Generalized complex geometry and three-manifolds

Roberto Rubio
暲相
Universitat ${ }_{\text {de }}$ BARCELONA

Real and complex geometry seminar
Tel Aviv University

16 December 2021

M manifold (smooth category)

TM

ω presymplectic
$\left(\omega \in \Omega^{2}(M), d \omega=0\right)$
$\operatorname{graph}(\omega) \subset T M+T^{*} M$
P Poisson
$\left(P \in \mathfrak{X}^{2}(M),[P, P]=0\right)$ $\operatorname{graph}(P) \subset T M+T^{*} M$

$$
\begin{gathered}
J \text { complex } \\
\mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right) \\
\omega \text { symplectic } \\
\mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right) \\
\mathcal{J} \in \operatorname{End}\left(T M+T^{*} M\right), \mathcal{J}^{2}=-\mathrm{Id}
\end{gathered}
$$

Pairing $\langle X+\alpha, Y+\beta\rangle=\frac{1}{2}(\alpha(Y)+\beta(X))$
Maximally isotropic
Skew-symmetric, $\mathcal{J}^{*}+\mathcal{J}=0$

The Dorfman bracket on $\Gamma\left(T M+T^{*} M\right)$

$$
[X+\alpha, Y+\beta]=[X, Y]+\mathcal{L}_{X} \beta-\imath_{Y} d \alpha
$$

ω presymplectic
$\left(\omega \in \Omega^{2}(M), d \omega=0\right)$
$\operatorname{graph}(\omega) \subset T M+T^{*} M$
P Poisson
$\left(P \in \mathfrak{X}^{2}(M),[P, P]=0\right)$ $\operatorname{graph}(P) \subset T M+T^{*} M$

Maximally isotropic Involutive (Dorfman)

Dirac structures
Courant, Weinstein...

$$
\begin{gathered}
J \text { complex } \\
\mathcal{J}_{J}=\left(\begin{array}{cc}
-J^{\prime} & 0 \\
0 & J^{*}
\end{array}\right) \\
\omega \text { symplectic } \\
\mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right) \\
\mathcal{J} \in \operatorname{End}\left(T M+T^{*} M\right), \mathcal{J}^{2}=-\mathrm{Id} \\
\text { Skew-symmetric, } \mathcal{J}^{*}+\mathcal{J}=0 \\
+i \text {-eigenbundle involutive }
\end{gathered}
$$

Generalized complex geometry Hitchin, Gualtieri, Cavalcanti...

The Dorfman bracket??

$$
\begin{aligned}
{[X+\alpha, Y+\beta] } & =[X, Y]+\mathcal{L}_{X} \beta-\imath_{Y} d \alpha \\
{[X+\alpha, X+\alpha] } & =[X, X]+\mathcal{L}_{X} \alpha-\imath_{X} d \alpha \\
& =d \imath_{X} \alpha+\imath_{X} d \alpha-\imath_{X} d \alpha \\
& =d \imath_{X} \alpha=d\langle X+\alpha, X+\alpha\rangle
\end{aligned}
$$

It is not skew-symmetric, but satisfies, for $e, u, v \in \Gamma\left(T M+T^{*} M\right)$,

$$
\begin{gathered}
{[e,[u, v]]=[[e, u], v]+[u,[e, v]]} \\
\pi_{\text {TM }}(e)\langle u, v\rangle=\langle[e, u], v\rangle+\langle u,[e, v]\rangle
\end{gathered}
$$

Actually, this structure has a name...

The Courant algebroid $\left(T M+T^{*} M,\langle\rangle,,[],, \pi_{T M}\right)$

Definition (Liu-Weinstein-Xu)

A Courant algebroid over M is a tuple $(E,\langle\rangle,,[],, \pi)$ consisting of

- a vector bundle $E \rightarrow M$,
- a nondegenerate symmetric pairing \langle,$\rangle ,$
- a bilinear bracket [,] on 「(E),
- a bundle map $\pi: E \rightarrow$ TM covering id $_{M}$,
such that, for any $e \in E$,
- the map $[e, \cdot]$ is a derivation of both the bracket and the pairing,
- we have $[e, e]=d\langle e, e\rangle$.

