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M manifold (smooth category)

TM
ω presymplectic

(ω ∈ Ω2(M), dω = 0)

graph(ω) ⊂ TM+T ∗M

P Poisson
(P ∈ X2(M), [P,P] = 0)

graph(P) ⊂ TM+T ∗M

+ T ∗M
J complex

JJ =
(−J 0

0 J∗
)

ω symplectic
Jω =

(
0 −ω−1

ω 0

)
J ∈ End(TM+T ∗M), J 2 = − Id

Pairing ⟨X + α,Y + β⟩ = 1
2(α(Y ) + β(X ))

Maximally isotropic Skew-symmetric, J ∗ + J = 0



The Dorfman bracket on Γ(TM+T ∗M)

[X + α,Y + β] = [X ,Y ] + LXβ − ıY dα

ω presymplectic
(ω ∈ Ω2(M), dω = 0)

graph(ω) ⊂ TM+T ∗M

P Poisson
(P ∈ X2(M), [P,P] = 0)

graph(P) ⊂ TM+T ∗M

Maximally isotropic
Involutive (Dorfman)

Dirac structures
Courant, Weinstein...

J complex

JJ =
(−J 0

0 J∗
)

ω symplectic
Jω =

(
0 −ω−1

ω 0

)
J ∈ End(TM+T ∗M), J 2 = − Id

Skew-symmetric, J ∗ + J = 0
+i-eigenbundle involutive

Generalized complex geometry
Hitchin, Gualtieri, Cavalcanti...



The Dorfman bracket??

[X + α,Y + β] = [X ,Y ] + LXβ − ıY dα

[X + α,X + α] = [X ,X ] + LXα− ıXdα

= dıXα+ ıXdα− ıXdα

= dıXα = d⟨X + α,X + α⟩

It is not skew-symmetric, but satisfies, for e, u, v ∈ Γ(TM+T ∗M),

[e, [u, v ]] = [[e, u], v ] + [u, [e, v ]]

πTM(e)⟨u, v⟩ = ⟨[e, u], v⟩+ ⟨u, [e, v ]⟩

Actually, this structure has a name...



The Courant algebroid (TM+T ∗M , ⟨ , ⟩, [ , ], πTM)
Definition (Liu-Weinstein-Xu)

A Courant algebroid over M is a tuple (E , ⟨ , ⟩, [ , ], π) consisting of

a vector bundle E → M,

a nondegenerate symmetric pairing ⟨ , ⟩,
a bilinear bracket [ , ] on Γ(E ),

a bundle map π : E → TM covering idM ,

such that, for any e ∈ E ,

the map [e, ·] is a derivation of both the bracket and the pairing,

we have [e, e] = d⟨e, e⟩.

Example

For H ∈ Ω3
cl , define the H-twisted bracket

[X + α,Y + β]H = [X ,Y ] + LXβ − ıY dα+ ıX ıYH

The tuple (TM+T ∗M, ⟨ , ⟩, [ , ]H , πTM) is a Courant algebroid



Automorphisms of Courant algebroids

Definition

The automorphism group AutE of a Courant algebroid E are the bundle
maps F : E → E , covering f ∈ Diff(M), such that, for u, v ∈ Γ(E ),

⟨Fu,Fv⟩ = f∗⟨u, v⟩,
[Fu,Fv ] = f∗[u, v ],

πTM ◦ F = f∗ ◦ πTM

Example

On TM+T ∗M, for any f ∈ Diff(M) and B ∈ Ω2
cl(M),

f∗ =

(
f∗ 0
0 f∗

)
, X + α 7→ f∗X + f∗α

eB =

(
Id 0
B Id

)
, X + α 7→ X + α+ ıXB

∈ Aut(TM+T ∗M)

Actually, the so-called generalized diffeomorphisms are

Aut(TM+T ∗M) = Diff(M)⋉ Ω2
cl(M)



Back to generalized complex structures

M generalized complex =⇒ M almost complex =⇒ dimM = n = 2m

J ∈ End(TM), J2 = − Id J ∈ End(TM + T ∗M), J 2 = − Id

T1,0 involutive (Lie) L involutive (Dorfman)

J + J ∗ = 0

L ⊂ TCM, L ∩ L = {0} L ⊂ (TM + T ∗M)C, L ∩ L = {0}

L involutive (Lie) L involutive (Dorfman)

L maximally isotropic

Idea: φ = dz̄1 ∧ . . . ∧ dz̄m What is φ?

