Deformation of curves on surfaces

Takeo Nishinou

Rikkyo University

2023.11

1 Overview

2 Background

3 Ideas and main theorem

Overview

- Object to study: Deformation theoretic properties of algebraic curves on surfaces

Overview

■ Object to study: Deformation theoretic properties of algebraic curves on surfaces
■ Problem: In general, deformation theory with possibly nontrivial obstruction classes is difficult

Overview

■ Object to study: Deformation theoretic properties of algebraic curves on surfaces
■ Problem: In general, deformation theory with possibly nontrivial obstruction classes is difficult
■ Method: Direct calculation of obstructions

Overview

■ Object to study: Deformation theoretic properties of algebraic curves on surfaces
■ Problem: In general, deformation theory with possibly nontrivial obstruction classes is difficult
■ Method: Direct calculation of obstructions
... Possible for singular curves

Background

The study of curves on surfaces has long history

Background

The study of curves on surfaces has long history From deformation theoretic view point, one of famous problems is the Severi's problem:

Background

The study of curves on surfaces has long history From deformation theoretic view point, one of famous problems is the Severi's problem:

- Is the moduli space of nodal plane curves of given degree and genus irreducible?

Background

The study of curves on surfaces has long history From deformation theoretic view point, one of famous problems is the Severi's problem:

- Is the moduli space of nodal plane curves of given degree and genus irreducible?
Solved affirmatively by Harris (1986).

Related problem:

Related problem:

- Given a singular curve on a surface, is it possible to deform it to a nodal or immersed curve without changing geometric genus?

Related problem:

- Given a singular curve on a surface, is it possible to deform it to a nodal or immersed curve without changing geometric genus?
Several positive answers are known:

Related problem:

- Given a singular curve on a surface, is it possible to deform it to a nodal or immersed curve without changing geometric genus?
Several positive answers are known:
- Any integral curve on Hirzebruch surfaces can be deformed to nodal (Harris)

Related problem:

- Given a singular curve on a surface, is it possible to deform it to a nodal or immersed curve without changing geometric genus?
Several positive answers are known:
- Any integral curve on Hirzebruch surfaces can be deformed to nodal (Harris)
- Curves in multiple of anti-canonical classes on del Pezzo surfaces can be deformed to nodal (Harris)

Related problem:

- Given a singular curve on a surface, is it possible to deform it to a nodal or immersed curve without changing geometric genus?
Several positive answers are known:
- Any integral curve on Hirzebruch surfaces can be deformed to nodal (Harris)
- Curves in multiple of anti-canonical classes on del Pezzo surfaces can be deformed to nodal (Harris)
- Non-rational curves in very ample classes on K3 surfaces can be deformed to immersion (Dedieu-Sernesi)

In this direction, few results are known for surfaces of general type.

In this direction, few results are known for surfaces of general type.
Known results mainly concern properties of the Severi variety $\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{n}}$, the moduli of nodal curves in given linear equivalence class and with n nodes

In this direction, few results are known for surfaces of general type.
Known results mainly concern properties of the Severi variety $\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{n}}$, the moduli of nodal curves in given linear equivalence class and with n nodes Some known results:

In this direction, few results are known for surfaces of general type.
Known results mainly concern properties of the Severi variety $\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{n}}$, the moduli of nodal curves in given linear equivalence class and with \boldsymbol{n} nodes Some known results:

■ S : surface, K_{S} : ample, $C \in\left|p K_{S}\right|, p \geq 2$. If C is nodal and \boldsymbol{n} is small, then $\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{n}}$ is smooth of expected dimension at \boldsymbol{C} (Chiantini-Sernesi)

In this direction, few results are known for surfaces of general type.
Known results mainly concern properties of the Severi variety $\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{n}}$, the moduli of nodal curves in given linear equivalence class and with \boldsymbol{n} nodes Some known results:

■ S : surface, K_{S} : ample, $C \in\left|p K_{S}\right|, p \geq 2$. If C is nodal and \boldsymbol{n} is small, then $\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{n}}$ is smooth of expected dimension at \boldsymbol{C} (Chiantini-Sernesi)

In this direction, few results are known for surfaces of general type.
Known results mainly concern properties of the Severi variety $\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{n}}$, the moduli of nodal curves in given linear equivalence class and with \boldsymbol{n} nodes Some known results:

■ S : surface, K_{S} : ample, $C \in\left|p K_{S}\right|, p \geq 2$. If C is nodal and \boldsymbol{n} is small, then $\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{n}}$ is smooth of expected dimension at \boldsymbol{C} (Chiantini-Sernesi)
$■ S \subset \mathbb{P}^{3}$: general surface, $n \leq \operatorname{dim}\left(\left|O_{S}(m)\right|\right)$,

In this direction, few results are known for surfaces of general type.
Known results mainly concern properties of the Severi variety $\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{n}}$, the moduli of nodal curves in given linear equivalence class and with n nodes Some known results:
$\square S$: surface, K_{S} : ample, $C \in\left|p K_{S}\right|, p \geq 2$. If C is nodal and \boldsymbol{n} is small, then $\boldsymbol{V}_{\boldsymbol{C}, \boldsymbol{n}}$ is smooth of expected dimension at \boldsymbol{C} (Chiantini-Sernesi)
$■ S \subset \mathbb{P}^{3}$: general surface, $n \leq \operatorname{dim}\left(\left|O_{S}(m)\right|\right)$, Then $V_{m, n}$ has at least one component of expected dimension (Chiantini-Ciliberto)

In general, study of curves on surfaces of general type is very hard

In general, study of curves on surfaces of general type is very hard
One exception: semiregularity

In general, study of curves on surfaces of general type is very hard
One exception: semiregularity

