Proof of Morrison-Kawamata cone conjecture for holomorphically symplectic manifolds

Misha Verbitsky

Seminar in Real and Complex Geometry

Tel-Aviv University, 21.07.2015

The Kähler cone and its faces

This is joint work with Ekaterina Amerik.

DEFINITION: Let M be a compact, Kähler manifold, Kah $\subset H^{1,1}(M,\mathbb{R})$ is Kähler cone (set of all Kähler classes), and Kah its closure in $H^{1,1}(M,\mathbb{R})$, called **the nef cone**. A **face** of a Kähler cone is an intersection of the boundary of Kah and a hyperplane $V \subset H^{1,1}(M,\mathbb{R})$ which has non-empty interior.

CONJECTURE: (Morrison-Kawamata cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic automorphisms of M acts on the set of faces of Kah with finite number of orbits.

THEOREM: Morrison-Kawamata cone conjecture is true when M is holomorphically symplectic.

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed, $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 a rational number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: *q* has signature $(3, b_2 - 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

Monodromy group

DEFINITION: Monodromy group Mon(M) of a hyperkähler manifold (M, I) is a subgroup of $O(H^2(M, \mathbb{Z}), q)$ generated by monodromy of Gauss-Manin connections for all families of deformations of (M, I). The Hodge monodromy group Mon(M, I) is a subgroup of Mon(M) preserving the Hodge decomposition.

REMARK: Define **pseudo-isomorphism** $M \longrightarrow M'$ as a birational map which is an isomorphism outside of codimension ≥ 2 subsets of M, M'.

For any pseudo-isomorphic manifolds M, M', one has $H^2(M) = H^2(M')$.

DEFINITION: Let (M, I') be a holomorphic symplectic manifold pseudoisomorphic to (M, I). A Kähler chamber of (M, I) is an image of the Kähler cone of (M, I') under the action of Mon(M, I).

CLAIM: Mon(M, I) acts on $H^{1,1}(M, I)$ mapping Kähler chambers to Kähler chambers.

CLAIM: The group of automorphisms Aut(M, I) is a group of all elements of Mon(M, I) preserving the Kähler cone.

Ample cone and Morrison-Kawamata cone conjecture

DEFINITION: Let *P* be the set of all real vectors in $H^{1,1}(M, I)$ satisfying q(v, v) > 0, where *q* is the Bogomolov-Beauville-Fujiki form on $H^2(M)$. The **positive cone** Pos(M, I) as a connected component of *P* containing a Kähler form. Then $\mathbb{P}Pos(M, I)$ is a hyperbolic space, and Aut(M, I) acts on $\mathbb{P}Pos(M, I)$ by hyperbolic isometries.

DEFINITION: Let $H^{1,1}(M,\mathbb{Q})$ be the set of all rational (1,1)-classes on (M,I), and $\operatorname{Kah}_{\mathbb{Q}}(M,I)$ the set of all Kähler classes in $H^{1,1}(M,\mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{R}$. Then $\operatorname{Kah}_{\mathbb{Q}}(M,I)$ is called **ample cone** of M.

REMARK: From global Torelli theorem it follows that Mon(M, I) is a finite index subgroup in $O(H^2(M, \mathbb{Z}), q)$. Therefore, Mon(M, I) **acts on** $\mathbb{P} Pos_{\mathbb{Q}}(M, I) := \mathbb{P}(Pos(M, I) \cap H^{1,1}(M, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{R})$ with finite covolume; in other words, the quotient $\mathbb{P} Pos_{\mathbb{Q}}(M, I) / Mon(M, I)$ is a finite volume hyperbolic orbifold.

THEOREM: (cone conjecture for hyperkähler manifolds) The quotient $\operatorname{Kah}_{\mathbb{Q}}(M, I) / \operatorname{Mon}(M, I)$ is a finite hyperbolic polyhedron in $\mathbb{P}\operatorname{Pos}_{\mathbb{Q}}(M, I) / \operatorname{Mon}(M, I)$.

