Proof of Morrison-Kawamata cone conjecture M. Verbitsky

Proof of Morrison-Kawamata cone conjecture
for holomorphically symplectic manifolds

Misha Verbitsky

Seminar in Real and Complex Geometry

Tel-Aviv University, 21.07.2015



Proof of Morrison-Kawamata cone conjecture M. Verbitsky

T he Kahler cone and its faces
This is joint work with Ekaterina Amerik.

DEFINITION: Let M be a compact, Kahler manifold, Kah ¢ HL1(M,R) is
Kahler cone (set of all Kdhler classes), and Kah its closure in HL1 (M, R), called
the nef cone. A face of a Kahler cone is an intersection of the boundary of
Kah and a hyperplane V. c HL1(M,R) which has non-empry interior.

CONJECTURE: (Morrison-Kawamata cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic
automorphisms of M acts on the set of faces of Kah with finite number of
orbits.

THEOREM: Morrison-Kawamata cone conjecture is true when M is
holomorphically symplectic.
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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
Wy .= g(Ia)' W L= g(‘]a)’ WK -— g(Ka)

REMARK: This is equivalent to VI =VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths) is
called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold
equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkahler manifolds are holomorphically symplectic. Indeed,
QR =wj+ v—1wg is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold.

DEFINITION: A hyperkdahler manifold M is called simple if 7{(M) = O,
H29(M) =C.

Bogomolov’s decomposition: Any hyperkahler manifold admits a finite cov-
ering which is a product of a torus and several simple hyperkahler manifolds.

Further on, all hyperkahler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;7°" = cq(n,n)"™, for some primitive integer quadratic form
g on H2(M,Z), and ¢ > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’'s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aa(n, 1) = /Xn AnAQTTIAT L

1 _ e
_n (/ n/\Q”_l/\Q”> (/ nAQPAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A\ > 0.

Remark: ¢ has signature (3,6, — 3). It is negative definite on primitive
forms, and positive definite on (Q2,Q,w), where w is a Kahler form.
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Monodromy group

DEFINITION: Monodromy group Mon(M) of a hyperkahler manifold (M, I)
is a subgroup of O(H?2(M,Z),q) generated by monodromy of Gauss-Manin
connections for all families of deformations of (M,I). The Hodge mon-
odromy group Mon(M,I) is a subgroup of Mon(M) preserving the Hodge
decomposition.

REMARK: Define pseudo-isomorphism M — M’ as a birational map which
is an isomorphism outside of codimension > 2 subsets of M, M’.

For any pseudo-isomorphic manifolds M, M’, one has H2(M) = H?2(M").

DEFINITION: Let (M,I") be a holomorphic symplectic manifold pseudo-
isomorphic to (M,I). A Kahler chamber of (M,I) is an image of the Kahler
cone of (M, I") under the action of Mon(M, I).

CLAIM: Mon(M, I) acts on HL:1 (M, I) mapping Kahler chambers to Kahler
chambers.

CLAIM: The group of automorphisms Aut(M,I) is a group of all ele-
ments of Mon(M,I) preserving the Kahler cone.
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Ample cone and Morrison-Kawamata cone conjecture

DEFINITION: Let P be the set of all real vectors in HL1(M, I) satisfying
g(v,v) > 0, where ¢ is the Bogomolov-Beauville-Fujiki form on H2(M). The
positive cone Pos(M, ) as a connected component of P containing a Kahler
form. Then PPos(M,I) is a hyperbolic space, and Aut(M, I) acts on PPos(M, I)
by hyperbolic isometries.

DEFINITION: Let HL1(M,Q) be the set of all rational (1,1)-classes on
(M, I), and Kahg(M,I) the set of all Kahler classes in H1:1(M,Q) ®gR. Then
Kahg(M,I) is called ample cone of M.

REMARK: From global Torelli theorem it follows that Mon(M, I) is a finite in-
dex subgroup in O(H?%(M,Z),q). Therefore, Mon(M, I) acts on P Posg (M, I) :=
P(Pos(M, I)NH11(M,Q)®gR) with finite covolume; in other words, the quo-
tient P Posg(M, I)/Mon(M,I) is a finite volume hyperbolic orbifold.

THEOREM: (cone conjecture for hyperkahler manifolds)
The quotient Kahg(M,I)/Mon(M,I) is a finite hyperbolic polyhedron in
P Posg(M, 1)/ Mon(M, I).

REMARK: In other words, the action of Aut(M,I) on Kahg(M,I) has a
finite polyhedral fundamental domain.

-
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MBM classes

DEFINITION: Negative class on a hyperkdhler manifold is n € H2(M,R)
satisfying ¢(n,n) < O.

DEFINITION: Let (M,I) be a hyperkahler manifold. A rational homology
class z € Hy 1(M, 1) is called minimal if for any Q-effective homology classes
21,22 € Hy 1(M,I) satisfying z1; + 20 = 2, the classes z1,z> are proportional.
A negative rational homology class z € Hl,l(M, I) is called monodromy bi-
rationally minimal (MBM) if v(z) is minimal and Q-effective for one of
birational models (M, I’) of (M,I), where v € O(H?(M)) is an element of the
monodromy group of (M, I).

This property is deformationally invariant.

THEOREM: Let 2z € HQ(M,Z) be negative, and I,I’ complex structures in
the same deformation class, such that n is of type (1,1) with respect to I and
I'. Then nis MBM in (M,I) < it is MBM in (M, I).

