3}, \quad \text { for all } i=1, \ldots, g, \\
a_{\mathbf{c}}=\lambda_{0} \prod_{\substack{i, j \in I \\
i<j}}\left(\kappa_{i}-\kappa_{j}\right) \prod_{i: c_{i}=1} \lambda_{i} \quad \text { where } I=\left\{2 i: c_{i}=0\right\} \cup\left\{2 i-1: c_{i}=1\right\}, \\
\text { for all } \mathbf{c} \in \mathscr{C} .
\end{gathered}
$$

$$
\begin{equation*}
\mathscr{H}_{\mathscr{C}}^{M}=\overline{(\operatorname{im}(\phi))} . \tag{2}
\end{equation*}
$$

Motivation for the map $(\mathrm{g}=3)$

- Let X be a rational nodal curve, where n_{1}, n_{2}, n_{3} are its nodes. The normalization of $v: \tilde{X} \rightarrow X$ that separates the 3 nodes of X is given by a projective line.
- We can consider $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{6}$ to be points on \mathbb{P}^{1} and set $v^{-1}\left(n_{i}\right):=\left\{\kappa_{2 i-1}, \kappa_{2 i}\right\}$.
- a basis of canonical differentials is

$$
\begin{gathered}
\omega_{1}=\frac{1}{y}\left(\frac{1}{1-\kappa_{2} y}-\frac{1}{1-\kappa_{1} y}\right) d y, \quad \omega_{2}=\frac{1}{y}\left(\frac{1}{1-\kappa_{4} y}-\frac{1}{1-\kappa_{3} y}\right) d y \\
\omega_{3}=\frac{1}{y}\left(\frac{1}{1-\kappa_{6} y}-\frac{1}{1-\kappa_{5} y}\right) d y
\end{gathered}
$$

when fixing $y=1 / x$ as local coordinate.

Motivation for the map $(\mathrm{g}=3)$

- The canonical differentials define a map $\alpha^{\prime}:\left(\mathbb{P}^{1}\right)^{2} \rightarrow \mathbb{C}^{3}$ such that

$$
\left(y_{1}, y_{2}\right) \longmapsto\left(\sum_{i=1}^{g-1} \int_{0}^{y_{i}} \omega_{j}\right), \quad \text { where } \quad \int_{0}^{y_{i}} \omega_{j}=\log \left(\frac{1-\kappa_{2 j-1} y_{i}}{1-\kappa_{2 j} y_{i}}\right) .
$$

Exponentiation allows to map directly in the Jacobian through the map $\mathbb{C}^{3} \rightarrow\left(\mathbb{C}^{*}\right)^{3}$ given by $\left(\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(\exp \left(z_{1}\right), \exp \left(z_{2}\right), \exp \left(z_{3}\right)\right)\right)$. The composition gives the Abel map $\alpha:\left(\mathbb{P}^{1}\right)^{2} \rightarrow\left(\mathbb{C}^{*}\right)^{3}$ given by

$$
\left(y_{1}, y_{2}\right) \mapsto\left(\left(\frac{1-\kappa_{1} y_{1}}{1-\kappa_{2} y_{1}}\right) \cdot\left(\frac{1-\kappa_{1} y_{2}}{1-\kappa_{2} y_{2}}\right),\left(\frac{1-\kappa_{3} y_{1}}{1-\kappa_{4} y_{1}}\right) \cdot\left(\frac{1-\kappa_{3} y_{2}}{1-\kappa_{4} y_{2}}\right),\left(\frac{1-\kappa_{5} y_{1}}{1-\kappa_{6} y_{1}}\right) \cdot\left(\frac{1-\kappa_{5} y_{2}}{1-\kappa_{6} y_{2}}\right)\right)
$$

Motivation for the map $(\mathrm{g}=3)$

- The canonical differentials define a map $\alpha^{\prime}:\left(\mathbb{P}^{1}\right)^{2} \rightarrow \mathbb{C}^{3}$ such that

$$
\left(y_{1}, y_{2}\right) \longmapsto\left(\sum_{i=1}^{g-1} \int_{0}^{y_{i}} \omega_{j}\right), \quad \text { where } \quad \int_{0}^{y_{i}} \omega_{j}=\log \left(\frac{1-\kappa_{2 j-1} y_{i}}{1-\kappa_{2 j} y_{i}}\right) .
$$