L = Ann(φ) = {X : ıXφ = 0} What is Ann here?

(locally) What extra property?



Idea: φ = dz̄1 ∧ . . . ∧ dz̄m, L = Ann(φ) = {X : ıXφ = 0}

What is Ann for (TM + T ∗M)C? Define, for φ ∈ Ω•
C(M),

(X + α) · φ = ıXφ+ α ∧ φ.

Unlike ıX ıXφ = 0, it satisfies (X + α)2 · φ = (ıXα)φ = ⟨X + α,X + α⟩φ.
So (X + α) · φ = 0 implies ⟨X + α,X + α⟩ = 0 =⇒ Ann(φ) isotropic.

Chevalley pairing (∧topT ∗
CM-valued): (φ,ψ) = [φT ∧ ψ]top.

L = Ann(φ)

L ∩ L = {0} L involutive (Dorfman) L maximally isotropic

(φ,φ) ̸= 0 dφ = (X + α) · φ φ ∼ eB+iωθ1 ∧ . . . ∧ θr
(nowhere for some X + α for B, ω ∈ ∧2T ∗M

vanishing) in (TM + T ∗M)C θj ∈ T ∗
CM, (φ pure)



Examples, recall: pure φ ∼ eB+iωθ1 ∧ . . . ∧ θr

J complex ω symplectic

JJ =
(−J 0

0 J∗
)

Jω =
(
0 −ω−1

ω 0

)
φ = dz1 ∧ . . . ∧ dzm φ = e iω

(φ,φ) ∼ φ ∧ φ ̸= 0 (φ,φ) ∼ ωm ̸= 0

dφ = 0 dφ = 0

pure (B = ω = 0) pure (B = 0, r = 0)

For pure φ,φ′: Ann(φ) = Ann(φ′) ⇐⇒ φ = f φ′ for non-vanishing f .

Definition

For φ = φ0 + . . .+ φn, define type: least index j with φj ̸= 0 (function).

Complex: type m; symplectic: type 0 (type ranges between 0 and m).



Type change example

On R4 ∼= C2, with complex coordinates (z ,w),

φ = z + dz ∧ dw

We check all the conditions:

(φ,φ) = [(z + dz ∧ dw)T ∧ (z + dz ∧ dw)]top = dw ∧ dz ∧ dz ∧ dw

dφ = dz = (− ∂
∂w + 0) · φ

Pure: z ̸= 0, φ ∼ 1 + dz∧dw
z = e

dz∧dw
z , pure and type 0

z = 0, φ = dz ∧ dw , pure and type 2

Type change: generically B-transform of symplectic, blows up along z = 0



Why generalized geometry

Unifying framework
for instance, complex and symplectic structures

Suitable language
generalized Kähler revived bihermitian geometry

New interesting structures...
Let’s look at this.



{complex}⊆{generalized complex}⊆{almost complex}

Remember φ = z + dz ∧ dw on C2?
Invariant by translation on w , we can define it on

D × T 2 ⊂ C× T 2 ⊂ C× C
Z2
.

It is possible to do surgery on certain symplectic 4-manifold, by removing a
normal neighbourhood of a torus and obtain the following:

Theorem (Gualtieri,Cavalcanti’2006)

The neither complex nor symplectic compact manifold 3CP2#19CP2 is a
generalized complex manifold.



symplectic
complex

3CP2#19CP2

generalized complex

almost complex



Another generalized geometry is possible
Denote 1 = M × R and consider

TM + 1 + T ∗M
π(X + f + α) = X

⟨X + f + α,X + f + α⟩ = ıXα+ f 2

[X + f + α,Y + g + β⟩] = [X ,Y ] + X (g)− Y (f )

+ LXβ − ıY dα+ 2gdf .

is a Courant algebroid, and moreover an O(n + 1, n)-bundle.
As O(n + 1, n) is a real form of O(2n + 1,C), of Lie type Bn:

Generalized geometry of type Bn



Main features of Bn-generalized geometry
More generalized diffeomorphisms: A-fields, A ∈ Ω1

cl(M) acting by

X + f + α 7→ X + f + ıXA+ α− (2f + ıXA)A.

With notation 1 → Ω2
cl(M) → Ω2+1

cl (M) → Ω1
cl(M) → 1, they give

GDiff(M) = Diff(M)⋉ Ω2+1
cl (M).

Definition

A Bn-generalized complex structure is a subbundle

L ⊂ (TM + 1 + T ∗M)C

that is maximally isotropic, involutive and satifies L ∩ L = 0.

