Germs of maps, group actions and large modules inside group orbits.
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Abstract

A map (k",0) — (k”, 0) with no critical point at the origin can be rectified to
a linear map. Maps with critical points have complicated/rich structure. They
are studied up to the groups of right/left-right/contact equivalence. The
group orbits are complicated and are traditionally studied via their tangent
spaces. This transition is classically done by vector fields integration, thus
binding the theory to the real/complex case.

| will present the new approach to this subject. One studies the maps of germs
of Noetherian schemes, in any characteristic. The corresponding groups of
equivalence admit ‘good’ tangent spaces. The submodules of the tangent
spaces lead to submodules of the group orbits. This allows to bring these maps
to ‘convenient’ forms. For example, we get the (relative) finite determinacy,
and accordingly the (relative) algebraization of maps/ideals/modules.

Based on arXiv:1212.6894 (jointly with G. Belitski), arXiv:1808.06185 (jointly with A.-F. Boix,

G.-M. Greuel), and my own recent work.
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Prologue

Let k € R,C and (k", 0) 5 (k!, 0) be k-analytic or C*°.

@ Suppose ', # 0, then in some local coordinates: f(x) = x. (IFT)

Q@ (n=1) Take (ki,0) SN (k!, 0), with ord(f) = d < oo. Then in some local
coordinates f(x) = (4)x7.
k=R

Question: How to extend this to the case: n > 1 and f’|, is degenerate?
(This was one of the starting points of Singularity Theory in 19'th century)
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The three main equivalences

Let k € R, C, consider Maps := {(k", o) N (kP, 0)}. (k-analytic or C*)
Always assume f’|, is degenerate, i.e. rank[f’|,] < min(p, n).

Right equivalence Contact equivalence

Left-Right equivalence

p p p
Iky ]ky ]ky
I e ¢
k3 kK k3
®xO(ky,0) dxO(k],0) oxO(k],0),  PyO(KE,0)
Frs®%(f):=fod) (x,y)—=(Px(x),¥(x,y)) s.t. frs®yofodi

Z0OMaps((k",0),(k",0)) W(x,0)=0, W(o,y) invertible.
FrW(x, fodyt)
H OMaps((k",0),(k”,0))

o/ OMaps((k",0),(k",0))

Z-action is k-linear
d%(a-f+b-g)=a-dx(f)+b-dx(g)

A -action is not k-linear
but it is “linearizable".
M,‘"::GL(O(kpvo),p)X@

f(x)~ U(x)-F(®5* (x))
Hlin-action is k-linear.
Fact: £ f = Hnf, V f.

Thus often use J#];, instead of ¢ .

of -action is not k-linear
by (a-f+b-g)F#a-®y(f)+b-dy(g)

It is not known whether/how
o/ -action can be “linearized".

(Despite numerous attempts)
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Tangent spaces for group actions &4 O Maps((k", o), (kP, 0)) = Ogi‘,’, 0)

Right action, Z O O(eff,’,,o) Contact action Left-right action, &/ O O(e]i,,p)

F(x) = F(®x*(x)) A Hin © O o ®yofody!

To =germs of vector fields  f(x) — U(x) - f(®5*(x)) T =Ty ®Te =
=derivations =Der (On o)) T f = Matpx p(O(xn o)) f Dery (Okr,0)) @ Deri(Oxn, o))
={Xa(x) g} +Taf C Oé‘fﬁ,o) Tof =Tl + 71 (Owe,0)) P

Taf =OunofZe .. 25)  An Opn o)-submodule. C OG0
C OGh o) &y, &x)(F) = &y (V)lr + &x(F)
An O(n 4)-submodule. Here: r’*l(O(]kp’o)), not f*(O(ke,0))-

Tof is not an Oyn o)-module.

Example: (k”,0) 5 (k!,0), i.e. p=1. Then Ty (f) = Jac(f) C O(xn,0), the Jacobian ideal.
T (f) = Jac(f) + (f) C O(xn o), the Tjurina ideal.