- A curve $i: C \hookrightarrow S$ is semiregular iff the map $\boldsymbol{H}^{0}\left(\boldsymbol{S}, \boldsymbol{K}_{S}\right) \rightarrow \boldsymbol{H}^{0}\left(\boldsymbol{C}, \boldsymbol{i}^{*} \boldsymbol{K}_{S}\right)$ is surjective

In general, study of curves on surfaces of general type is very hard
One exception: semiregularity
■ A curve $i: C \hookrightarrow S$ is semiregular iff the map $\boldsymbol{H}^{0}\left(S, K_{S}\right) \rightarrow H^{0}\left(C, i^{*} K_{S}\right)$ is surjective
\square If \boldsymbol{C} is semiregular, then it is unobstructed in the sense that any first order deformation can be extended to arbitrary high order (Severi, Kodaira-Spencer, Bloch)

In general, study of curves on surfaces of general type is very hard
One exception: semiregularity
\square A curve $\boldsymbol{i}: \boldsymbol{C} \hookrightarrow \boldsymbol{S}$ is semiregular iff the map $\boldsymbol{H}^{0}\left(\boldsymbol{S}, \boldsymbol{K}_{S}\right) \rightarrow \boldsymbol{H}^{0}\left(\boldsymbol{C}, \boldsymbol{i}^{*} K_{S}\right)$ is surjective
\square If \boldsymbol{C} is semiregular, then it is unobstructed in the sense that any first order deformation can be extended to arbitrary high order (Severi, Kodaira-Spencer, Bloch)
■ Defect: there is no control on the geometry of deformed curves

Rough statement of our result:

Rough statement of our result: We consider a semiregular map $\varphi: C \rightarrow S$ from a smooth curve to a surface birational to the image

Rough statement of our result: We consider a semiregular map $\varphi: C \rightarrow S$ from a smooth curve to a surface birational to the image

- Reduce the deformation problem of the map to some system of polynomial equations

Rough statement of our result: We consider a semiregular map $\varphi: C \rightarrow S$ from a smooth curve to a surface birational to the image

■ Reduce the deformation problem of the map to some system of polynomial equations
■ Under some transversality assumption on this system, we can solve it

Rough statement of our result: We consider a semiregular map $\varphi: C \rightarrow S$ from a smooth curve to a surface birational to the image

■ Reduce the deformation problem of the map to some system of polynomial equations
■ Under some transversality assumption on this system, we can solve it

- As a result, we will see that if φ is semiregular, it will have good deformation theoretic property almost as optimal as possible

Rough statement of our result: We consider a semiregular map $\varphi: C \rightarrow S$ from a smooth curve to a surface birational to the image

■ Reduce the deformation problem of the map to some system of polynomial equations
■ Under some transversality assumption on this system, we can solve it
■ As a result, we will see that if φ is semiregular, it will have good deformation theoretic property almost as optimal as possible
Here we call φ semiregular if the natural map $\boldsymbol{H}^{\mathbf{0}}\left(\boldsymbol{S}, K_{S}\right) \rightarrow \boldsymbol{H}^{\mathbf{0}}\left(\boldsymbol{C}, \varphi^{*} K_{S}\right)$ is surjective

Ideas and main theorem

Cohomological pairings as residues

Given $\varphi: C \rightarrow S$, its obstruction class to deforming is represented by a Čech 1-cocycle:

Cohomological pairings as residues

Given $\varphi: C \rightarrow S$, its obstruction class to deforming is represented by a Čech 1-cocycle:
$\left\{\boldsymbol{U}_{\boldsymbol{i}}\right\}$: open cover of \boldsymbol{C}

Cohomological pairings as residues

Given $\varphi: C \rightarrow S$, its obstruction class to deforming is represented by a Čech 1-cocycle:
$\left\{\boldsymbol{U}_{i}\right\}$: open cover of \boldsymbol{C}
$\tilde{\varphi}_{i}$: local deformation of $\left.\varphi\right|_{U_{i}}$

Cohomological pairings as residues

Given $\varphi: C \rightarrow S$, its obstruction class to deforming is represented by a Čech 1-cocycle:
$\left\{\boldsymbol{U}_{i}\right\}$: open cover of \boldsymbol{C}
$\tilde{\varphi}_{i}$: local deformation of $\left.\varphi\right|_{U_{i}}$
\square The difference between $\tilde{\varphi}_{i}$ and $\tilde{\varphi}_{j}$ naturally gives a section of the normal sheaf \mathcal{N}_{φ} on $\boldsymbol{U}_{\boldsymbol{i}} \cap \boldsymbol{U}_{\boldsymbol{j}}$

Cohomological pairings as residues

Given $\varphi: C \rightarrow S$, its obstruction class to deforming is represented by a Čech 1-cocycle:
$\left\{\boldsymbol{U}_{i}\right\}$: open cover of \boldsymbol{C}
$\tilde{\varphi}_{i}$: local deformation of $\left.\varphi\right|_{U_{i}}$
■ The difference between $\tilde{\varphi}_{i}$ and $\tilde{\varphi}_{j}$ naturally gives a section of the normal sheaf \boldsymbol{N}_{φ} on $\boldsymbol{U}_{\boldsymbol{i}} \cap \boldsymbol{U}_{\boldsymbol{j}}$