REMARK: In other words, the action of Aut(M, I) on $Kah_{\mathbb{Q}}(M, I)$ has a finite polyhedral fundamental domain.

MBM classes

DEFINITION: Negative class on a hyperkähler manifold is $\eta \in H^2(M, \mathbb{R})$ satisfying $q(\eta, \eta) < 0$.

DEFINITION: Let (M, I) be a hyperkähler manifold. A rational homology class $z \in H_{1,1}(M, I)$ is called **minimal** if for any Q-effective homology classes $z_1, z_2 \in H_{1,1}(M, I)$ satisfying $z_1 + z_2 = z$, the classes z_1, z_2 are proportional. A negative rational homology class $z \in H_{1,1}(M, I)$ is called **monodromy birationally minimal** (MBM) if $\gamma(z)$ is minimal and Q-effective for one of birational models (M, I') of (M, I), where $\gamma \in O(H^2(M))$ is an element of the monodromy group of (M, I).

This property is **deformationally invariant**.

THEOREM: Let $z \in H^2(M, \mathbb{Z})$ be negative, and I, I' complex structures in the same deformation class, such that η is of type (1,1) with respect to I and I'. Then η is MBM in $(M, I) \Leftrightarrow$ it is MBM in (M, I').

DEFINITION: Let $z \in H^2(M, \mathbb{Z})$ be a negative class on a hyperkähler manifold (M, I). It is called **an MBM class** if for any complex structure I' in the same deformation class satisfying $z \in H^{1,1}(M, I')$, z is an MBM class.

MBM classes and the Kähler cone

THEOREM: Let (M, I) be a hyperkähler manifold, and $S \subset H_{1,1}(M, I)$ the set of all MBM classes in $H_{1,1}(M, I)$. Consider the corresponding set of hyperplanes $S^{\perp} := \{W = z^{\perp} \mid z \in S\}$ in $H^{1,1}(M, I)$. Then the Kähler cone of (M, I) is a connected component of $Pos(M, I) \setminus \bigcup S^{\perp}$, where Pos(M, I)is a positive cone of (M, I). Moreover, for any connected component K of $Pos(M, I) \setminus \bigcup S^{\perp}$, there exists $\gamma \in O(H^2(M))$ in a monodromy group of M, and a hyperkähler manifold (M, I') birationally equivalent to (M, I), such that $\gamma(K)$ is a Kähler cone of (M, I').

REMARK: This implies that **MBM classes correspond to faces of the** Kähler cone.

MBM classes and the Kähler cone: the picture

REMARK: This implies that $z^{\perp} \cap Pos(M, I)$ either has dense intersection with the interior of the Kähler chambers (if z is not MBM), or is a union of walls of those (if z is MBM); that is, there are no "barycentric partitions" in the decomposition of the positive cone into the Kähler chambers.

MBM classes and cone conjecture

PROPOSITION: Suppose that Mon(M, I) acts on the set of MBM classes in $H^{1,1}(M, I)$ with finitely many orbits. Then cone conjecture is true for (M, I).

Proof: MBM classes are the faces of the Kähler cone. ■

THEOREM: Let X be a complete Riemannian orbifold of dimension at least three, constant negative curvature and finite volume, and $\{S_i\}$ an infinite set of complete, locally geodesic hypersurfaces. Then the union of S_i is dense in X.

COROLLARY: Let M be a simple hyperkähler manifold with $b_2(M) \ge 6$. **Then the group of automorphisms** Aut(M) **acts with finitely many orbits on the set of faces of the Kähler cone** Kah(M).

Proof: Consider a hyperbolic orbifold $X := \text{Pos}_{\mathbb{Q}}(M, I) / \text{Mon}(M, I)$, let $\tilde{S}_i \subset \text{Pos}_{\mathbb{Q}}(M, I)$ the hyperplanes s_i^{\perp} , for all MBM classes $s_i \in H^{1,1}(M, I)$, and S_i their images in X. Since the ample cone is a connected component of $\text{Pos}_{\mathbb{Q}}(M, I) \setminus \bigcup \tilde{S}_i$, the union of S_i cannot be dense in X. Therefore, Mon(M, I) acts on the faces $\{\tilde{S}_i\}$ with finitely many orbits.