T (f) = Jac(f) + Spani (1, f,f2,...) C On o). This is a k-vector subspace, not an ideal!
Observe: Tgf C Ty and Ty f C T f + k.

Altogether, we have: Tgf C T f C Og{ﬁ’o), fin.gen. submodules. But T f C O(Ei’,’,’o) is not
an O(kn o)-module. It is only an O(yp 5)-module. And not finitely-generated! (see the example)

History: In 50's-60's J. Mather studied the %, o/-orbits. He had to introduce ¥ -equivalence
because of the pathologies of .«7-equivalence. The usual approach: prove smth for # and 7,
then try to descend to <. Here one uses: T f C T f + kOP.
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How large are the orbits ¥f? For ¥ € %, % , o . Our goal: to study the orbits ¥f vs T f.

Example: Take the maximal ideal m C O(yn ). How to ensure ¥f D {f} + md . Og{’,’, o)
meaning: all the terms in f of order> d are irrelevant, i.e. can be removed by ¥-action.

(In this case f is called “(d — 1)-determined".) In particular, one can replace f by a polynomial.

? The

Finite Determinacy theorem. f € OFP s finitely determined iff Ty f C OEP | is of finite

(k",0) (k",0)
codimension. i.e. dimy O(e]iﬁ,o)/Tg f < oo.
More precisely, for ¥ € #,.¢: 9f D {f} +m?. O(ﬁ‘;’o) iffm2. Ty f Dm?- ogfj;,o).

Ford =cof: elfm2 Ty fDOmd. 05‘;{‘;‘0) then o/f D {f} +m2d-1. Of‘f{ﬁyo).

o If /D {f}+m9. Oé'i’i,o) then
d D
m? - Ty f 2m?-Onf

History. The %, % -cases are ‘relatively simple", e.g. [Tougeron.68]. (Maybe was known
before?) The first result for & was [Mather.68]. Hard/long proofs, poor estimates. These were
gradually improved, [Gaffney.79], [du Plessis.80], [Wall.81],..., [Wall.95]. The standard proofs
use: unfoldings, vector fields integrations (ODE’s), and/or affine unipotent algebraic groups.

Problem/example. Let f(x,y) =xP+yP, p>4. Tgf = Jac(f) = (xP~1,yP~1) C O(]kz,o).
Thus m? - Tgpf D m2P~3, Thus Zf D {f} +m?’~3, But in fact:
Rf D {f}+m?,~3 4+ m.(x)P+m-(y)?+---. The orbit is larger, even asymptotically!
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Intermezzo. In 2004-2005 | have asked E.Shustin “How does one prove the finite determinacy?"
His answer: “You just kill the higher order terms, one-by-one. Nothing difficult."

| read the actual proofs (for %, % cases) only in 2010-2012. And | did not like them.

Removing higher order terms is a simple algebraic procedure. One does not need vector fields
integration /the theory of affine unipotent algebraic groups (over R, C).

Let's begin the talk.

Let (Rx,m) be a local Noetherian k-algebra. Thus X := Spec(Rx) is a local Noetherian scheme.
Examples. o Ry = Kk[[x]l/j, i.e. X = V(I) C (k",0) is a formal scheme-germ over k. Here k is
a(ny) field, or a complete local ring. (Local rings are needed for families/deformations)

o Rx = k{x}//, i.e. X C (K", 0) is an analytic germ. Here Ik is a normed field (or a normed
local ring), complete w.r.t. its norm. (e.g. Q,R,C,Qp,...)

o Rx = k{X)/j, i.e. X C (Kk",0) is a henselian germ. Here k is a(ny) field or a henselian local
ring. (Henselian germs are important in algebraic geometry, as étale neighborhoods.)

Consider Maps := {X N Y}, here Y = (kP, 0) is a regular germ, e.g. Ry = K[[y]], k{y}, k(y).
Fix some coordinates y = (y1,...,yp) on (kP,0), then each f is presentable as
(fi,...,fp) €m- REP. Accordingly Maps(X, (kP,0)) 2 m - R,
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Group actions on maps of germs of Noetherian schemes, ¥ © Maps(X, (kP,0)) 2 m - Rj?p.

