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Teichmuller space for symplectic structures

DEFINITION: Let M(A2M) be the space of all 2-forms on a manifold M,
and Symp C (A2M) the space of all symplectic 2-forms. We equip M(A2M)
with C°-topology of uniform convergence on compacts with all derivatives.
Then I‘(/\QM) is a Frechet vector space, and Symp a Frechet manifold.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff or Diff (M)
as a Frechet Lie group, and denote its connected component (‘“group of iso-
topies’” ) by Diffg. The quotient group I := Diff / Diffg is called the mapping
class group of M.

DEFINITION: Teichmuller space of symplectic structures on M is de-
fined as a quotient Teichs := Symp / Diffg. The quotient Teichs /T = Symp / Diff,
is called the moduli space of symplectic structures.

REMARK: In many cases I acts on Teichgs with dense orbits, hence the
moduli space is not always well defined.

DEFINITION: Two symplectic structures are called isotopic if they lie in
the same orbit of Diffg, and diffeomorphic is they lie in the same orbit of
Diff.
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Moser’s theorem

DEFINITION: Define the period map Per: Teichs — H2(M,R) mapping
a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)
The Teichmuler space Teichg is a manifold (possibly, non-Hausdorff), and
the period map Per : Teichg —>H2(M, R) is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Theorem 1: (Moser)
Let wy, t €S be a smooth family of symplectic structures, parametrized by a
connected manifold S. Then all w; are diffeomorphic.
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The proof of Moser’s theorem

THEOREM: (Moser)
The Teichmuler space Teichg is a manifold (possibly, non-Hausdorff), and
the period map Per: Teichs — H2(M,R) is locally a diffeomorphism.

Proof. Step 1: We can locally find a section S for the Diffg-action on Symp,
producing a local decomposition Symp = O x S, where O is a Diffg-orbit. Here
O and S are both Frechet manifolds.

Step 2: The period map P : U — H?(M,R) is a smooth submersion. By
Theorem 1, the fibers of P are O-dimensional. Therefore, P is locally a
diffeomorphism. =
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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM —s TM which satisfies 12 = —Idp;,.

The eigenvalues of this operator are =v/—1 . The corresponding eigenvalue
decomposition is denoted TM @ C = T%1 M @ T1.9(M).

DEFINITION: An almost complex structure is integrable if VX,Y & TlvOM,
one has [X,Y] € TVOM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.
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Kahler manifolds

DEFINITION: A Riemannian metric g on a complex manifold (M, I) is called
Hermitian if g(Iz, Iy) = g(z,y). In this case, g(z, Iy) = g(Iz, I%y) = —g(y, Iz),
hence w(z,y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form w € AL1(M) is called the Hermitian
form of (M, 1,g).

DEFINITION: A complex Hermitian manifold (M, I,w) is called Kahler if
dw = 0. The cohomology class [w] € H2(M) of a form w is called the Kahler

class of M, and w the Kahler form.

REMARK: This is equivalent to Vw = 0, where V is Levi-Civita connection.
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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J ol = K, such that g is Kahler for I, J, K.

REMARK: This is equivalent to VI = VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, x € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths) is
called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold which
has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

CLAIM: A compact hyperkahler manifold M has maximal holonomy of
Levi-Civita connection Sp(n) if and only if 71(M) = 0, h29(M) = 1.

THEOREM: (Bogomolov decomposition)
Any compact hyperkahler manifold has a finite covering isometric to
a product of a torus and several maximal holonomy hyperkahler mani-
folds.
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: In this talk, all holomorphically symplectic manifolds are assumed
to be Kahler and compact.

REMARK: A hyperkahler manifold has three symplectic forms
Wy -— g(Ia)’ Wy .— g(Ja)' WK -— g(Ka)

CLAIM: In these assumptions, wj + v—1 wg is holomorphic symplectic on
(M, 1).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

DEFINITION: For the rest of this talk, a hyperkahler manifold is a com-
pact, Kahler, holomorphically symplectic manifold of maximal holon-
omy.
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EXAMPLES.

EXAMPLE: An even-dimensional complex torus.
EXAMPLE: A non-compact example: T*CP™ (Calabi).
REMARK: T*CP! is a resolution of a singularity C2/+1.

