Generalized complex geometry and three-manifolds

Roberto Rubio

Real and complex geometry seminar Tel Aviv University

16 December 2021

M manifold (smooth category)

| |\/| ω presymplectic $(\omega \in \Omega^2(M), d\omega = 0)$ $graph(\omega) \subset TM + T^*M$ P Poisson

 $\mathcal{J} \in \operatorname{End}(TM + T^*M), \ \mathcal{J}^2 = -\operatorname{Id}$

Pairing $\langle X + \alpha, Y + \beta \rangle = \frac{1}{2}(\alpha(Y) + \beta(X))$ Skew-symmetric, $\mathcal{J}^* + \mathcal{J} = 0$ Maximally isotropic

J complex $\mathcal{J}_J = \begin{pmatrix} -J & 0 \\ 0 & I^* \end{pmatrix}$

 ω symplectic $\mathcal{J}_{\omega} = \begin{pmatrix} 0 & -\omega^{-1} \\ \cdots & 0 \end{pmatrix}$

 $(P \in \mathfrak{X}^{2}(M), [P, P] = 0)$ $graph(P) \subset TM + T^*M$

The Dorfman **bracket** on $\Gamma(TM+T^*M)$

$$[X + \alpha, Y + \beta] = [X, Y] + \mathcal{L}_X \beta - \imath_Y d\alpha$$

 ω presymplectic ($\omega \in \Omega^2(M)$, $d\omega = 0$) graph(ω) $\subset TM + T^*M$

P Poisson $(P \in \mathfrak{X}^{2}(M), [P, P] = 0)$ $graph(P) \subset TM + T^{*}M$

Maximally isotropic Involutive (Dorfman)

Dirac structures Courant, Weinstein... $\begin{array}{l} J \text{ complex} \\ \mathcal{J}_J = \left(\begin{smallmatrix} -J & 0 \\ 0 & J^* \end{smallmatrix} \right) \end{array}$

 $\mathcal{J} \in \mathsf{End}(TM + T^*M), \ \mathcal{J}^2 = -\operatorname{Id}$

 $\begin{array}{l} \mbox{Skew-symmetric, } \mathcal{J}^* + \mathcal{J} = 0 \\ + i\mbox{-eigenbundle involutive} \end{array}$

Generalized complex geometry Hitchin, Gualtieri, Cavalcanti...

The Dorfman **bracket**??

$$[X + \alpha, Y + \beta] = [X, Y] + \mathcal{L}_X \beta - i_Y d\alpha$$
$$[X + \alpha, X + \alpha] = [X, X] + \mathcal{L}_X \alpha - i_X d\alpha$$
$$= di_X \alpha + i_X d\alpha - i_X d\alpha$$
$$= di_X \alpha = d\langle X + \alpha, X + \alpha \rangle$$

It is not skew-symmetric, but satisfies, for $e, u, v \in \Gamma(TM + T^*M)$,

$$[e, [u, v]] = [[e, u], v] + [u, [e, v]]$$
$$\pi_{TM}(e) \langle u, v \rangle = \langle [e, u], v \rangle + \langle u, [e, v] \rangle$$

Actually, this structure has a name...

The Courant algebroid $(TM+T^*M, \langle , \rangle, [,], \pi_{TM})$

Definition (Liu-Weinstein-Xu)

A Courant algebroid over M is a tuple $(E, \langle , \rangle, [,], \pi)$ consisting of

- a vector bundle $E \rightarrow M$,
- a nondegenerate symmetric pairing $\langle \, ,
 angle$,
- a bilinear bracket [,] on $\Gamma(E)$,
- a bundle map $\pi: E \to TM$ covering id_M ,
- such that, for any $e \in E$,
 - the map $[e, \cdot]$ is a derivation of both the bracket and the pairing,
 - we have $[e, e] = d\langle e, e \rangle$.

