Segre and Verlinde numbers of Hilbert schemes of points have been studied for a long
time.
The Segre numbers are evaluations of top Chern and Segre classes of socalled
tautological bundles on Hilbert schemes of points.
The Verlinde numbers are the holomorphic Euler characteristics of line bundles on
these Hilbert schemes.
We give the generating functions for the Segre and Verlinde numbers of Hilbert schemes
of points.
The formula is proven for surfaces with K_S^2=0, and conjectured in general. Without
restriction on K_S^2 we prove the conjectured
VerlindeSegre correspondence relating Segre and Verlinde numbers of Hilbert schemes.
Finally we find a generating function for finer invariants,
which specialize to both the Segre and Verlinde numbers, giving some kind of
explanation of the VerlindeSegre correspondence.
This is joint work with Anton Mellit.