Example

For $H \in \Omega_{c l}^{3}$, define the H-twisted bracket

$$
[X+\alpha, Y+\beta]_{H}=[X, Y]+\mathcal{L}_{X} \beta-\imath_{Y} d \alpha+\imath_{X} \imath_{Y} H
$$

The tuple $\left(T M+T^{*} M,\langle\rangle,,[,]_{H}, \pi_{T M}\right)$ is a Courant algebroid

Automorphisms of Courant algebroids

Definition

The automorphism group Aut E of a Courant algebroid E are the bundle maps $F: E \rightarrow E$, covering $f \in \operatorname{Diff}(M)$, such that, for $u, v \in \Gamma(E)$,

- $\langle F u, F v\rangle=f_{*}\langle u, v\rangle$,
- $[F u, F v]=f_{*}[u, v]$,
- $\pi_{T M} \circ F=f_{*} \circ \pi_{T M}$

Example

On $T M+T^{*} M$, for any $f \in \operatorname{Diff}(M)$ and $B \in \Omega_{c l}^{2}(M)$,

$$
\begin{aligned}
f_{*} & =\left(\begin{array}{cc}
f_{*} & 0 \\
0 & f_{*}
\end{array}\right), \quad X+\alpha \mapsto f_{*} X+f_{*} \alpha \\
e^{B} & =\left(\begin{array}{cc}
\text { ld } & 0 \\
B & \text { Id }
\end{array}\right), \quad X+\alpha \mapsto X+\alpha+\imath_{X} B
\end{aligned} \in \operatorname{Aut}\left(T M+T^{*} M\right)
$$

Actually, the so-called generalized diffeomorphisms are

$$
\operatorname{Aut}\left(T M+T^{*} M\right)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2}(M)
$$

Back to generalized complex structures

M generalized complex $\Longrightarrow M$ almost complex $\Longrightarrow \operatorname{dim} M=n=2 m$

$J \in \operatorname{End}(T M), J^{2}=-\mathrm{Id}$	$\mathcal{J} \in \operatorname{End}\left(T M+T^{*} M\right), \mathcal{J}^{2}=-\mathrm{Id}$
$T_{1,0}$ involutive (Lie)	L involutive (Dorfman)
	$\mathcal{J}+\mathcal{J}^{*}=0$
$L \subset T_{\mathbb{C}} M, L \cap \bar{L}=\{0\}$	$L \subset\left(T M+T^{*} M\right)_{\mathbb{C}}, L \cap \bar{L}=\{0\}$
L involutive (Lie)	L involutive (Dorfman)
	L maximally isotropic
Idea: $\varphi=d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{m}$	What is $\varphi ?$
$L=\operatorname{Ann}(\varphi)=\left\{X: \imath_{X} \varphi=0\right\}$	What is Ann here?
$($ locally $)$	What extra property?

Idea: $\varphi=d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{m}, L=\operatorname{Ann}(\varphi)=\left\{X: \imath_{X} \varphi=0\right\}$
What is Ann for $\left(T M+T^{*} M\right)_{\mathbb{C}}$? Define, for $\varphi \in \Omega_{\mathbb{C}}^{*}(M)$,

$$
(X+\alpha) \cdot \varphi=\imath_{X} \varphi+\alpha \wedge \varphi
$$

Unlike $\imath^{2} \imath^{\imath} \varphi \varphi=0$, it satisfies $(X+\alpha)^{2} \cdot \varphi=\left(\imath_{X} \alpha\right) \varphi=\langle X+\alpha, X+\alpha\rangle \varphi$. So $(X+\alpha) \cdot \varphi=0$ implies $\langle X+\alpha, X+\alpha\rangle=0 \Longrightarrow \operatorname{Ann}(\varphi)$ isotropic.

Chevalley pairing ($\wedge^{\text {top }} T_{\mathbb{C}}^{*} M$-valued): $\quad(\varphi, \psi)=\left[\varphi^{T} \wedge \psi\right]_{\text {top }}$.

$$
L=\operatorname{Ann}(\varphi)
$$

$L \cap \bar{L}=\{0\}$	L involutive (Dorfman)	L maximally isotropic
$(\varphi, \bar{\varphi}) \neq 0$	$d \varphi=(X+\alpha) \cdot \varphi$	$\varphi \sim e^{B+i \omega} \theta_{1} \wedge \ldots \wedge \theta_{r}$
(nowhere	for some $X+\alpha$	for $B, \omega \in \wedge^{2} T^{*} M$
vanishing)	in $\left(T M+T^{*} M\right)_{\mathbb{C}}$	$\theta_{j} \in T_{\mathbb{C}}^{*} M,(\varphi$ pure $)$

Examples, recall: pure $\varphi \sim e^{B+i \omega} \theta_{1} \wedge \ldots \wedge \theta_{r}$

J complex	ω symplectic
$\mathcal{J}_{J}=\left(\begin{array}{cc}-J & 0 \\ 0 & J^{*}\end{array}\right)$	$\mathcal{J}_{\omega}=\binom{0-\omega^{-1}}{\omega}$
$\varphi=d z_{1} \wedge \ldots \wedge d z_{m}$	$\varphi=e^{i \omega}$
$(\varphi, \bar{\varphi}) \sim \varphi \wedge \bar{\varphi} \neq 0$	$(\varphi, \bar{\varphi}) \sim \omega^{m} \neq 0$
$d \varphi=0$	$d \varphi=0$
pure $(B=\omega=0)$	pure $(B=0, r=0)$

For pure $\varphi, \varphi^{\prime}: \operatorname{Ann}(\varphi)=\operatorname{Ann}\left(\varphi^{\prime}\right) \Longleftrightarrow \varphi=f \varphi^{\prime}$ for non-vanishing f.