Example

For $H \in \Omega^3_{cl}$, define the *H*-twisted bracket $[X + \alpha, Y + \beta]_H = [X, Y] + \mathcal{L}_X \beta - \imath_Y d\alpha + \imath_X \imath_Y H$ The tuple $(TM + T^*M, \langle , \rangle, [,]_H, \pi_{TM})$ is a Courant algebroid

Automorphisms of Courant algebroids

Definition

The automorphism group Aut *E* of a Courant algebroid *E* are the bundle maps $F : E \to E$, covering $f \in \text{Diff}(M)$, such that, for $u, v \in \Gamma(E)$,

- $\langle Fu, Fv \rangle = f_* \langle u, v \rangle$,
- $[Fu, Fv] = f_*[u, v],$
- $\pi_{TM} \circ F = f_* \circ \pi_{TM}$

Example

On $TM+T^*M$, for any $f \in \text{Diff}(M)$ and $B \in \Omega^2_{cl}(M)$,

$$f_* = \begin{pmatrix} f_* & 0 \\ 0 & f_* \end{pmatrix}, \quad X + \alpha \mapsto f_* X + f_* \alpha$$
$$e^B = \begin{pmatrix} \mathsf{Id} & 0 \\ B & \mathsf{Id} \end{pmatrix}, \quad X + \alpha \mapsto X + \alpha + \imath_X B \in \mathsf{Aut}(TM + T^*M)$$

Actually, the so-called **generalized diffeomorphisms** are Aut $(TM+T^*M) = \text{Diff}(M) \ltimes \Omega^2_{cl}(M)$

Back to generalized complex structures

M generalized complex \implies *M* almost complex \implies dim M = n = 2m

$J \in End(TM), \ J^2 = -\operatorname{Id}$	$\mathcal{J}\inEnd(\mathit{TM}+\mathit{T^{*}M})$, $\mathcal{J}^{2}=-\operatorname{Id}$
$T_{1,0}$ involutive (Lie)	<i>L</i> involutive (Dorfman)
	$\mathcal{J}+\mathcal{J}^*=0$
$L \subset T_{\mathbb{C}}M, \ L \cap \overline{L} = \{0\}$	$L \subset (TM + T^*M)_{\mathbb{C}}, L \cap \overline{L} = \{0\}$
<i>L</i> involutive (Lie)	<i>L</i> involutive (Dorfman)
	L maximally isotropic
Idea: $\varphi = d\bar{z}_1 \wedge \ldots \wedge d\bar{z}_m$	What is φ ?
$L = \operatorname{Ann}(\varphi) = \{X : \imath_X \varphi = 0\}$	What is Ann here?
(locally)	What extra property?

Idea: $\varphi = d\bar{z}_1 \wedge \ldots \wedge d\bar{z}_m$, $L = \operatorname{Ann}(\varphi) = \{X : \imath_X \varphi = 0\}$

What is Ann for $(TM + T^*M)_{\mathbb{C}}$? Define, for $\varphi \in \Omega^{\bullet}_{\mathbb{C}}(M)$,

$$(X + \alpha) \cdot \varphi = \imath_X \varphi + \alpha \wedge \varphi.$$

Unlike $\imath_X \imath_X \varphi = 0$, it satisfies $(X + \alpha)^2 \cdot \varphi = (\imath_X \alpha)\varphi = \langle X + \alpha, X + \alpha \rangle \varphi$. So $(X + \alpha) \cdot \varphi = 0$ implies $\langle X + \alpha, X + \alpha \rangle = 0 \Longrightarrow \operatorname{Ann}(\varphi)$ isotropic.

Chevalley pairing ($\wedge^{top} T^*_{\mathbb{C}} M$ -valued): $(\varphi, \psi) = [\varphi^T \wedge \psi]_{top}$.

 $L = Ann(\varphi)$

$L \cap \overline{L} = \{0\}$	<i>L</i> involutive (Dorfman)	L maximally isotropic
$(arphi,\overline{arphi}) eq 0$	$d\varphi = (X + \alpha) \cdot \varphi$	$\varphi \sim e^{B+i\omega}\theta_1 \wedge \ldots \wedge \theta_r$
(nowhere	for some $X + \alpha$	for $B,\omega\in\wedge^2T^*M$
vanishing)	in $(TM + T^*M)_{\mathbb{C}}$	$ heta_j \in \mathit{T}^*_{\mathbb{C}} \mathit{M}$, ($arphi$ pure)

Examples, recall: pure $\varphi \sim e^{B+i\omega}\theta_1 \wedge \ldots \wedge \theta_r$

$$\begin{array}{c|c} J \text{ complex} & \omega \text{ symplectic} \\ \hline \mathcal{J}_J = \begin{pmatrix} -J & 0 \\ 0 & J^* \end{pmatrix} & \mathcal{J}_\omega = \begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix} \\ \hline \varphi = dz_1 \wedge \ldots \wedge dz_m & \varphi = e^{i\omega} \\ \hline (\varphi, \overline{\varphi}) \sim \varphi \wedge \overline{\varphi} \neq 0 & (\varphi, \overline{\varphi}) \sim \omega^m \neq 0 \\ \hline d\varphi = 0 & d\varphi = 0 \\ \hline pure (B = \omega = 0) & pure (B = 0, r = 0) \end{array}$$

For pure φ, φ' : Ann $(\varphi) = Ann(\varphi') \iff \varphi = f\varphi'$ for non-vanishing f.