- These form a Čech 1-cocycle associated with the cover $\left\{\boldsymbol{U}_{\boldsymbol{i}}\right\}$, and φ deforms if and only if the corresponding cohomology class in $\boldsymbol{H}^{\mathbf{1}}\left(\boldsymbol{C}, \boldsymbol{N}_{\varphi}\right)$ vanishes
\mathcal{L} : line bundle on \boldsymbol{C}
$\left\{\xi_{i j}\right\}: \mathcal{L}$-valued Čech 1-cocycle assoc. with $\left\{\boldsymbol{U}_{i}\right\}$
\mathcal{L} : line bundle on \boldsymbol{C}
$\left\{\xi_{i j}\right\}: \mathcal{L}$-valued Čech 1-cocycle assoc. with $\left\{\boldsymbol{U}_{i}\right\}$ $\left\{\boldsymbol{\xi}_{i}\right\}: \mathcal{L}$-valued meromorphic sections on $\left\{\boldsymbol{U}_{i}\right\}$ such that $\xi_{i}-\xi_{j}=\xi_{i j}$ on $\boldsymbol{U}_{i} \cap \boldsymbol{U}_{\boldsymbol{j}}$
\mathcal{L} : line bundle on \boldsymbol{C}
$\left\{\boldsymbol{\xi}_{i j}\right\}: \mathcal{L}$-valued Čech 1-cocycle assoc. with $\left\{\boldsymbol{U}_{i}\right\}$ $\left\{\xi_{i}\right\}: \mathcal{L}$-valued meromorphic sections on $\left\{\boldsymbol{U}_{i}\right\}$ such that $\xi_{i}-\xi_{j}=\xi_{i j}$ on $\boldsymbol{U}_{i} \cap \boldsymbol{U}_{j}$
$\boldsymbol{H}^{0}\left(\boldsymbol{C}, \mathcal{L}^{\vee} \otimes \boldsymbol{K}_{\boldsymbol{C}}\right)=\boldsymbol{H}^{1}(\boldsymbol{C}, \mathcal{L})^{\vee}$ by the Serre duality
\mathcal{L} : line bundle on \boldsymbol{C}
$\left\{\xi_{i j}\right\}: \mathcal{L}$-valued Čech 1-cocycle assoc. with $\left\{\boldsymbol{U}_{i}\right\}$
$\left\{\xi_{i}\right\}: \mathcal{L}$-valued meromorphic sections on $\left\{\boldsymbol{U}_{i}\right\}$ such that $\xi_{i}-\xi_{j}=\xi_{i j}$ on $\boldsymbol{U}_{i} \cap \boldsymbol{U}_{j}$
$\boldsymbol{H}^{0}\left(\boldsymbol{C}, \mathcal{L}^{\vee} \otimes \boldsymbol{K}_{C}\right)=\boldsymbol{H}^{1}(\boldsymbol{C}, \mathcal{L})^{\vee}$ by the Serre duality
$■$ For $\boldsymbol{\eta} \in \boldsymbol{H}^{\mathbf{0}}\left(\boldsymbol{C}, \mathcal{L}^{\vee} \otimes \boldsymbol{K}_{\boldsymbol{C}}\right)$, the fiberwise pairing $\left\langle\eta, \xi_{i}\right\rangle$ gives a meromorphic section of $\left.\boldsymbol{K}_{\boldsymbol{C}}\right|_{\boldsymbol{U}_{i}}$
\mathcal{L} : line bundle on \boldsymbol{C}
$\left\{\xi_{i j}\right\}: \mathcal{L}$-valued Čech 1-cocycle assoc. with $\left\{\boldsymbol{U}_{i}\right\}$
$\left\{\xi_{i}\right\}: \mathcal{L}$-valued meromorphic sections on $\left\{\boldsymbol{U}_{i}\right\}$ such that $\xi_{i}-\xi_{j}=\xi_{i j}$ on $\boldsymbol{U}_{i} \cap \boldsymbol{U}_{j}$
$\boldsymbol{H}^{0}\left(\boldsymbol{C}, \mathcal{L}^{\vee} \otimes \boldsymbol{K}_{C}\right)=\boldsymbol{H}^{1}(\boldsymbol{C}, \mathcal{L})^{\vee}$ by the Serre duality
$■$ For $\boldsymbol{\eta} \in \boldsymbol{H}^{\mathbf{0}}\left(\boldsymbol{C}, \mathcal{L}^{\vee} \otimes \boldsymbol{K}_{\boldsymbol{C}}\right)$, the fiberwise pairing $\left\langle\eta, \xi_{i}\right\rangle$ gives a meromorphic section of $\left.K_{C}\right|_{U_{i}}$
■ Let $\left\{\boldsymbol{p}_{\lambda}\right\}$ be the set of poles of these local sections and $\boldsymbol{r}_{\boldsymbol{p}_{\lambda}}$ the residues of them at $\boldsymbol{p}_{\boldsymbol{\lambda}}$
\mathcal{L} : line bundle on \boldsymbol{C}
$\left\{\xi_{i j}\right\}: \mathcal{L}$-valued Čech 1-cocycle assoc. with $\left\{\boldsymbol{U}_{i}\right\}$
$\left\{\xi_{i}\right\}: \mathcal{L}$-valued meromorphic sections on $\left\{\boldsymbol{U}_{\boldsymbol{i}}\right\}$ such that $\xi_{i}-\xi_{j}=\xi_{i j}$ on $\boldsymbol{U}_{i} \cap \boldsymbol{U}_{j}$
$\boldsymbol{H}^{0}\left(\boldsymbol{C}, \mathcal{L}^{\vee} \otimes \boldsymbol{K}_{C}\right)=\boldsymbol{H}^{1}(\boldsymbol{C}, \mathcal{L})^{\vee}$ by the Serre duality
$■$ For $\boldsymbol{\eta} \in \boldsymbol{H}^{\mathbf{0}}\left(\boldsymbol{C}, \mathcal{L}^{\vee} \otimes \boldsymbol{K}_{\boldsymbol{C}}\right)$, the fiberwise pairing $\left\langle\eta, \xi_{i}\right\rangle$ gives a meromorphic section of $\left.K_{C}\right|_{U_{i}}$
- Let $\left\{p_{\lambda}\right\}$ be the set of poles of these local sections and $\boldsymbol{r}_{\boldsymbol{p}_{\lambda}}$ the residues of them at $\boldsymbol{p}_{\boldsymbol{\lambda}}$
\square The pairing $\left(\eta,\left\{\xi_{i j}\right\}\right)$ is given by