Definition

For $\varphi=\varphi_{0}+\ldots+\varphi_{n}$, define type: least index j with $\varphi_{j} \neq 0$ (function).
Complex: type m; symplectic: type 0 (type ranges between 0 and m).

Type change example

On $\mathbb{R}^{4} \cong \mathbb{C}^{2}$, with complex coordinates (z, w),

$$
\varphi=z+d z \wedge d w
$$

We check all the conditions:
$(\varphi, \bar{\varphi})=\left[(z+d z \wedge d w)^{T} \wedge(\bar{z}+d \bar{z} \wedge d \bar{w})\right]_{\text {top }}=d w \wedge d z \wedge d \bar{z} \wedge d \bar{w}$
$d \varphi=d z=\left(-\frac{\partial}{\partial w}+0\right) \cdot \varphi$
Pure: $z \neq 0, \varphi \sim 1+\frac{d z \wedge d w}{z}=e^{\frac{d z \wedge d w}{z}}$, pure and type 0 $z=0, \varphi=d z \wedge d w$, pure and type 2

Type change: generically B-transform of symplectic, blows up along $z=0$

Why generalized geometry

Unifying framework
 for instance, complex and symplectic structures

Suitable language

generalized Kähler revived bihermitian geometry

New interesting structures...
Let's look at this.

$\{$ complex $\} \subseteq\{$ generalized complex $\} \subseteq\{$ almost complex $\}$

Remember $\varphi=z+d z \wedge d w$ on \mathbb{C}^{2} ?
Invariant by translation on w, we can define it on

$$
D \times T^{2} \subset \mathbb{C} \times T^{2} \subset \mathbb{C} \times \frac{\mathbb{C}}{\mathbb{Z}^{2}} .
$$

It is possible to do surgery on certain symplectic 4-manifold, by removing a normal neighbourhood of a torus and obtain the following:

Theorem (Gualtieri, Cavalcanti'2006)

The neither complex nor symplectic compact manifold $3 \mathbb{C} P^{2} \# 19 \overline{\mathbb{C} P^{2}}$ is a generalized complex manifold.

Another generalized geometry is possible

Denote $1=M \times \mathbb{R}$ and consider
Tص
is a Courant algebroid, and moreover an $\mathrm{O}(n+1, n)$-bundle. As $\mathrm{O}(n+1, n)$ is a real form of $\mathrm{O}(2 n+1, \mathbb{C})$, of Lie type B_{n} :

Generalized geometry of type B_{n}

Main features of B_{n}-generalized geometry

More generalized diffeomorphisms: A-fields, $A \in \Omega_{c l}^{1}(M)$ acting by

$$
X+f+\alpha \mapsto X+f+\imath \times A+\alpha-(2 f+\imath \times A) A .
$$

With notation $1 \rightarrow \Omega_{c l}^{2}(M) \rightarrow \Omega_{c l}^{2+1}(M) \rightarrow \Omega_{c l}^{1}(M) \rightarrow 1$, they give $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2+1}(M)$.

Definition

A B_{n}-generalized complex structure is a subbundle

$$
L \subset\left(T M+1+T^{*} M\right)_{\mathbb{C}}
$$

that is maximally isotropic, involutive and satifies $L \cap \bar{L}=0$.

Generalized complex structures are $B_{2 m}$-generalized complex structures. Also exist for $\operatorname{dim} M$ odd (normal almost contact + cosymplectic).

Pure spinors are of the form $c e^{A+i \sigma} \cdot e^{B+\omega} \theta_{1} \wedge \ldots \wedge \theta_{r}$.

Type change

For $\varphi=\varphi_{0}+\ldots+\varphi_{n}$, recall type: least index j with $\varphi_{j} \neq 0$ (function).

Definition

Type-change locus: $\quad\left\{x \in M: \varphi_{0}(x)=0\right\}$.

Hypotheses from now on: compact manifold + stable structure Stable: generically $\varphi_{0}(x) \neq 0$, whenever $\varphi_{0}(x)=0, d \varphi_{0}(x) \neq 0$. Type-change locus corresponds to $\varphi_{0}=0$: codimension 2 submanifold.