EXAMPLE: Take a 2-dimensional complex torus T', then the singular locus

of T/+1 is of form (C2/+1) x T. Its resolution T/+1 is called a Kummer
surface. It is holomorphically symplectic.

REMARK: Take a symmetric square SmeT, with a natural action of T', and
let 712 be a blow-up of a singular divisor. Then T2 is naturally isomorphic
to the Kummer surface 7/+1.

DEFINITION: A complex surface is called K3 surface if it a deformation
of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification)
Let M be a compact complex surface which is hyperkahler. Then M is either
a torus or a K3 surface.

9



Moduli of symplectic structures M. Verbitsky

Hilbert schemes

DEFINITION: A Hilbert scheme MM of a complex surface M is a clas-
sifying space of all ideal sheaves I C O,; for which the quotient O,;/I has
dimension n over C.

REMARK: A Hilbert scheme is obtained as a resolution of singularities
of the symmetric power Sym™ M.

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkahler sur-
face is hyperkahler.

EXAMPLE: A Hilbert scheme of K3 is hyperkahler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely
and properly by translations. For n = 2, the quotient T[”]/T IS a Kummer
K3-surface. For n > 2, a universal covering of Tl /T is called a generalized
Kummer variety.

REMARK: There are 2 more ‘sporadic’” examples of compact hyperkahler
manifolds, constructed by K. O'Grady. All known compact hyperkaehler
Mmanifolds are these 2 and the two series: Hilbert schemes of K3, and
generalized Kummer.
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Main result

DEFINITION: A symplectic structure w on a torus is called standard if there
exists a flat torsion-free connection preserving w. A symplectic structure w
on a hyperkahler manifold is called standard if w is a Kahler form for some
hyperkahler structure.

REMARK: Any known symplectic structure on a hyperkahler manifold or a
torus is of this type. It was conjectured that non-standard symplectic
structures don’t exist.

THEOREM: Let M be a maximal holonomy hyperkahler manifold. Then
the period map Per : Teichs — H2(M,R) is an open embedding on the
set of all standard symplectic structures, and its image is the set of all
cohomology classes v such that ¢(w,w) > 0, where g is a quadratic form
on cohomology defined below.
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Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let n € H2(M), and dimM = 2n, where M is hy-
perkdhler. Then [,;7°" = cq(n,n)"™, for some primitive integer quadratic form
g on H2(M,Z), and ¢ > 0 an integer number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is
defined by the Fujiki’'s relation uniquely, up to a sign. The sign is
determined from the following formula (Bogomolov, Beauville)

Aa(n, 1) = /Xn AnAQTTIAT L

1 _ e
_n (/ n/\Q”_l/\Q”> (/ nAQPAQ" 1)
n X X

where €2 is the holomorphic symplectic form, and A\ > 0.

Remark: ¢ has signature (b, — 3,3). It is negative definite on primitive
forms, and positive definite on (Q2,Q,w), where w is a Kahler form.

12



Moduli of symplectic structures M. Verbitsky

MBM classes

DEFINITION: Kahler cone of a Kahler manifold is the set of all cohomology
classes w € HL1(M)

DEFINITION: Face of a Kahler cone K is a subset V N oK containing an
open subset of V, for some hyperplane V ¢ HL1(M).

DEFINITION: Let M be a hyperkahler manifold. A homology class z &
H>(M,Q) is called an MBM class (monodromy birational minimal) if for
some complex structure in the same deformation class, the annihilator z+-
contains a face of its Kahler cone.

DEFINITION: A cohomology class z € H2(M,Q) is called MBM class if it
becomes MBM after an identification H2(M,Q) =& H-(M,Q) provided by the
Bogomolov-Beauville-Fujiki form.
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Properties of MBM classes

DEFINITION: Negative class on a hyperkdhler manifold is n € H2(M,R)
satisfying ¢(n,n) < O.

THEOREM: Let (M,I) be a hyperkdhler manifold, rk HL1(M,Z) = 1, and
z € Hy 1(M,I) a non-zero negative class. Then z is MBM if and only if +z
Is Q-effective, that is, Az is represented by a complex curve. m

DEFINITION: Positive cone Pos(M) on a Kahler surface is the one of the
two components of

fve HMOMLR) | [ nAn>0}

which contains a Kahler form.