$$
\sum_{\lambda} r_{p_{\lambda}}
$$

$\varphi: C \rightarrow S:$ map from a smooth curve to a surface
$\varphi: C \rightarrow S$: map from a smooth curve to a surface $\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ, i.e., $d \varphi_{p_{i}}=0$
$\varphi: C \rightarrow S$: map from a smooth curve to a surface $\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ, i.e., $d \varphi_{p_{i}}=0$ $Z=(d \varphi)$: ramification divisor of φ
$\varphi: C \rightarrow S$: map from a smooth curve to a surface
$\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ, i.e., $d \varphi_{p_{i}}=0$
$Z=(d \varphi)$: ramification divisor of φ
The normal sheaf \boldsymbol{N}_{φ} lies in the exact sequence

$$
\mathbf{0} \rightarrow \mathcal{H}_{\varphi} \rightarrow \mathcal{N}_{\varphi} \rightarrow \overline{\mathcal{N}}_{\varphi} \rightarrow \mathbf{0}
$$

\mathcal{H}_{φ} is a torsion sheaf supported at $\left\{p_{1}, \ldots, \boldsymbol{p}_{e}\right\}$
$\overline{\mathcal{N}}_{\varphi}$ is locally free
$\varphi: C \rightarrow S$: map from a smooth curve to a surface
$\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ, i.e., $d \varphi_{p_{i}}=0$
$Z=(d \varphi)$: ramification divisor of φ
The normal sheaf \boldsymbol{N}_{φ} lies in the exact sequence

$$
\mathbf{0} \rightarrow \mathcal{H}_{\varphi} \rightarrow \mathcal{N}_{\varphi} \rightarrow \overline{\mathcal{N}}_{\varphi} \rightarrow \mathbf{0}
$$

\mathcal{H}_{φ} is a torsion sheaf supported at $\left\{p_{1}, \ldots, p_{e}\right\}$
$\overline{\mathcal{N}}_{\varphi}$ is locally free
\square The obstruction to deforming φ lies in $H^{1}\left(C, \overline{\mathcal{N}}_{\varphi}\right)$
$\varphi: C \rightarrow S$: map from a smooth curve to a surface
$\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ, i.e., $d \varphi_{p_{i}}=0$
$Z=(d \varphi)$: ramification divisor of φ
The normal sheaf \boldsymbol{N}_{φ} lies in the exact sequence

$$
\mathbf{0} \rightarrow \mathcal{H}_{\varphi} \rightarrow \mathcal{N}_{\varphi} \rightarrow \overline{\mathcal{N}}_{\varphi} \rightarrow \mathbf{0}
$$

\mathcal{H}_{φ} is a torsion sheaf supported at $\left\{p_{1}, \ldots, p_{e}\right\}$
$\overline{\mathcal{N}}_{\varphi}$ is locally free
\square The obstruction to deforming φ lies in $H^{1}\left(C, \overline{\mathcal{N}}_{\varphi}\right)$
$■$ Its dual space is $H^{0}\left(C, \varphi^{*} K_{S}(Z)\right)$
$\varphi: C \rightarrow S$: map from a smooth curve to a surface $\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ, i.e., $d \varphi_{p_{i}}=0$
$Z=(d \varphi)$: ramification divisor of φ
The normal sheaf \boldsymbol{N}_{φ} lies in the exact sequence

$$
\mathbf{0} \rightarrow \mathcal{H}_{\varphi} \rightarrow \mathcal{N}_{\varphi} \rightarrow \overline{\mathcal{N}}_{\varphi} \rightarrow \mathbf{0}
$$

\mathcal{H}_{φ} is a torsion sheaf supported at $\left\{p_{1}, \ldots, p_{e}\right\}$
$\overline{\mathcal{N}}_{\varphi}$ is locally free

- The obstruction to deforming φ lies in $H^{1}\left(C, \overline{\mathcal{N}}_{\varphi}\right)$
$■$ Its dual space is $H^{0}\left(C, \varphi^{*} K_{S}(Z)\right)$
■ We can apply the residue calculation to them

Rough outline

$\varphi: C \rightarrow S$: a map from a smooth curve to a surface
$\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ

Rough outline

$\varphi: C \rightarrow S$: a map from a smooth curve to a surface
$\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ
Assume we have constructed an N-th order deformation φ_{N} of φ

Rough outline

$\varphi: C \rightarrow S$: a map from a smooth curve to a surface
$\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ
Assume we have constructed an N-th order deformation φ_{N} of φ
■ In general, the obstruction to deforming φ_{N} does not vanish

Rough outline

$\varphi: C \rightarrow S$: a map from a smooth curve to a surface
$\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ
Assume we have constructed an N-th order deformation φ_{N} of φ

- In general, the obstruction to deforming φ_{N} does not vanish
- It means that we cannot deform φ_{N} no matter how hard we try

■ To construct deformations of higher order, we need to go back to some $\varphi_{N^{\prime}}, N^{\prime}<N$, and try to deform it in a different way from φ_{N}

■ To construct deformations of higher order, we need to go back to some $\varphi_{N^{\prime}}, N^{\prime}<N$, and try to deform it in a different way from φ_{N}

$$
\varphi \longrightarrow \varphi_{1} \longrightarrow \cdots \longrightarrow \varphi_{N^{\prime}} \longrightarrow \cdots \longrightarrow \varphi_{N} \longrightarrow \times
$$

■ To construct deformations of higher order, we need to go back to some $\varphi_{N^{\prime}}, N^{\prime}<N$, and try to deform it in a different way from φ_{N}