Right equivalence
Ikp
y

¢

X

Contact equivalence
]kP
y

s

X

Left-Right equivalence
]kp
y

s

X

dxOX, ie. d%EAuty (Rx)
frm®% (F):=fod)*
R=Auty (Rx)OMaps(X,(kP,0))
P-action is k-linear.
T =Den (Rx)ORL?
(€x,f)—&x(f)
T%FQR)?p is an Ry-submodule

() THOX () W(x.y)),  W(x,0)=0
Y(o,y)€Auty (Ry), FW(x,fody?)
K OMaps(X,(kP,0))
not k-linear, but “linearizable".

Hin=GL(Rx,p) X2
FrsU()-F(03 7 (x)

A in-action is k-linear
Fact: ¢ f = ) f, V f.
Tt 1n=Tor ®Matpy p(Rx)

Goal: Relate the properties of 4f to those of T4f.

eg Yf D {f}+J-RYP

VS

PxOX,  PyO(k),0)

fe®yofod?
of =Auty (Rx) X Auty (Ry)
OMaps(X,(kP,0))
T,y =Den (Ry )@ Den (Rx)ORPP
(Ev,Ex)f=Ey (¥)lr+Ex(f).
T f=Tof+f "1 (Ry)®P
To ngf?Pis not an Ry —module

not k-linear

Ty f is an Ry —module. Not f.g.

Tyf D J- R;‘?p. (for the largest possible J)
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The first criterion
Let f € Maps(X, (kP, 0)). The annihilator ideal, ag := Ann RQBX/Tgf C Rx.
Theorem (K. 2021). Let Rx € Kk[[x]], k{x}, k(x). Take ideals a C | C (x) C Rx and a map
fel R
@ () Suppose (f) C (x)2. If a2 1992 C (x)-a-ap then {f}+a-TxpfC %S
@ (%) Suppose (f) C (x)? and p > 1. If a2 - 199()=2 C q . a_¢ then
{f}+ <a~ax+m-(f)) RYP C HF.

@ (/) Suppose a satisfies: a2 - Jord(f)=2. R;?P Cm-a- Tef+f"1(y?) Tef.
Then o/f D {f} + a2 [dN=2. REP 4 £-1(y2). T f.

Example. Let 4 = Z, p = 1, k-any field. Then Tgf = Jac(f) and ag = Jac(f).
Q@ Take a=m- Jac(f). Then a®> Cm-a- Jac(f). Thus Zf D {f} +m - Jac(f)2.
@ Suppose ord(f) > 3. Take a = Jac(f) C I := m. Then a2 - /99()=2 C m . a- Jac(f).
Thus Zf D {f} + Jac(f)?.
@ Compare the theorem to the standard bound: “If m? - Jac(f) D m? then %Zf D {f} + md."
e.g. let f be an ordinary multiple point. One can show: d = n(ord(f) —2) — 1. And our
d—1—ord(f d—1—ord(f
bound gives: Zf D {f} +m( o 2 : )“ . Jac(f). Here m( : 2 ¢ )] . JaC(f) S md and is
essentially larger. (Even asymptotically.)
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Filtration type results Let Rx be local Noetherian. Fix an ideal ] C m C Rx.
Take the filtration on the space of maps, Maps(X, (kP, o)) =m- Ry P 5. Ry N

For an(y) action ¢ O RGBP we get the subgroup 7 >90 ={gc Sf| gl R®p) 9. REBP}.

Moreover, we define ¢ (0) >9M) = {g € 9] g 1 asn = ld| ;4 1941
90 > @20) = {g € 9] g 191+ = Id| 19+ }, for every j > 1.