Definition

For $\varphi = \varphi_0 + \ldots + \varphi_n$, define **type**: least index *j* with $\varphi_j \neq 0$ (function).

Complex: type m; symplectic: type 0 (type ranges between 0 and m).

Type change example

On $\mathbb{R}^4 \cong \mathbb{C}^2$, with complex coordinates (z, w),

 $\varphi = z + dz \wedge dw$

We check all the conditions:

 $\begin{aligned} (\varphi,\overline{\varphi}) &= [(z+dz\wedge dw)^T \wedge (\overline{z}+d\overline{z}\wedge d\overline{w})]_{top} = dw \wedge dz \wedge d\overline{z} \wedge d\overline{w} \\ d\varphi &= dz = (-\frac{\partial}{\partial w} + 0) \cdot \varphi \end{aligned}$

Pure: $z \neq 0$, $\varphi \sim 1 + \frac{dz \wedge dw}{z} = e^{\frac{dz \wedge dw}{z}}$, pure and type 0 z = 0, $\varphi = dz \wedge dw$, pure and type 2

Type change: generically *B*-transform of symplectic, blows up along z = 0

Why generalized geometry

Unifying framework for instance, complex and symplectic structures

Suitable language generalized Kähler revived bihermitian geometry

New interesting structures... Let's look at this. $\{complex\} \subseteq \{generalized \ complex\} \subseteq \{almost \ complex\}$

Remember $\varphi = z + dz \wedge dw$ on \mathbb{C}^2 ? Invariant by translation on w, we can define it on

$$D imes T^2 \subset \mathbb{C} imes T^2 \subset \mathbb{C} imes rac{\mathbb{C}}{\mathbb{Z}^2}.$$

It is possible to do surgery on certain symplectic 4-manifold, by removing a normal neighbourhood of a torus and obtain the following:

Theorem (Gualtieri, Cavalcanti'2006)

The neither complex nor symplectic compact manifold $3\mathbb{C}P^2 \# 19\overline{\mathbb{C}P^2}$ is a generalized complex manifold.

Another generalized geometry is possible Denote $1 = M \times \mathbb{R}$ and consider

$$TM + 1 + T^*M$$

$$\pi(X + f + \alpha) = X$$

$$\langle X + f + \alpha, X + f + \alpha \rangle = \imath_X \alpha + f^2$$

$$[X + f + \alpha, Y + g + \beta \rangle] = [X, Y] + X(g) - Y(f)$$

$$+ \mathcal{L}_X \beta - \imath_Y d\alpha + 2gdf.$$

is a Courant algebroid, and moreover an O(n + 1, n)-bundle. As O(n + 1, n) is a real form of $O(2n + 1, \mathbb{C})$, of Lie type B_n :

Generalized geometry of type B_n

Main features of B_n -generalized geometry

More generalized diffeomorphisms: A-fields, $A \in \Omega^1_{cl}(M)$ acting by

$$X + f + \alpha \mapsto X + f + \imath_X A + \alpha - (2f + \imath_X A)A.$$

With notation $1 \to \Omega_{cl}^2(M) \to \Omega_{cl}^{2+1}(M) \to \Omega_{cl}^1(M) \to 1$, they give $\operatorname{GDiff}(M) = \operatorname{Diff}(M) \ltimes \Omega_{cl}^{2+1}(M).$

Definition

A B_n -generalized complex structure is a subbundle

 $L \subset (TM + 1 + T^*M)_{\mathbb{C}}$

that is maximally isotropic, involutive and satifies $L \cap \overline{L} = 0$.

Generalized complex structures are B_{2m} -generalized complex structures. Also exist for dim M odd (normal almost contact + cosymplectic).

Pure spinors are of the form $ce^{A+i\sigma} \cdot e^{B+\omega}\theta_1 \wedge \ldots \wedge \theta_r$.

Type change

For $\varphi = \varphi_0 + \ldots + \varphi_n$, recall **type**: least index j with $\varphi_j \neq 0$ (function).