To construct deformations of higher order, we need to go back to some $\varphi_{N^{\prime}}, N^{\prime}<N$, and try to deform it in a different way from φ_{N}

$$
\varphi \longrightarrow \varphi_{1} \longrightarrow \cdots \longrightarrow \varphi_{N^{\prime}} \longrightarrow \cdots \longrightarrow \varphi_{N} \longrightarrow x
$$

- We can show this is possible when the system of polynomial equations has a solution

■ We can show this is possible when the system of polynomial equations has a solution
■ Moreover, as $N \rightarrow \infty, N^{\prime} \rightarrow \infty$, too

- We can show this is possible when the system of polynomial equations has a solution
\square Moreover, as $N \rightarrow \infty, N^{\prime} \rightarrow \infty$, too
■ Eventually, we can construct a formal deformation of φ

More details

$\varphi: C \rightarrow S$: a map from a smooth curve to a

 surface$\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ

More details

$\varphi: C \rightarrow S$: a map from a smooth curve to a surface
$\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ
At p_{i}, the pull back of coordinates on S can be written in the form

$$
\left(z_{i}, w_{i}\right)=\left(s^{a}, s^{b}+s^{b+1} g_{0}(s)\right)
$$

\boldsymbol{s} : a parameter on \boldsymbol{C} around \boldsymbol{p}_{i}
g_{0} : a holomorphic function around p_{i}
$\boldsymbol{a}<\boldsymbol{b}$, assume $\boldsymbol{a} \nmid \boldsymbol{b}$ for simplicity

More details

$\varphi: C \rightarrow S$: a map from a smooth curve to a surface
$\left\{p_{1}, \ldots, p_{e}\right\}$: Singular points of φ
At \boldsymbol{p}_{i}, the pull back of coordinates on S can be written in the form

$$
\left(z_{i}, w_{i}\right)=\left(s^{a}, s^{b}+s^{b+1} g_{0}(s)\right)
$$

\boldsymbol{s} : a parameter on \boldsymbol{C} around \boldsymbol{p}_{i}
g_{0} : a holomorphic function around p_{i}
$\boldsymbol{a}<\boldsymbol{b}$, assume $\boldsymbol{a} \nmid \boldsymbol{b}$ for simplicity
$a-\mathbf{1}$ is the multiplicity of the singularity \boldsymbol{p}_{i}, that is, the coefficient of p_{i} of the divisor $Z=(d \varphi)$

Its deformation can be written as

$$
\left(z_{i}, w_{i}\right)=\left(s^{a}+\sum_{j=1}^{k} \sum_{i=0}^{a-2} t^{j} c_{a-i, j} s^{i}, s^{b}+s^{b+1} g_{0}(s)+\sum_{j=1}^{k} t^{j} g_{j}(s)\right)
$$

Its deformation can be written as

$$
\left(z_{i}, w_{i}\right)=\left(s^{a}+\sum_{j=1}^{k} \sum_{i=0}^{a-2} t^{j} c_{a-i, j} s^{i}, s^{b}+s^{b+1} g_{0}(s)+\sum_{j=1}^{k} t^{j} g_{j}(s)\right)
$$

It is convenient to consider deformations of the form
$\left(z_{i}, w_{i}\right)=\left(s^{a}+\sum_{i=0}^{a-2} c_{a-i} s^{i}, s^{b}+s^{b+1} g_{0}(s)+\sum_{j=1}^{k} t^{j} g_{j}(s)\right)$,
where $c_{a-i} \in t^{a-i} \mathbb{C}[[t]]$

Among such deformations, we consider those of the form

$$
\left(z_{i}, w_{i}\right)=\left(S^{a}, S^{b}+S^{b+1} g_{0}(S)\right)
$$

where $S=s\left(1+\sum_{i=1}^{\infty} \prod_{j=0}^{i-1}\left(\frac{1}{a}-j\right) \frac{1}{i!}\left(\sum_{k=2}^{a} \frac{c_{k}}{s^{k}} i^{i}\right)\right.$

Among such deformations, we consider those of the form

$$
\left(z_{i}, w_{i}\right)=\left(S^{a}, S^{b}+S^{b+1} g_{0}(S)\right)
$$

where $S=s\left(1+\sum_{i=1}^{\infty} \prod_{j=0}^{i-1}\left(\frac{1}{a}-j\right) \frac{1}{i!}\left(\sum_{k=2}^{a} \frac{c_{k}}{s^{k}}\right)^{i}\right)$
Note $S^{a}=s^{a}+\sum_{j=1}^{k} \sum_{i=0}^{a-2} c_{a-i} s^{i}$

Among such deformations, we consider those of the form

$$
\left(z_{i}, w_{i}\right)=\left(S^{a}, S^{b}+S^{b+1} g_{0}(S)\right)
$$

where $S=s\left(1+\sum_{i=1}^{\infty} \prod_{j=0}^{i-1}\left(\frac{1}{a}-j\right) \frac{1}{i!}\left(\sum_{k=2}^{a} \frac{c_{k}}{s^{k}}\right)^{i}\right)$
Note $S^{a}=s^{a}+\sum_{j=1}^{k} \sum_{i=0}^{a-2} c_{a-i} s^{i}$
$\square S$ is a reparameterization of C on a punctured neighborhood of $\boldsymbol{p}_{\boldsymbol{i}}$