Exponentiation allows to map directly in the Jacobian through the map $\mathbb{C}^{3} \rightarrow\left(\mathbb{C}^{*}\right)^{3}$ given by $\left(\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(\exp \left(z_{1}\right), \exp \left(z_{2}\right), \exp \left(z_{3}\right)\right)\right)$. The composition gives the Abel map $\alpha:\left(\mathbb{P}^{1}\right)^{2} \rightarrow\left(\mathbb{C}^{*}\right)^{3}$ given by

$$
\left(y_{1}, y_{2}\right) \mapsto\left(\left(\frac{1-\kappa_{1} y_{1}}{1-\kappa_{2} y_{1}}\right) \cdot\left(\frac{1-\kappa_{1} y_{2}}{1-\kappa_{2} y_{2}}\right),\left(\frac{1-\kappa_{3} y_{1}}{1-\kappa_{4} y_{1}}\right) \cdot\left(\frac{1-\kappa_{3} y_{2}}{1-\kappa_{4} y_{2}}\right),\left(\frac{1-\kappa_{5} y_{1}}{1-\kappa_{6} y_{1}}\right) \cdot\left(\frac{1-\kappa_{5} y_{2}}{1-\kappa_{6} y_{2}}\right)\right)
$$

- The theta divisor of X is the image of the Abel map α up to translation.

Motivation for the map $(\mathrm{g}=3)$

- The canonical differentials define a map $\alpha^{\prime}:\left(\mathbb{P}^{1}\right)^{2} \rightarrow \mathbb{C}^{3}$ such that

$$
\left(y_{1}, y_{2}\right) \longmapsto\left(\sum_{i=1}^{g-1} \int_{0}^{y_{i}} \omega_{j}\right), \quad \text { where } \quad \int_{0}^{y_{i}} \omega_{j}=\log \left(\frac{1-\kappa_{2 j-1} y_{i}}{1-\kappa_{2 j} y_{i}}\right) .
$$

Exponentiation allows to map directly in the Jacobian through the map $\mathbb{C}^{3} \rightarrow\left(\mathbb{C}^{*}\right)^{3}$ given by $\left(\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(\exp \left(z_{1}\right), \exp \left(z_{2}\right), \exp \left(z_{3}\right)\right)\right)$. The composition gives the Abel map $\alpha:\left(\mathbb{P}^{1}\right)^{2} \rightarrow\left(\mathbb{C}^{*}\right)^{3}$ given by

$$
\left(y_{1}, y_{2}\right) \mapsto\left(\left(\frac{1-\kappa_{1} y_{1}}{1-\kappa_{2} y_{1}}\right) \cdot\left(\frac{1-\kappa_{1} y_{2}}{1-\kappa_{2} y_{2}}\right),\left(\frac{1-\kappa_{3} y_{1}}{1-\kappa_{4} y_{1}}\right) \cdot\left(\frac{1-\kappa_{3} y_{2}}{1-\kappa_{4} y_{2}}\right),\left(\frac{1-\kappa_{5} y_{1}}{1-\kappa_{6} y_{1}}\right) \cdot\left(\frac{1-\kappa_{5} y_{2}}{1-\kappa_{6} y_{2}}\right)\right)
$$

- The theta divisor of X is the image of the Abel map α up to translation.
- One can find the implicitizing equation cutting out the image of this map in Macaulay2. The resulting equation exactly gives the familiar theta function for $g=3$, with the a_{c} parametrized by the κ_{i} 's as in ϕ.

Motivation for the map ($\mathrm{g}=3$)

