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The Kähler cone and its faces

This is joint work with Ekaterina Amerik.

DEFINITION: Let M be a compact, Kähler manifold, Kah ⊂ H1,1(M,R) is

Kähler cone (set of all Kähler classes), and Kah its closure in H1,1(M,R), called

the nef cone. A face of a Kähler cone is an intersection of the boundary of

Kah and a hyperplane V ⊂ H1,1(M,R) which has non-empry interior.

CONJECTURE: (Morrison-Kawamata cone conjecture)

Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic

automorphisms of M acts on the set of faces of Kah with finite number of

orbits.

THEOREM: Morrison-Kawamata cone conjecture is true when M is

holomorphically symplectic.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,

Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Monodromy group

DEFINITION: Monodromy group Mon(M) of a hyperkähler manifold (M, I)
is a subgroup of O(H2(M,Z), q) generated by monodromy of Gauss-Manin
connections for all families of deformations of (M, I). The Hodge mon-
odromy group Mon(M, I) is a subgroup of Mon(M) preserving the Hodge
decomposition.

REMARK: Define pseudo-isomorphism M −→M ′ as a birational map which
is an isomorphism outside of codimension > 2 subsets of M,M ′.

For any pseudo-isomorphic manifolds M,M ′, one has H2(M) = H2(M ′).

DEFINITION: Let (M, I ′) be a holomorphic symplectic manifold pseudo-
isomorphic to (M, I). A Kähler chamber of (M, I) is an image of the Kähler
cone of (M, I ′) under the action of Mon(M, I).

CLAIM: Mon(M, I) acts on H1,1(M, I) mapping Kähler chambers to Kähler
chambers.

CLAIM: The group of automorphisms Aut(M, I) is a group of all ele-
ments of Mon(M, I) preserving the Kähler cone.
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Ample cone and Morrison-Kawamata cone conjecture

DEFINITION: Let P be the set of all real vectors in H1,1(M, I) satisfying
q(v, v) > 0, where q is the Bogomolov-Beauville-Fujiki form on H2(M). The
positive cone Pos(M, I) as a connected component of P containing a Kähler
form. Then PPos(M, I) is a hyperbolic space, and Aut(M, I) acts on PPos(M, I)
by hyperbolic isometries.

DEFINITION: Let H1,1(M,Q) be the set of all rational (1,1)-classes on
(M, I), and KahQ(M, I) the set of all Kähler classes in H1,1(M,Q)⊗Q R. Then
KahQ(M, I) is called ample cone of M .

REMARK: From global Torelli theorem it follows that Mon(M, I) is a finite in-
dex subgroup in O(H2(M,Z), q). Therefore, Mon(M, I) acts on PPosQ(M, I) :=
P(Pos(M, I)∩H1,1(M,Q)⊗QR) with finite covolume; in other words, the quo-
tient PPosQ(M, I)/Mon(M, I) is a finite volume hyperbolic orbifold.

THEOREM: (cone conjecture for hyperkähler manifolds)
The quotient KahQ(M, I)/Mon(M, I) is a finite hyperbolic polyhedron in
PPosQ(M, I)/Mon(M, I).

REMARK: In other words, the action of Aut(M, I) on KahQ(M, I) has a
finite polyhedral fundamental domain.
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MBM classes

DEFINITION: Negative class on a hyperkähler manifold is η ∈ H2(M,R)
satisfying q(η, η) < 0.

DEFINITION: Let (M, I) be a hyperkähler manifold. A rational homology
class z ∈ H1,1(M, I) is called minimal if for any Q-effective homology classes
z1, z2 ∈ H1,1(M, I) satisfying z1 + z2 = z, the classes z1, z2 are proportional.
A negative rational homology class z ∈ H1,1(M, I) is called monodromy bi-
rationally minimal (MBM) if γ(z) is minimal and Q-effective for one of
birational models (M, I ′) of (M, I), where γ ∈ O(H2(M)) is an element of the
monodromy group of (M, I).

This property is deformationally invariant.

THEOREM: Let z ∈ H2(M,Z) be negative, and I, I ′ complex structures in
the same deformation class, such that η is of type (1,1) with respect to I and
I ′. Then η is MBM in (M, I) ⇔ it is MBM in (M, I ′).

DEFINITION: Let z ∈ H2(M,Z) be a negative class on a hyperkähler mani-
fold (M, I). It is called an MBM class if for any complex structure I ′ in the
same deformation class satisfying z ∈ H1,1(M, I ′), z is an MBM class.
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MBM classes and the Kähler cone

THEOREM: Let (M, I) be a hyperkähler manifold, and S ⊂ H1,1(M, I) the

set of all MBM classes in H1,1(M, I). Consider the corresponding set of

hyperplanes S⊥ := {W = z⊥ | z ∈ S} in H1,1(M, I). Then the Kähler cone

of (M, I) is a connected component of Pos(M, I)\ ∪ S⊥, where Pos(M, I)

is a positive cone of (M, I). Moreover, for any connected component K of

Pos(M, I)\ ∪ S⊥, there exists γ ∈ O(H2(M)) in a monodromy group of M ,

and a hyperkähler manifold (M, I ′) birationally equivalent to (M, I), such that

γ(K) is a Kähler cone of (M, I ′).