We saw a torus for a compact four-manifold. (Parity $+(\varphi, \bar{\varphi}) \neq 0 \Longrightarrow 4$ is first type-change dimension)

We look at three-manifolds: type-change locus is a union of circles.

Type-change locus

Theorem ((Hitchin),R.)

The type-change locus cannot be a single circle.

Lemma (R.)

Around a type-change circle C, we can find coordinates (z, ψ) such that:

$$
\varphi=z+\lambda d z+\mu d z \wedge d \bar{z}+\nu d z \wedge d \psi
$$

with $\lambda, \nu \in \mathbb{C}^{*}, \mu \in\{0,1\}$, and C corresponding to $z=0$.
Proof: Assume C is the only type-change: $\varphi_{2} / \varphi_{0}$ well defined on $M \backslash C$ Tubular neighbourhood $N_{C}, \iota: N_{C} \backslash C \rightarrow M \backslash C$,
$\int_{\partial N_{C}} \iota^{*}\left(\varphi_{2} / \varphi_{0}\right)=\int_{\partial N_{C}} \iota^{*}\left(\nu \frac{d z}{z} \wedge d \psi\right)=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \nu d \theta \wedge d \psi=4 \pi^{2} \nu \neq 0$.
On the open manifold $M \backslash N_{C}$, Stokes' theorem says

$$
\int_{\partial N_{C}} \iota^{*}\left(\varphi_{2} / \varphi_{0}\right)=\int_{M \backslash N_{C}} d\left(\varphi_{2} / \varphi_{0}\right)=\int_{M \backslash N_{C}} 0=0
$$

Example of type-change locus

Analogue of Marsden-Weinstein symplectic reduction:

Proposition (R.)

The reduction of an S^{1} or \mathbb{R}^{+}-invariant generalized complex structure on $M \times S^{1}$ or $M \times \mathbb{R}^{+}$is a B_{n}-generalized complex structure on M.

Example

Example: $z w+d z \wedge d w$ on $\mathbb{C}^{2} \backslash\{0\} \cong S^{3} \times \mathbb{R}^{+}$reduces to a B_{3}-generalized complex structure on S^{3}
$\left(S^{3} \subset \mathbb{C}^{2}\right.$ corresponds to $\left.|z|^{2}+|w|^{2}=1\right)$
Type change on $\mathbb{C}^{2} \backslash\{0\}$ gives type-change locus corresponding to $z=0$ and $w=0$: the Hopf link!

S^{3} to open book decompositions

The Hopf link gives an open book decomposition of S^{3} :

Open book decomposition of M : link L called binding and fibration $M \backslash L \rightarrow S^{1}$ whose fibres are diffeomorphic to a surface Σ with boundary L.

Equivalently, mapping torus of a manifold with boundary, with boundary identified (binding)
S^{3} is the mapping torus of a cylinder with boundary by a Dehn twist.

Proposition (Porti, R.)

There is a B_{3}-generalized complex structure on the mapping torus of the cylinder with boundary by an n-Dehn twist (S^{3}, lens space?)

Idea of the proof: Unravel open book of S^{3} in coordinates, change the structure so that it is compatible with the n-Dehn twist, glue again.

Thurston's geometries

Sol	H^{3}		
+			
Seifert	$\chi>0$	$\chi=0$	$\chi<0$
$e=0$	$S^{2} \times \mathbb{R}$	E^{3}	$H^{2} \times \mathbb{R}$
$e \neq 0$	S^{3}	Nil	$\widehat{\mathrm{SL}_{2} \mathbb{R}}$

Unlike for cosymplectic or normal almost contact...

Observation (Porti, R.)

For each Thurston geometry there is a geometric manifold admitting a B_{3}-generalized complex structure.

Thurston's geometries

Lemma (Porti, R.)

A geometric manifold that is neither cosymplectic nor normal almost contact has to be Sol or hyperbolic (not fibering over the circle), or the only euclidean manifold not fibering over the circle.

Looking now for a neither cosymplectic nor normal almost contact B_{3}-generalized complex manifold.

Candidate: Hantzsche-Wendt manifold.

B_{n} interesting also in even dimensions

Type change for B_{n}-geometry is already possible for surfaces:

$$
\varphi_{0}+\varphi_{1}+\varphi_{2}
$$

Relation to meromorphic forms $\left(\varphi_{1} / \varphi_{0}\right)$ and translational surfaces

B_{n} interesting also in even dimensions

גיאומטריה מורכבת מוכללת ושלוש-יריעות

רוברטו רוביו

Universitatide BARCELONA

סמינר גיאומטריה ממשית ומורכבת אוניברסיטת תל אביב

יב בטבת 5782