- we consider the theta functions

$$
\begin{aligned}
\theta(\mathbf{z})=a_{000} & +a_{100} \exp \left(z_{1}\right)+a_{010} \exp \left(z_{2}\right)+a_{001} \exp \left(z_{3}\right)+a_{110} \exp \left(z_{1}+z_{2}\right) \\
& +a_{101} \exp \left(z_{1}+z_{3}\right)+a_{011} \exp \left(z_{2}+z_{3}\right)+a_{111} \exp \left(z_{1}+z_{2}+z_{3}\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
\theta(\mathbf{z}+\mathbf{h})=a_{000} & +a_{100} \exp \left(h_{1}\right) \exp \left(z_{1}\right)+a_{010} \exp \left(h_{2}\right) \exp \left(z_{2}\right)+a_{001} \exp \left(h_{3}\right) \exp \left(z_{3}\right) \\
& +a_{110} \exp \left(h_{1}+h_{2}\right) \exp \left(z_{1}+z_{2}\right)+a_{101} \exp \left(h_{1}+h_{3}\right) \exp \left(z_{1}+z_{3}\right) \\
& +a_{011} \exp \left(h_{2}+h_{3}\right) \exp \left(z_{2}+z_{3}\right)+a_{111} \exp \left(h_{1}+h_{2}+h_{3}\right) \exp \left(z_{1}+z_{2}+z_{3}\right) .
\end{aligned}
$$

- Letting $\lambda_{i}:=\exp \left(h_{i}\right)$, we have

$$
\begin{aligned}
\theta(\mathbf{z}+\mathbf{h})=a_{000} & +\lambda_{1} a_{100} \exp \left(z_{1}\right)+\lambda_{2} a_{010} \exp \left(z_{2}\right)+\lambda_{3} a_{001} \exp \left(z_{3}\right)+\lambda_{1} \lambda_{2} a_{110} \exp \left(z_{1}+z_{2}\right) \\
& +\lambda_{1} \lambda_{3} a_{101} \exp \left(z_{1}+z_{3}\right)+\lambda_{2} \lambda_{3} a_{011} \exp \left(z_{2}+z_{3}\right)+\lambda_{1} \lambda_{2} \lambda_{3} a_{111} \exp \left(z_{1}+z_{2}+z_{3}\right) .
\end{aligned}
$$

Soliton Matrix

With the parameterization given by ϕ, we can express

$$
\tau(x, y, t)=\sum_{I \in\binom{[n]}{k}} p_{I} \cdot \prod_{\substack{i, j \in I \\ i<j}}\left(\kappa_{j}-\kappa_{i}\right) \cdot \exp \left[x \cdot \sum_{i \in I} \kappa_{i}+y \cdot \sum_{i \in I} \kappa_{i}^{2}+t \cdot \sum_{i \in I} \kappa_{i}^{3}\right],
$$

with the $p_{I}=\lambda_{0} \prod_{i: c_{i}=1} \lambda_{i}$ for each I obtained from the points $\mathbf{c} \in \mathscr{C}$ by taking the set $I=\left\{2 i: c_{i}=0\right\} \cup\left\{2 i-1: c_{i}=1\right\}$

Soliton Matrix

With the parameterization given by ϕ, we can express

$$
\tau(x, y, t)=\sum_{I \in\binom{[n]}{k}} p_{I} \cdot \prod_{\substack{i, j \in I \\ i<j}}\left(\kappa_{j}-\kappa_{i}\right) \cdot \exp \left[x \cdot \sum_{i \in I} \kappa_{i}+y \cdot \sum_{i \in I} \kappa_{i}^{2}+t \cdot \sum_{i \in I} \kappa_{i}^{3}\right],
$$

with the $p_{I}=\lambda_{0} \prod_{i: c_{i}=1} \lambda_{i}$ for each I obtained from the points $\mathbf{c} \in \mathscr{C}$ by taking the set $I=\left\{2 i: c_{i}=0\right\} \cup\left\{2 i-1: c_{i}=1\right\}$
The corresponding soliton matrix is the $g \times 2 g$ matrix

$$
\left(\begin{array}{ccccccccc}
\lambda_{0} \lambda_{1} & \lambda_{0} & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \lambda_{2} & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda_{3} & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & \lambda_{g} & 1
\end{array}\right)
$$

The main component is an irreducible subvariety

Theorem (Fevola- M., 2022)
Consider the map ϕ as before. This is a birational map onto its image, which is an irreducible subvariety of $\mathscr{H}_{\mathscr{C}}$ and has dimension 3 g .

Proof Idea.

- Any point in the image of ϕ is a point in the Hirota variety $\mathscr{H}_{\mathscr{C}}$ since it can be expressed as a ($g, 2 g$)-soliton
- The map ϕ is invertible outside the closed set where the u_{i} 's vanish:

$$
\kappa_{2 i-1}=\frac{u_{i}^{2}+v_{i}}{2 u_{i}} \quad \text { and } \quad \kappa_{2 i}=\frac{v_{i}-u_{i}^{2}}{2 u_{i}}
$$

- We can conclude that the map ϕ is birational. This implies that the closure of the image is irreducible and of dimension $3 g$.