DEFINITION: Let z € H2(M,Z) be a negative class on a hyperkahler mani-
fold (M, I). It is called an MBM class if for any complex structure I’ in the
same deformation class satisfying z € H171(M, I, z is an MBM class.
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MBM classes and the Kahler cone

THEOREM: Let (M, I) be a hyperkdhler manifold, and S C Hy 1(M,I) the
set of all MBM classes in Hj 1(M,I). Consider the corresponding set of
hyperplanes S+ := {W =21 | ze S} in HLY(M,I). Then the Kahler cone
of (M,I) is a connected component of Pos(M,I)\ U S+, where Pos(M,I)
is a positive cone of (M,I). Moreover, for any connected component K of
Pos(M,I)\ U S+, there exists v € O(H2(M)) in a monodromy group of M,
and a hyperkahler manifold (M, I") birationally equivalent to (M, I), such that
~v(K) is a Kahler cone of (M,I).

REMARK: This implies that MBM classes correspond to faces of the
Kahler cone.
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MBM classes and the Kahler cone: the picture
REMARK: This implies that z1 N Pos(M, I) either has dense intersection
with the interior of the Kahler chambers (if z is not MBM), or is a union

of walls of those (if z is MBM); that is, there are no “barycentric partitions”
in the decomposition of the positive cone into the Kahler chambers.

Allowed partition Prohibited partition
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MBM classes and cone conjecture

PROPOSITION: Suppose that Mon(M, I) acts on the set of MBM classes
in H1.1(M, I) with finitely many orbits. Then cone conjecture is true for
(M, I).

Proof: MBM classes are the faces of the Kahler cone. m

THEOREM: Let X be a complete Riemannian orbifold of dimension at least
three, constant negative curvature and finite volume, and {S;} an infinite set
of complete, locally geodesic hypersurfaces. Then the union of §; is dense
in X.

COROLLARY: Let M be a simple hyperkahler manifold with b>(M) > 6.
Then the group of automorphisms Aut(M) acts with finitely many orbits
on the set of faces of the Kahler cone Kah(M).

Proof: Consider a hyperbolic orbifold X := Posq(M,I)/Mon(M,I), let S; C
Posp(M,I) the hyperplanes s;-, for all MBM classes s; € HL1(M,I), and
S; their images in X. Since the ample cone is a connected component of
Posg (M, D\ US;, the union of S; cannot be dense in X. Therefore, Mon(M, I)
acts on the faces {S5;} with finitely many orbits. m
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Ratner’s orbit closure theorem

DEFINITION: Let G be a Lie group, and I' C G a discrete subgroup. We
say that I has finite covolume if the Haar measure of G/I" is finite. In this
case [ is called a lattice subgroup.

REMARK: Borel and Harish-Chandra proved that an arithmetic subgroup
of a reductive group G is a lattice whenever G has no non-trivial characters
over Q. In particular, all arithmetic subgroups of a semi-simple group are
lattices.

DEFINITION: Let G be a Lie group, and g € G any element. We say that g
is unipotent if g = el for a nilpotent element h in its Lie algebra. A group G
is generated by unipotents if G is multiplicatively generated by unipotent
one-parameter subgroups.

THEOREM: (Ratner orbit closure theorem)

Let H C G be a Lie subroup generated by unipotents, and I C G a lattice.
Then the closure of any H-orbit Hx in G/I" is an orbit of a closed,
connected subgroup S C G, such that Snzfz—1 c S is a lattice in S.
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Ratnher’s measure classification theorem

DEFINITION: Let (M, u) be a space with a measure, and G a group acting
on M preserving u. This action is ergodic if all G-invariant measurable subsets
M' c M satisfy p(M') =0 or u(M\M'") = 0.

REMARK: Ergodic measures are extremal rays in the cone of all G-invariant
measures.

REMARK: By Choquet's theorem, any G-invariant measure on M IS ex-
pressed as an average of a certain set of ergodic measures.

DEFINITION: Let G be a Lie group, I' a lattice, and G/I" the quotient
space, considered as a space with Haar measure. Consider an orbit S-z C G
of a closed subgroup S C G, put the Haar measure on S -z, and assume that
its image in G/I" is closed. A measure on G/I" is called algebraic if it is
proportional to the pushforward of the Haar measure on S -z/I" to G/T.

THEOREM: (Ratner’s measure classification theorem)

Let G be a connected Lie group, I a lattice, and G/I' the quotient space,
considered as a space with Haar measure. Consider a finite measure u on
G/I". Assume that p is invariant and ergodic with respect to an action of a
subgroup H C G generated by unipotents. Then n is algebraic.
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Mozes-Shah and Dani-Margulis

THEOREM: (Mozes-Shah)
A limit of algebraic measures is again an algebraic measure.

Proof: Follows from Ratner’'s measure classification theorem. =

THEOREM: (a corollary of Mozes-Shah and Dani-Margulis theorem)
Let G be a connected Lie group, I' a lattice, P(X) be the space of all finite
measures on X = G /I, and Q(X) C P(X) the space of all algebraic measures
associated with subgroups H C G generated by unipotents (as in Ratner
theorems). Then 9Q(X) is closed in P.

THEOREM: Let X be a complete Riemannian orbifold of dimension at
least three, constant negative curvature and finite volume, and {S;} a set of
complete, locally geodesic hypersurfaces. Then the union of S; is dense in
X, unless there are only finitely many of ;.

Proof: Denote by u; the algebraic measure supported in S;. Since the space
of probabilistic measures is compact, u; converge to an algebraic measure on
X. However, any orbit of a subgroup strictly containing S; must coincide with
X. Therefore, there is either finitely many of S; or their union is dense.

|
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