Among such deformations, we consider those of the form

$$
\left(z_{i}, w_{i}\right)=\left(S^{a}, S^{b}+S^{b+1} g_{0}(S)\right)
$$

where $S=s\left(1+\sum_{i=1}^{\infty} \prod_{j=0}^{i-1}\left(\frac{1}{a}-j\right) \frac{1}{i!}\left(\sum_{k=2}^{a} \frac{c_{k}}{s^{k}}\right)^{i}\right)$
Note $S^{a}=s^{a}+\sum_{j=1}^{k} \sum_{i=0}^{a-2} c_{a-i} s^{i}$
$\square S$ is a reparameterization of C on a punctured neighborhood of $\boldsymbol{p}_{\boldsymbol{i}}$
■ It gives the same image as the original

$$
\left(z_{i}, w_{i}\right)=\left(s^{a}, s^{b}+s^{b+1} g_{0}(s)\right)
$$

$\square\left(z_{i}, w_{i}\right)=\left(S^{a}, S^{b}+S^{b+1} g_{0}(S)\right)$ is a reparameterization of the original curve on the punctured disk around $\boldsymbol{p}_{\boldsymbol{i}}$,

- $\left(z_{i}, w_{i}\right)=\left(S^{a}, S^{b}+S^{b+1} g_{0}(S)\right)$ is a reparameterization of the original curve on the punctured disk around $\boldsymbol{p}_{\boldsymbol{i}}$,
- and extendable to \boldsymbol{p}_{i} so long as $S^{b}+S^{b+1} g_{0}(S)$ does not have singular terms
$\square\left(z_{i}, w_{i}\right)=\left(S^{a}, S^{b}+S^{b+1} g_{0}(S)\right)$ is a reparameterization of the original curve on the punctured disk around $\boldsymbol{p}_{\boldsymbol{i}}$,
- and extendable to p_{i} so long as $S^{b}+S^{b+1} g_{0}(S)$ does not have singular terms
- At some order $t^{N}, S^{b}+S^{b+1} g_{0}(S)$ acquires singular terms, and it produces the obstruction
$\square\left(z_{i}, w_{i}\right)=\left(S^{a}, S^{b}+S^{b+1} g_{0}(S)\right)$ is a reparameterization of the original curve on the punctured disk around p_{i},
■ and extendable to \boldsymbol{p}_{i} so long as $S^{b}+S^{b+1} g_{0}(S)$ does not have singular terms
$■$ At some order $t^{N}, S^{b}+S^{b+1} g_{0}(S)$ acquires singular terms, and it produces the obstruction
\square We modify the value of c_{i} so that the obstruction vanishes (this is where we use the transversality assumption of the polynomial system)

■ If the obstruction vanishes, then we can modify the curve in the form
$\left(z_{i}, w_{i}\right)=\left(S^{a}, S^{b}+S^{b+1} g_{0}(S)+H_{i}(s)\right)$, and continue the deformation
$\boldsymbol{H}_{i}(\boldsymbol{s})$ is a meromorphic function around \boldsymbol{p}_{i}

- If the obstruction vanishes, then we can modify the curve in the form
$\left(z_{i}, w_{i}\right)=\left(S^{a}, S^{b}+S^{b+1} g_{0}(S)+H_{i}(s)\right)$, and continue the deformation
$\boldsymbol{H}_{i}(\boldsymbol{s})$ is a meromorphic function around $\boldsymbol{p}_{\boldsymbol{i}}$
\square Here, although we are at the order t^{N}, in general we need to modify $\boldsymbol{c}_{\boldsymbol{i}}$ in the order lower than t^{N}
- If the obstruction vanishes, then we can modify the curve in the form
$\left(z_{i}, w_{i}\right)=\left(S^{a}, S^{b}+S^{b+1} g_{0}(S)+H_{i}(s)\right)$, and continue the deformation
$\boldsymbol{H}_{i}(\boldsymbol{s})$ is a meromorphic function around $\boldsymbol{p}_{\boldsymbol{i}}$
■ Here, although we are at the order t^{N}, in general we need to modify $\boldsymbol{c}_{\boldsymbol{i}}$ in the order lower than t^{N}
■ As we mentioned earlier, this changes the map at the order lower than t^{N}
- If the obstruction vanishes, then we can modify the curve in the form
$\left(z_{i}, w_{i}\right)=\left(S^{a}, S^{b}+S^{b+1} g_{0}(S)+H_{i}(s)\right)$, and continue the deformation
$\boldsymbol{H}_{i}(\boldsymbol{s})$ is a meromorphic function around \boldsymbol{p}_{i}
■ Here, although we are at the order t^{N}, in general we need to modify $\boldsymbol{c}_{\boldsymbol{i}}$ in the order lower than t^{N}
■ As we mentioned earlier, this changes the map at the order lower than t^{N}
- We can check that the new map can be deformed beyond the order \boldsymbol{t}^{N}

What is the system of polynomial equations?

What is the system of polynomial equations? Substituting $S=s\left(1+\sum_{i=1}^{\infty} \prod_{j=0}^{i-1}\left(\frac{1}{a}-j\right) \frac{1}{i!}\left(\sum_{k=2}^{a} \frac{c_{k}}{s^{k}}\right)^{i}\right)$ to $S^{b}+S^{b+1} g_{0}(S)$, we have

$$
\begin{aligned}
S^{b}+S^{b+1} g_{0}(S)= & s^{b}\left(1+\sum_{i=1}^{\infty} f_{i}^{(b)}\left(c_{2}, \ldots, c_{a}\right) \frac{1}{s^{i}}\right) \\
& +(\text { higher order terms })
\end{aligned}
$$

- $f_{i}^{(b)}$ is given by

$$
\begin{aligned}
& f_{b+j}^{(b)}\left(c_{2}, \ldots, c_{a}\right)= \\
& \sum_{\lambda \in \mathcal{P}(b+j ;[2, a])}\left(\begin{array}{l}
\frac{b}{a} \\
\lambda(2)
\end{array} \cdots \lambda(a) c_{2}^{\lambda(2)} \cdots c_{a}^{\lambda(a)}\right.
\end{aligned}
$$