The Schottky problem

- Let \mathscr{M}_{g} be the moduli space of curves of genus g and \mathscr{A}_{g} the moduli space of abelian varieties of dimension g.
- Let $J: \mathscr{M}_{g} \rightarrow \mathscr{A}_{g}$ be the Torelli map, taking curves to Jacobians

The Schottky problem

- Let \mathscr{M}_{g} be the moduli space of curves of genus g and \mathscr{A}_{g} the moduli space of abelian varieties of dimension g.
- Let $J: \mathscr{M}_{g} \rightarrow \mathscr{A}_{g}$ be the Torelli map, taking curves to Jacobians
- The Schottky problem is to find the defining equations for the locus of Jacobians, defined as the closure of $J\left(\mathscr{M}_{g}\right)$ in \mathscr{A}_{g}.
- trivial in genus 3 , solved in genus 4 , hard for genus ≥ 5

The Schottky problem

- Let \mathscr{M}_{g} be the moduli space of curves of genus g and \mathscr{A}_{g} the moduli space of abelian varieties of dimension g.
- Let $J: \mathscr{M}_{g} \rightarrow \mathscr{A}_{g}$ be the Torelli map, taking curves to Jacobians
- The Schottky problem is to find the defining equations for the locus of Jacobians, defined as the closure of $J\left(\mathscr{M}_{g}\right)$ in \mathscr{A}_{g}.
- trivial in genus 3 , solved in genus 4 , hard for genus ≥ 5
- The weak Schottky problem is to find an ideal whose zero locus contains the locus of Jacobians as an irreducible component.

The Schottky problem

- Let \mathscr{M}_{g} be the moduli space of curves of genus g and \mathscr{A}_{g} the moduli space of abelian varieties of dimension g.
- Let $J: \mathscr{M}_{g} \rightarrow \mathscr{A}_{g}$ be the Torelli map, taking curves to Jacobians
- The Schottky problem is to find the defining equations for the locus of Jacobians, defined as the closure of $J\left(\mathscr{M}_{g}\right)$ in \mathscr{A}_{g}.
- trivial in genus 3 , solved in genus 4 , hard for genus ≥ 5
- The weak Schottky problem is to find an ideal whose zero locus contains the locus of Jacobians as an irreducible component.
- This is related to finding solutions to the KP equation because a theta function satisfies the KP equation when the corresponding abelian variety is a Jacobian of a curve

The main component is an irreducible component?

Showing that $\mathscr{H}_{\mathscr{C}}^{M}$ is an irreducible component is equivalent to solving the Weak Schottky Problem for rational nodal curves, which can be solved by showing that the map ϕ is dominant into $\mathscr{H}_{\mathscr{C}}^{M}$.

The main component is an irreducible component?

Showing that $\mathscr{H}_{\mathscr{C}}^{M}$ is an irreducible component is equivalent to solving the Weak Schottky Problem for rational nodal curves, which can be solved by showing that the map ϕ is dominant into $\mathscr{H}_{\mathscr{C}}^{M}$.

Theorem (Fevola-M., 2022)
For genus $g \leq 7$, the subvariety $\mathscr{H}_{\mathscr{C}}^{M}$ is an irreducible component of the Hirota variety $\mathscr{H}_{\mathscr{C}}$.

The main component is an irreducible component?

Showing that $\mathscr{H}_{\mathscr{C}}^{M}$ is an irreducible component is equivalent to solving the Weak Schottky Problem for rational nodal curves, which can be solved by showing that the map ϕ is dominant into $\mathscr{H}_{\mathscr{C}}^{M}$.

Theorem (Fevola-M., 2022)
For genus $g \leq 7$, the subvariety $\mathscr{H}_{\mathscr{G}}^{M}$ is an irreducible component of the Hirota variety \mathscr{H}_{6}.

Conjecture (Weak Schottky Problem)
$\mathscr{H}_{\mathscr{C}}^{M}$ is a $3 g$-dimensional irreducible component of $\mathscr{H}_{\mathscr{C}}$ with a parametric representation given as in the map ϕ.