Ratner's orbit closure theorem

DEFINITION: Let G be a Lie group, and $\Gamma \subset G$ a discrete subgroup. We say that Γ has finite covolume if the Haar measure of G/Γ is finite. In this case Γ is called a lattice subgroup.

REMARK: Borel and Harish-Chandra proved that an arithmetic subgroup of a reductive group G is a lattice whenever G has no non-trivial characters over \mathbb{Q} . In particular, all arithmetic subgroups of a semi-simple group are lattices.

DEFINITION: Let G be a Lie group, and $g \in G$ any element. We say that g is **unipotent** if $g = e^h$ for a nilpotent element h in its Lie algebra. A group G is **generated by unipotents** if G is multiplicatively generated by unipotent one-parameter subgroups.

THEOREM: (Ratner orbit closure theorem)

Let $H \subset G$ be a Lie subroup generated by unipotents, and $\Gamma \subset G$ a lattice. Then the closure of any *H*-orbit Hx in G/Γ is an orbit of a closed, connected subgroup $S \subset G$, such that $S \cap x \Gamma x^{-1} \subset S$ is a lattice in S.

Ratner's measure classification theorem

DEFINITION: Let (M, μ) be a space with a measure, and G a group acting on M preserving μ . This action is **ergodic** if all G-invariant measurable subsets $M' \subset M$ satisfy $\mu(M') = 0$ or $\mu(M \setminus M') = 0$.

REMARK: Ergodic measures are extremal rays in the cone of all *G*-invariant measures.

REMARK: By Choquet's theorem, any *G*-invariant measure on *M* is expressed as an average of a certain set of ergodic measures.

DEFINITION: Let G be a Lie group, Γ a lattice, and G/Γ the quotient space, considered as a space with Haar measure. Consider an orbit $S \cdot x \subset G$ of a closed subgroup $S \subset G$, put the Haar measure on $S \cdot x$, and assume that its image in G/Γ is closed. A measure on G/Γ is called **algebraic** if it is proportional to the pushforward of the Haar measure on $S \cdot x/\Gamma$ to G/Γ .

THEOREM: (Ratner's measure classification theorem)

Let G be a connected Lie group, Γ a lattice, and G/Γ the quotient space, considered as a space with Haar measure. Consider a finite measure μ on G/Γ . Assume that μ is invariant and ergodic with respect to an action of a subgroup $H \subset G$ generated by unipotents. Then μ is algebraic.

Mozes-Shah and Dani-Margulis

THEOREM: (Mozes-Shah)

A limit of algebraic measures is again an algebraic measure.

Proof: Follows from Ratner's measure classification theorem.

THEOREM: (a corollary of Mozes-Shah and Dani-Margulis theorem) Let G be a connected Lie group, Γ a lattice, $\mathcal{P}(X)$ be the space of all finite measures on $X = G/\Gamma$, and $\mathcal{Q}(X) \subset \mathcal{P}(X)$ the space of all algebraic measures associated with subgroups $H \subset G$ generated by unipotents (as in Ratner theorems). Then $\mathcal{Q}(X)$ is closed in \mathcal{P} .

THEOREM: Let X be a complete Riemannian orbifold of dimension at least three, constant negative curvature and finite volume, and $\{S_i\}$ a set of complete, locally geodesic hypersurfaces. Then the union of S_i is dense in X, unless there are only finitely many of S_i .

Proof: Denote by μ_i the algebraic measure supported in S_i . Since the space of probabilistic measures is compact, μ_i converge to an algebraic measure on X. However, any orbit of a subgroup strictly containing S_i must coincide with Y. Therefore, there is either finitely many of S_i or their union is dense.

X. Therefore, there is either finitely many of S_i or their union is dense.