Definition

Type-change locus: $\{x \in M : \varphi_0(x) = 0\}.$

Hypotheses from now on: compact manifold + stable structure Stable: generically $\varphi_0(x) \neq 0$, whenever $\varphi_0(x) = 0$, $d\varphi_0(x) \neq 0$. Type-change locus corresponds to $\varphi_0 = 0$: codimension 2 submanifold.

We saw a torus for a compact four-manifold. (Parity + $(\varphi, \overline{\varphi}) \neq 0 \implies 4$ is first type-change dimension)

We look at three-manifolds: type-change locus is a union of circles.

Type-change locus

Theorem ((Hitchin),R.)

The type-change locus cannot be a single circle.

Lemma (R.)

Around a type-change circle C, we can find coordinates (z, ψ) such that:

 $\varphi = z + \lambda dz + \mu dz \wedge d\bar{z} + \nu dz \wedge d\psi,$

with $\lambda, \nu \in \mathbb{C}^*$, $\mu \in \{0, 1\}$, and C corresponding to z = 0.

Proof: Assume *C* is the only type-change: φ_2/φ_0 well defined on $M \setminus C$ Tubular neighbourhood N_C , $\iota : N_C \setminus C \to M \setminus C$,

 $\int_{\partial N_C} \iota^*(\varphi_2/\varphi_0) = \int_{\partial N_C} \iota^*(\nu \frac{dz}{z} \wedge d\psi) = \int_0^{2\pi} \int_0^{2\pi} \nu d\theta \wedge d\psi = 4\pi^2 \nu \neq 0.$ On the open manifold $M \setminus N_C$, Stokes' theorem says

$$\int_{\partial N_C} \iota^*(\varphi_2/\varphi_0) = \int_{M \setminus N_C} d(\varphi_2/\varphi_0) = \int_{M \setminus N_C} 0 = 0.$$

Example of type-change locus

Analogue of Marsden-Weinstein symplectic reduction:

Proposition (R.)

The reduction of an S¹ or \mathbb{R}^+ -invariant generalized complex structure on $M \times S^1$ or $M \times \mathbb{R}^+$ is a B_n -generalized complex structure on M.

Example

Example: $zw + dz \wedge dw$ on $\mathbb{C}^2 \setminus \{0\} \cong S^3 \times \mathbb{R}^+$ reduces to a

$$B_3$$
-generalized complex structure on S^3
($\mathrm{S}^3 \subset \mathbb{C}^2$ corresponds to $|z|^2 + |w|^2 = 1$)

Type change on $\mathbb{C}^2 \setminus \{0\}$ gives type-change locus corresponding to z = 0 and w = 0: the Hopf link!

S^3 to open book decompositions

The Hopf link gives an open book decomposition of S³:

Open book decomposition of *M*: link *L* called binding and fibration $M \setminus L \to S^1$ whose fibres are diffeomorphic to a surface Σ with boundary *L*.

Equivalently, mapping torus of a manifold with boundary, with boundary identified (binding)

 S^3 is the mapping torus of a cylinder with boundary by a Dehn twist.

Proposition (Porti, R.)

There is a B_3 -generalized complex structure on the mapping torus of the cylinder with boundary by an n-Dehn twist (S³, lens space?)

Idea of the proof: Unravel open book of S^3 in coordinates, change the structure so that it is compatible with the *n*-Dehn twist, glue again.

Thurston's geometries

Unlike for cosymplectic or normal almost contact...

Observation (Porti, R.)

For each Thurston geometry there is a geometric manifold admitting a B_3 -generalized complex structure.

Thurston's geometries

Lemma (Porti, R.)

A geometric manifold that is neither cosymplectic nor normal almost contact has to be *Sol* or hyperbolic (not fibering over the circle), or the only euclidean manifold not fibering over the circle.

Looking now for a neither cosymplectic nor normal almost contact B_3 -generalized complex manifold.

Candidate: Hantzsche-Wendt manifold.

B_n interesting also in even dimensions

Type change for B_n -geometry is already possible for surfaces:

 $\varphi_0 + \varphi_1 + \varphi_2$

Relation to meromorphic forms (φ_1/φ_0) and translational surfaces

B_n interesting also in even dimensions

גיאומטריה מורכבת מוכללת ושלוש-יריעות

רוברטו רוביו

UNIVERSITAT DE BARCELONA

סמינר גיאומטריה ממשית ומורכבת אוניברסיטת תל אביב

יב במבת 5782