THEOREM: Let (M,I) be a hyperkahler manifold, and S C Hy 1(M,I) the
set of all MBM classes in Hj 1(M,I). Consider the corresponding set of
hyperplanes S+ :={W =2+ | z2e S} in HL'1(M,I). Then the Kahler cone
of (M,I) is a connected component of Pos(M, 1)\ USt, where Pos(M,I) is
a positive cone of (M,1). m
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Teichmuller space of hyperkahler structures

DEFINITION: Consider the infinite-dimensional space Hyp of all quater-
nionic triples I,J, K on M which are induced by some hyperkahler structure,
with C°°-topology, and let Teich;, : Hyp/Diffg be the corresponding Te-
ichmuller space, called Teichmuller space of hyperkahler structures.

DEFINITION: Consider the space Per;, of all triples z,y,z satisfying 12 -+
y2—|—z2 > 0. Let M be a hyperkahler manifold of maximal holonomy, and Per :
Teich;, — Perj, the map associating to a hyperkahler structure (M, I, J, K, g)
the truple wy,wj,wg. This map called the period map for the Teichmuller
space of hyperkahler structures, and Pery;, the period space of hyperkahler
structures.

THEOREM: Let M be a hyperkahler manifold of maximal holonomy, and
Per : Teich;, — Per;, the period map for the Teichmuller space of hyperkahler
structures. Then the period map Per: Teich;, — Perj;, iIs an open embed-
ding for each connected component. Moreover, its image is the set of
all spaces W € Per;, such that the orthogonal complement W+ contains
no MBM classes.

Sketch of a proof: Follows immediately from Calabi-Yau theorem, global
Torelli theorem for hyperkahler manifolds, and the description of the Kahler
cone in terms of the MBM classes. m
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Torelli theorem for symplectic structures

THEOREM: Let M be a maximal holonomy hyperkahler manifold. Then
the period map Per : Teichs — H2(M,R) is an open embedding on the
set of all standard symplectic structures, and its image is the set of all
cohomology classes v such that ¢(v,v) > 0.

Proof. Step 1: Let P : Teichy, — Teichs be the forgetful map putting
wr,wj,wg to wy. Calabi-Yau implies that P is surjective. Indeed, any Kahler
form can be deformed to a Ricci-flat Kahler form in the same cohomology
class.

Step 2: From Torelli theorem for hyperkahler structures it follows that the
fiber P~1(w) of P is the space of pairs z,y € H2(M) satisfying z2 = y2 =
w? > 0, such that the space (w,z,y)- contains no MBM classes.

Step 3: Since the fibers of P are complements to subsets of codimension 2,
they are connected. By Moser's theorem, for each (M,wr,wi, wg) € P71(w)
the symplectic forms w; are diffeomorphic.
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Torelli theorem for symplectic structures (2)

THEOREM: Let M be a maximal holonomy hyperkahler manifold. Then
the period map Per : Teichs — H2(M,R) is an open embedding on the
set of all standard symplectic structures, and its image is the set of all
cohomology classes v such that g(v,v) > 0.

Step 4: Consider the diagram

Teichy, — Teichsg

lPerh Persl

{z,y,z € H*(M)|z? = y* = 2% > 0, 2 2
(z,y, z)+ contains no MBM classes} — {z € H(M)|z= > 0}

Step 3 implies that the arrow Per; on the above diagram is injective. The
rest of the arrows are surjective as shown, hence Perg IS also surjective. =
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Ergodicity of mapping class group action

THEOREM: (V., 2009)
Let M be a maximal holonomy hyperkahler manifold. Then the image of
the mapping class group I in O(H?(M,Z)) has finite index.

COROLLARY: I acts on Teichs with dense orbits.
Proof: We use a theorem of Calvin Moore:

THEOREM: (Calvin C. Moore, 1966) Let I' be a lattice in a non-compact
simple Lie group G with finite center, and H C G a non-compact semisimple
Lie subgroup. Then the left action of ' on GG/H is ergodic.

Applying this theorem to I" inside G = SO(H?(M,R),q) and H the stabilizer
of w € H2(M,R), we obtain that action of ' on Teichs C H2(M,R) is ergodic,
hence has dense orbits. =

QUESTION: The Teichmuller space of standard symplectic structures on
K3 is Hausdorff, as shown above. Are there any non-Hausdorff non-standard
symplectic structures in the same connected component of Teichg?
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