REMARK: This implies that MBM classes correspond to faces of the

Kähler cone.
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MBM classes and the Kähler cone: the picture

REMARK: This implies that z⊥ ∩ Pos(M, I) either has dense intersection

with the interior of the Kähler chambers (if z is not MBM), or is a union

of walls of those (if z is MBM); that is, there are no “barycentric partitions”

in the decomposition of the positive cone into the Kähler chambers.

Allowed partition Prohibited partition
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MBM classes and cone conjecture

PROPOSITION: Suppose that Mon(M, I) acts on the set of MBM classes
in H1,1(M, I) with finitely many orbits. Then cone conjecture is true for
(M, I).

Proof: MBM classes are the faces of the Kähler cone.

THEOREM: Let X be a complete Riemannian orbifold of dimension at least
three, constant negative curvature and finite volume, and {Si} an infinite set
of complete, locally geodesic hypersurfaces. Then the union of Si is dense
in X.

COROLLARY: Let M be a simple hyperkähler manifold with b2(M) > 6.
Then the group of automorphisms Aut(M) acts with finitely many orbits
on the set of faces of the Kähler cone Kah(M).

Proof: Consider a hyperbolic orbifold X := PosQ(M, I)/Mon(M, I), let S̃i ⊂
PosQ(M, I) the hyperplanes s⊥i , for all MBM classes si ∈ H1,1(M, I), and
Si their images in X. Since the ample cone is a connected component of
PosQ(M, I)\

⋃
S̃i, the union of Si cannot be dense in X. Therefore, Mon(M, I)

acts on the faces {S̃i} with finitely many orbits.
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Ratner’s orbit closure theorem

DEFINITION: Let G be a Lie group, and Γ ⊂ G a discrete subgroup. We

say that Γ has finite covolume if the Haar measure of G/Γ is finite. In this

case Γ is called a lattice subgroup.

REMARK: Borel and Harish-Chandra proved that an arithmetic subgroup

of a reductive group G is a lattice whenever G has no non-trivial characters

over Q. In particular, all arithmetic subgroups of a semi-simple group are

lattices.

DEFINITION: Let G be a Lie group, and g ∈ G any element. We say that g

is unipotent if g = eh for a nilpotent element h in its Lie algebra. A group G

is generated by unipotents if G is multiplicatively generated by unipotent

one-parameter subgroups.

THEOREM: (Ratner orbit closure theorem)

Let H ⊂ G be a Lie subroup generated by unipotents, and Γ ⊂ G a lattice.

Then the closure of any H-orbit Hx in G/Γ is an orbit of a closed,

connected subgroup S ⊂ G, such that S ∩ xΓx−1 ⊂ S is a lattice in S.
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Ratner’s measure classification theorem

DEFINITION: Let (M,µ) be a space with a measure, and G a group acting
on M preserving µ. This action is ergodic if all G-invariant measurable subsets
M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

REMARK: Ergodic measures are extremal rays in the cone of all G-invariant
measures.

REMARK: By Choquet’s theorem, any G-invariant measure on M is ex-
pressed as an average of a certain set of ergodic measures.

DEFINITION: Let G be a Lie group, Γ a lattice, and G/Γ the quotient
space, considered as a space with Haar measure. Consider an orbit S · x ⊂ G
of a closed subgroup S ⊂ G, put the Haar measure on S · x, and assume that
its image in G/Γ is closed. A measure on G/Γ is called algebraic if it is
proportional to the pushforward of the Haar measure on S · x/Γ to G/Γ.

THEOREM: (Ratner’s measure classification theorem)
Let G be a connected Lie group, Γ a lattice, and G/Γ the quotient space,
considered as a space with Haar measure. Consider a finite measure µ on
G/Γ. Assume that µ is invariant and ergodic with respect to an action of a
subgroup H ⊂ G generated by unipotents. Then µ is algebraic.
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Mozes-Shah and Dani-Margulis

THEOREM: (Mozes-Shah)
A limit of algebraic measures is again an algebraic measure.

Proof: Follows from Ratner’s measure classification theorem.

THEOREM: (a corollary of Mozes-Shah and Dani-Margulis theorem)
Let G be a connected Lie group, Γ a lattice, P(X) be the space of all finite
measures on X = G/Γ, and Q(X) ⊂ P(X) the space of all algebraic measures
associated with subgroups H ⊂ G generated by unipotents (as in Ratner
theorems). Then Q(X) is closed in P.

THEOREM: Let X be a complete Riemannian orbifold of dimension at
least three, constant negative curvature and finite volume, and {Si} a set of
complete, locally geodesic hypersurfaces. Then the union of Si is dense in
X, unless there are only finitely many of Si.

Proof: Denote by µi the algebraic measure supported in Si. Since the space
of probabilistic measures is compact, µi converge to an algebraic measure on
X. However, any orbit of a subgroup strictly containing Si must coincide with
X. Therefore, there is either finitely many of Si or their union is dense.
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