The main component is an irreducible component?

Showing that $\mathscr{H}_{\mathscr{C}}^{M}$ is an irreducible component is equivalent to solving the Weak Schottky Problem for rational nodal curves, which can be solved by showing that the map ϕ is dominant into $\mathscr{X}_{\mathscr{C}}^{M}$.

Theorem (Fevola-M., 2022)
For genus $g \leq 7$, the subvariety $\mathscr{H}_{\mathscr{6}}^{M}$ is an irreducible component of the Hirota variety \mathscr{H}_{6}.

Conjecture (Weak Schottky Problem)
$\mathscr{H}_{\mathscr{C}}^{M}$ is a $3 g$-dimensional irreducible component of $\mathscr{H}_{\mathscr{C}}$ with a parametric representation given as in the map ϕ.

Conjecture (Strong Schottky Problem)
$\mathscr{H}_{\mathscr{C}}^{M}=\mathscr{H}_{\mathscr{C}}^{I}$

The g-Cube: $\mathscr{C}^{[2]}$

One can observe that $\mathscr{C}^{[2]}$ is the set of lattice points in $2 \operatorname{conv}(\mathscr{C})$ that are not vertices, so there are $3^{g}-2^{g}$ points.
Each d-dimensional face of conv \mathscr{C} corresponds to a point that is attained 2^{d-1} times.

Combinatorics of $\mathscr{H}_{\mathscr{C}}$

Proposition (Fevola-M., 2022)

A point $\mathbf{c}=\left(c_{1}, \ldots, c_{g}\right)$ in the set $\mathscr{C}^{[2]}$ is attained exactly 2^{d-1} times, where $d=\left|\left\{i: c_{i}=1\right\}\right|$.

Combinatorics of $\mathscr{H}_{\mathscr{C}}$

Proposition (Fevola-M., 2022)
A point $\mathbf{c}=\left(c_{1}, \ldots, c_{g}\right)$ in the set $\mathscr{C}^{[2]}$ is attained exactly 2^{d-1} times, where $d=\left|\left\{i: c_{i}=1\right\}\right|$.

Lemma (Fevola-M., 2022)

The set $\mathscr{C}^{[2]}$ contains $g 2^{g-1}$ points which are uniquely attained. These contribute g quartics of the form $u_{j}^{4}-4 u_{j} w_{j}+3 v_{j}^{2}$, for $j=1, \ldots, g$ as generators of $\mathscr{H}_{\mathscr{C}}$.

Proof.

A point $\mathbf{c} \in \mathbb{C}$ is uniquely attained any time that the points $\mathbf{c}_{k}, \mathbf{c}_{\ell} \in \mathscr{C}$ such that $\mathbf{c}_{k}+\mathbf{c}_{\ell}=\mathbf{c}$ lie on same edge of the cube. Such points contribute the quartics

$$
P_{k \ell}(\mathbf{u}, \mathbf{v}, \mathbf{w}):=P\left(\left(\mathbf{c}_{k}-\mathbf{c}_{\ell}\right) \cdot \mathbf{u},\left(\mathbf{c}_{k}-\mathbf{c}_{\ell}\right) \cdot \mathbf{v},\left(\mathbf{c}_{k}-\mathbf{c}_{\ell}\right) \cdot \mathbf{w}\right) .
$$

The difference $\mathbf{c}_{k}-\mathbf{c}_{\ell}$ corresponds to the direction of the edge. Hence out of these $g 2^{g-1}$ quartics of this form, g of them are distinct.

Additional Combinatorics in $\mathscr{H}_{\mathscr{C}}^{M}$

A face of the g-cube is defined by fixing $g-d$ indices of the corresponding points. Let the non-fixed indices be given by the set I. We call this set the direction of the face.

Additional Combinatorics in \mathscr{X}_{6}^{M}

A face of the g-cube is defined by fixing $g-d$ indices of the corresponding points. Let the non-fixed indices be given by the set I. We call this set the direction of the face.

Theorem (Fevola-M., 2022)
There are $\binom{g}{d}$ face directions for each dimension d, and all faces with the same direction contribute the same quartic, up to a multiple, to the ideal defining $\mathscr{H}_{\mathscr{C}}^{M}$.

Thank you!