- $f_{i}^{(b)}$ is given by

$$
\begin{aligned}
& f_{b+j}^{(b)}\left(c_{2}, \ldots, c_{a}\right)= \\
& \sum_{\lambda \in \mathcal{P}(b+j ;[2, a])}\left(\begin{array}{l}
\frac{b}{a} \\
\lambda(2) \\
\cdots
\end{array}\right) \lambda(a) c_{2}^{\lambda(2)} \cdots c_{a}^{\lambda(a)}
\end{aligned}
$$

$■ \mathcal{P}(b+j ;[2, a])$ is the set of partitions of $\boldsymbol{b}+\boldsymbol{j}$ using only the integers in the interval $[2, a]$

- $f_{i}^{(b)}$ is given by

$$
\begin{aligned}
& f_{b+j}^{(b)}\left(c_{2}, \ldots, c_{a}\right)= \\
& \sum_{\lambda \in \mathcal{P}(b+j ;[2, a])}\left(\lambda(2) \stackrel{\frac{b}{a}}{a} \lambda(a)\right) c_{2}^{\lambda_{2}(2)} \cdots c_{a}^{\lambda(a)}
\end{aligned}
$$

$\square \mathcal{P}(b+j ;[2, a])$ is the set of partitions of $b+j$ using only the integers in the interval $[2, a]$

$$
\left(\begin{array}{cc}
\alpha & \\
\beta_{1} & \cdots
\end{array} \beta_{k}\right)=\frac{\prod_{i=0}^{\beta_{1}+\cdots+\beta_{k}-1}(\alpha-i)}{\beta_{1}!\cdots \beta_{k}!}
$$

$S^{b}+S^{b+1} g_{0}(S)=($ regular part $)+$

$$
\frac{f_{b+1}^{(b)}}{s}+\cdots+\frac{f_{b+a-1}^{(b)}}{s^{a-1}}+(\text { higher order terms })
$$

$$
\begin{aligned}
S^{b}+S^{b+1} g_{0}(S) & \underset{\left.\frac{f_{b+1}^{(b)}}{s}+\cdots+\frac{f_{b+a-1}^{(b)}}{s^{a-1}}+\text { (higher order terms }\right)}{=}
\end{aligned}
$$

- Roughly, the part $\frac{f_{b+1}^{(i)}}{s}+\cdots+\frac{f_{b+a-1}^{(i)}}{s^{a-1}}$ controls the obstruction
$S^{b}+S^{b+1} g_{0}(S)=($ regular part $)+$

$$
\frac{f_{b+1}^{(b)}}{s}+\cdots+\frac{f_{b+a-1}^{(b)}}{s^{a-1}}+(\text { higher order terms })
$$

- Roughly, the part $\frac{f_{b+1}^{(i)}}{s}+\cdots+\frac{f_{b+a-1}^{(i)}}{s^{a-1}}$ controls the obstruction
$■$ If $\boldsymbol{\eta} \in \boldsymbol{H}^{0}\left(\boldsymbol{C}, \varphi^{*} \boldsymbol{K}_{S}(\boldsymbol{Z})\right.$), then the pairing between the obstruction class and $\boldsymbol{\eta}$ has contribution from the singular point p_{i}, given by the residue of

$$
\left\langle\eta, \frac{f_{b+1}^{(b)}}{s}+\cdots+\frac{f_{b+a-1}^{(b)}}{s^{a-1}}\right\rangle
$$

So, if we can control the values of $f_{b+j}^{(b)}$, then we can set their value to cancel the obstruction

So, if we can control the values of $f_{b+j}^{(b)}$, then we can set their value to cancel the obstruction Explicitly, the following condition will suffice:

So, if we can control the values of $f_{b+j}^{(b)}$, then we can set their value to cancel the obstruction Explicitly, the following condition will suffice:
(G) The varieties defined by

$$
\left\{\begin{array}{l}
\bar{f}_{b+j}^{(b)}=0, \quad j \in[1, a-1] \backslash\{k\} \\
\bar{f}_{b+k}^{(b)}=C \neq 0
\end{array}\right.
$$

have transverse intersection at some point for each k
$\bar{f}_{b+j}^{(b)}$ are modified version of $f_{b+j}^{(b)}$

On the side of the dual space $\boldsymbol{H}^{0}\left(\boldsymbol{C}, \varphi^{*} \boldsymbol{K}_{S}(\boldsymbol{Z})\right)$, we introduce the following condition:

On the side of the dual space $\boldsymbol{H}^{\mathbf{0}}\left(\boldsymbol{C}, \varphi^{*} \boldsymbol{K}_{S}(\boldsymbol{Z})\right)$, we introduce the following condition:
A singular point $\boldsymbol{p}_{\boldsymbol{i}}$ of φ satisfies the condition (D) if the inequality
$\operatorname{dim} H^{0}\left(C, \varphi^{*} \omega_{X}\left(\left(a_{i}-1\right) p\right)\right)<\operatorname{dim} H^{0}\left(C, \varphi^{*} \omega_{X}\right)+a_{i}-1$
holds, where a_{i} is the coefficient of p_{i} in $Z=(d \varphi)$

On the side of the dual space $\boldsymbol{H}^{0}\left(\boldsymbol{C}, \varphi^{*} K_{S}(\boldsymbol{Z})\right)$, we introduce the following condition:
A singular point $\boldsymbol{p}_{\boldsymbol{i}}$ of φ satisfies the condition (D) if the inequality
$\operatorname{dim} H^{0}\left(C, \varphi^{*} \omega_{X}\left(\left(a_{i}-1\right) p\right)\right)<\operatorname{dim} H^{0}\left(C, \varphi^{*} \omega_{X}\right)+a_{i}-1$
holds, where a_{i} is the coefficient of \boldsymbol{p}_{i} in $Z=(\boldsymbol{d} \varphi)$ The singularity has $a_{i}-\mathbf{1}$ parameters $c_{2}, \ldots, c_{a_{i}}$ of deformations

