Seminar in Real & Complex Geometry

Thursday, 11.04.2013, 16:30-17:30, Schreiber building, room 210

Dmitry Kerner, Ben Gurion University

Matrices over local rings: criteria for decomposability or being an extension


Let (R,m) be a local ring (the simplest example is analytic/formal power series), consider matrices with entries in R. They are studied up to left-right equivalence, A\to UAV, where U,V are invertible matrices over R. When such a matrix is equivalent to a block-diagonal matrix? To an upper-block-triangular? In the numerical case (i.e. matrices over a field) the question is trivial (every matrix is left-right diagonalizable). For matrices over a local ring the situation is more involved. In commutative algebra, such a matrix A is the presentation of the R-module coker(A). Block-diagonal matrices correspond to decomposable modules, while upper-block-triangular matrices define modules that are extensions. An obvious necessary condition (for square matrices) is that the determinant of the matrix is reducible (as an element of R). This condition is very far from being sufficient. We prove a very simple necessary and sufficient condition for equivalence to block-diagonal form. Equivalence to an upper-block-triangular form is a more delicate story, we give various necessary conditions. As an application we prove Thom-Sebastiani results on the decomposability of maps/systems of vector fields(or PDE's). (Joint work with V. Vinnikov)