Generalized complex structures are B2m-generalized complex structures.
Also exist for dimM odd (normal almost contact + cosymplectic).

Pure spinors are of the form ceA+iσ · eB+ωθ1 ∧ . . . ∧ θr .



Type change

For φ = φ0 + . . .+ φn, recall type: least index j with φj ̸= 0 (function).

Definition

Type-change locus: {x ∈ M : φ0(x) = 0}.

Hypotheses from now on: compact manifold + stable structure
Stable: generically φ0(x) ̸= 0, whenever φ0(x) = 0, dφ0(x) ̸= 0.
Type-change locus corresponds to φ0 = 0: codimension 2 submanifold.

We saw a torus for a compact four-manifold.
(Parity + (φ,φ) ̸= 0 =⇒ 4 is first type-change dimension)

We look at three-manifolds: type-change locus is a union of circles.



Type-change locus

Theorem ((Hitchin),R.)

The type-change locus cannot be a single circle.

Lemma (R.)

Around a type-change circle C , we can find coordinates (z , ψ) such that:

φ = z + λdz + µdz ∧ dz̄ + νdz ∧ dψ,

with λ, ν ∈ C∗, µ ∈ {0, 1}, and C corresponding to z = 0.

Proof: Assume C is the only type-change: φ2/φ0 well defined on M \ C
Tubular neighbourhood NC , ι : NC \ C → M \ C ,∫
∂NC

ι∗(φ2/φ0) =

∫
∂NC

ι∗(ν
dz

z
∧ dψ) =

∫ 2π

0

∫ 2π

0
νdθ ∧ dψ = 4π2ν ̸= 0.

On the open manifold M \ NC , Stokes’ theorem says∫
∂NC

ι∗(φ2/φ0) =

∫
M\NC

d(φ2/φ0) =

∫
M\NC

0 = 0.
Contradiction.



Example of type-change locus

Analogue of Marsden-Weinstein symplectic reduction:

Proposition (R.)

The reduction of an S1 or R+-invariant generalized complex structure on
M × S1 or M × R+ is a Bn-generalized complex structure on M.

Example

Example: zw + dz ∧ dw on C2 \ {0} ∼= S3 × R+ reduces to a

B3-generalized complex structure on S3

(S3 ⊂ C2 corresponds to |z |2 + |w |2 = 1)

Type change on C2 \ {0} gives type-change locus corresponding to

z = 0 and w = 0: the Hopf link!



S3 to open book decompositions

The Hopf link gives an open book decomposition of S3:

Open book decomposition of M: link L called binding and fibration
M \ L → S1 whose fibres are diffeomorphic to a surface Σ with boundary L.

Equivalently, mapping torus of a manifold with
boundary, with boundary identified (binding)

S3 is the mapping torus of a cylinder with boundary by a Dehn twist.

Proposition (Porti, R.)

There is a B3-generalized complex structure on the mapping torus of the
cylinder with boundary by an n-Dehn twist (S3, lens space?)

Idea of the proof: Unravel open book of S3 in coordinates, change the
structure so that it is compatible with the n-Dehn twist, glue again.



Thurston’s geometries

Sol H3

+

Seifert χ > 0 χ = 0 χ < 0

e = 0 S2 × R E 3 H2 × R

e ̸= 0 S3 Nil S̃L2R

Unlike for cosymplectic or normal almost contact...

Observation (Porti, R.)

For each Thurston geometry there is a geometric manifold admitting a
B3-generalized complex structure.



Thurston’s geometries

Lemma (Porti, R.)

A geometric manifold that is neither cosymplectic nor normal almost
contact has to be Sol or hyperbolic (not fibering over the circle), or the
only euclidean manifold not fibering over the circle.

Looking now for a neither
cosymplectic nor normal al-
most contact B3-generalized
complex manifold.

Candidate:
Hantzsche-Wendt manifold.



Bn interesting also in even dimensions

Type change for Bn-geometry is already possible for surfaces:

φ0 + φ1 + φ2

Relation to meromorphic forms (φ1/φ0) and translational surfaces



Bn interesting also in even dimensions

symplectic
complex

generalized complex

B2m-generalized complex

almost complex



מוכללת! מורכבת גיאומטריה
ושלוש!-יריעות!

רוביו! רוברטו

ומורכבת! ממשית גיאומטריה סמינר
אביב! תל אוניברסיטת

5782 בטבת! יב