On the side of the dual space $\boldsymbol{H}^{0}\left(\boldsymbol{C}, \varphi^{*} K_{S}(\boldsymbol{Z})\right)$, we introduce the following condition:
A singular point p_{i} of φ satisfies the condition (D) if the inequality
$\operatorname{dim} H^{0}\left(C, \varphi^{*} \omega_{X}\left(\left(a_{i}-1\right) p\right)\right)<\operatorname{dim} H^{0}\left(C, \varphi^{*} \omega_{X}\right)+a_{i}-1$
holds, where a_{i} is the coefficient of p_{i} in $Z=(d \varphi)$
The singularity has $a_{i}-\mathbf{1}$ parameters $c_{2}, \ldots, c_{a_{i}}$ of deformations
So, roughly this condition says the expected dimension of local deformation is positive

Main theorem

Assume φ is semiregular. If the conditions (G) and (D) are satisfied at each $p_{i} \in\left\{p_{1} \ldots, p_{e}\right\}$, then there is a non-trivial deformation of φ.

Main theorem

Assume φ is semiregular. If the conditions (G) and (D) are satisfied at each $p_{i} \in\left\{p_{1} \ldots, p_{e}\right\}$, then there is a non-trivial deformation of φ.

■ After checking the condition (D), one can completely forget curves and surfaces

Main theorem

Assume φ is semiregular. If the conditions (G) and (D) are satisfied at each $p_{i} \in\left\{p_{1} \ldots, p_{e}\right\}$, then there is a non-trivial deformation of φ.

■ After checking the condition (D), one can completely forget curves and surfaces
■ The problem reduces to studying a system of polynomial equations which depends only on two positive integers \boldsymbol{a} and \boldsymbol{b}

Table:

$\boldsymbol{a}=3$	(G) holds for $\mathbf{4} \leq \boldsymbol{b} \leq \mathbf{3 0}$
4	(G) holds for $\mathbf{5} \leq \boldsymbol{b} \leq \mathbf{3 0}$ except $\boldsymbol{b}=\mathbf{6}$
5	(G) holds for $\mathbf{6} \leq \boldsymbol{b} \leq \mathbf{3 0}$
6	(G) holds for $\mathbf{7} \leq \boldsymbol{b} \leq \mathbf{3 0}$
7	(G) holds for $\mathbf{8} \leq \boldsymbol{b} \leq \mathbf{2 0}$
8	(G) holds for $\mathbf{9} \leq \boldsymbol{b} \leq \mathbf{2 0}$
9	(G) holds for $\mathbf{1 0} \leq \boldsymbol{b} \leq \mathbf{2 0}$
10	(G) holds for $\mathbf{1 1} \leq \boldsymbol{b} \leq \mathbf{1 5}$

When $\boldsymbol{a}=\mathbf{2}$ (double point), a stronger assertion holds due to the simple form $f_{b+1}^{(b)}=c_{2}^{\frac{b+1}{2}}$

When $\boldsymbol{a}=\mathbf{2}$ (double point), a stronger assertion holds due to the simple form $f_{b+1}^{(b)}=c_{2}^{\frac{b+1}{2}}$ Let $\varphi: C \rightarrow S$ be a semiregular map whose singularities p_{1}, \ldots, p_{l} satisfy $a=2$.

When $\boldsymbol{a}=\mathbf{2}$ (double point), a stronger assertion holds due to the simple form $f_{b+1}^{(b)}=c_{2}^{\frac{b+1}{2}}$ Let $\varphi: C \rightarrow S$ be a semiregular map whose singularities p_{1}, \ldots, p_{l} satisfy $a=2$.

Theorem

φ deforms if and only if at least one of the following conditions holds.

■ There is at least one p_{i} such that there is no section of $H^{0}\left(C, \varphi^{*} \omega_{X}\left(p_{i}\right)\right) \backslash H^{0}\left(C, \varphi^{*} \omega_{X}\right)$.
■ The set $\boldsymbol{H}^{\mathbf{0}}\left(\boldsymbol{C}, \overline{\boldsymbol{N}}_{\varphi}\right)$ is not zero.

For $\boldsymbol{a}=\mathbf{3}$, condition (G) is reduced to following.

For $\boldsymbol{a}=\mathbf{3}$, condition (G) is reduced to following.
For $\boldsymbol{b}=\mathbf{6} \boldsymbol{k}+\mathbf{1}$, set

$$
f(X)=\binom{2 k+\frac{1}{3}}{3 k+1} X^{k}+\binom{2 k+\frac{1}{3}}{3 k-2} X^{k-1}+\cdots+\left(\begin{array}{c}
2 k+\frac{1}{3} \\
1
\end{array} 2 k\right)
$$

$$
g(X)=\left(\begin{array}{cc}
2 k+\frac{1}{3} \\
3 k & 1
\end{array}\right) X^{k}+\binom{2 k+\frac{1}{3}}{3 k-3} X^{k-1}+\cdots+\left(\begin{array}{c}
2 k+\frac{1}{3} \\
0
\end{array} 2 k+1\right)
$$

$$
\left(\begin{array}{c}
\alpha \\
\beta_{1} \\
\beta_{2}
\end{array}\right)=\frac{\prod_{i=0}^{\beta_{1}+\beta_{2}}(\alpha-i)}{\beta_{1}!\beta_{2}!}
$$

Then, (G) is equivalent to

Then, (G) is equivalent to

- there is a simple zero of f which is not a multiple zero of \boldsymbol{g}, and

Then, (G) is equivalent to
\square there is a simple zero of f which is not a multiple zero of \boldsymbol{g}, and
$■$ the same holds when we exchange f and g.