Thus we get the group-filtration: ¥ > 9©) > @1) ... (unipotent filtration)

}. More generally,

Similarly, for a tangent space T O R;?p we get

Ty D Ty = {6 € Ty IR Rj?p) ci. R;?p}. Moreover, we consider

Ty D Tyy ={£ € Tyl g - Rf?p) C |9t . Rf?p}, for every j > 1. Thus we get the tangent
space filtration: Teg D Tyy0) 2 -+ (nilpotent filtration)

Example. ¥ =%, | =m. Then #Z = %FO), as local coordinate changes preserve the origin, i.e.
the autos of a local ring preserve m. ZU) = {x — x + ¢(x)|d(x) € (x}11}.
Ta = Deri(Rx) D Ty = {£] €(m) S m} D T = {€] £(m) C w1}

The pairs (T(g(j),gg)), for j > 1, are simpler than (Tg,%), because the filtration induces
topology. Then one can define the “convergence" and the maps Expl[...], Ln[...]. In this way
one can “integrate vector fields".

Theorem (K.2021). Let &4 € %, %. Fix some integers 1 <j<d, suppose 2,.. ., ]'d_of.rd(f)] € R*.
(And a technical condition.) Then:
9O f D {f}+ 19 REP if and only if Tyonf 2 1% RYP.
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Theorem (K.2021). Let ¥ € %, % Fix some integers 1<j<d, suppose 2,..., ]'diof.rdm] € R*.
(And a technical condition.) Then:

gUf D {f}+19. RZP if and only if Ty f 217 REP.
Remarks
@ Here 4U)f is the closure in the filtration topology, #U)f = N, (%U)f + /e R;?p). Thus

— ) )
g F D {fy+19. R)e?p means: {f}+1/9 -Rj?p% {f}-‘r/d“'Rj‘(}p% {f}+ld+2‘Rj‘<}p' a
For many rings the orbit is closed, ¥0)f = ¥U)f. e.g. for R = K[[x]], k{x}, k(x), k any
field, also for many rings with R 2 Q.

@ The technical condition: given £ € Ty; and N € N, take the truncated Exp:

N
Id+&+ -+ %I—, This is a self-map of Rj?p, but is not necessarily an element of ¥.

N
We say “ jety(Exp) holds", if Id + &+ --- + % + ¢ € 4, where ¢ is of “high order". And
similarly for jety(Ln). This condition holds for many rings, also in positive characteristic,
[BGK].
@ For &4 = &/ the statement is similar.

@ This theorem generalizes the classical criteria over R, C. Without any ODE's, vector field

integration. Yet, this result is restricted, e.g. one needs 2,..., N € R*. (What happens in
low characteristic?) And one would like more general fitrations, Me C Rj?p, rather than
I* - RP.

In [Belitski-K.] we have developed the machinery to address this when k O Q.
Then we obtain the classical/expected statements.

When k 2 Q, and the characteristic is low, the situation is more delicate. This was studied
in [Boix-Greuel-K.] for 4 € %, ¢ .
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An application: relative algebraization of maps

Let f € Maps(X, (kP,0)) = m- R;?p. Suppose f is finitely ¢-determined, i.e.
Gf D {f} +m9. Rj‘?”, for d > 1. Then in particular: f %(a polynomial map).

What to do when f is not finitely ¥-determined? (i.e. its critical/singular/instability locus is
non-isolated)

Example (Whitney): f(x,y,z) = xy(x + y)(x — zy)(x — e?y) € C{x, y, z} is not % -equivalent
to a polynomial. Here Sing(V(f)) = V(x,y) C C3. But at least f is a polynomial “in the
direction transverse to the 2-axis".

The natural generalization:

Proposition. Let Ry = k[[x]], k a(ny) field, and f € m? - Rj‘?". Let ¥ € #, 4 ,.o/. Suppose the
annihilator ideal agy C Rx is of height c. Then f is ¥-equivalent to an element of

Ro—clx1, .., x]®P, here Rp_c is K[[xct1, - - -, Xn]]-

. ?/ﬂ%% /z yeeer allention!
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