Moduli of symplectic structures

Misha Verbitsky

Seminar in Real and Complex Geometry

Tel-Aviv University, 22.07.2015

Joint work with Ekaterina Amerik

Teichmüller space for symplectic structures

DEFINITION: Let $\Gamma(\Lambda^2 M)$ be the space of all 2-forms on a manifold M, and $\operatorname{Symp} \subset \Gamma(\Lambda^2 M)$ the space of all symplectic 2-forms. We equip $\Gamma(\Lambda^2 M)$ with C^{∞} -topology of uniform convergence on compacts with all derivatives. Then $\Gamma(\Lambda^2 M)$ is a Frechet vector space, and Symp a Frechet manifold.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff or Diff(M) as a Frechet Lie group, and denote its connected component ("group of isotopies") by Diff₀. The quotient group $\Gamma := \text{Diff} / \text{Diff}_0$ is called **the mapping** class group of M.

DEFINITION: Teichmüller space of symplectic structures on M is defined as a quotient Teich_s := Symp / Diff₀. The quotient Teich_s / Γ = Symp / Diff, is called the moduli space of symplectic structures.

REMARK: In many cases Γ acts on Teich_s with dense orbits, hence the moduli space is not always well defined.

DEFINITION: Two symplectic structures are called **isotopic** if they lie in the same orbit of $Diff_0$, and **diffeomorphic** is they lie in the same orbit of Diff.

Moser's theorem

DEFINITION: Define the period map $Per: Teich_s \longrightarrow H^2(M,\mathbb{R})$ mapping a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The **Teichmüler space** Teich_s is a manifold (possibly, non-Hausdorff), and the **period map** Per: Teich_s $\longrightarrow H^2(M,\mathbb{R})$ is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Theorem 1: (Moser)

Let ω_t , $t \in S$ be a smooth family of symplectic structures, parametrized by a connected manifold S. Then all ω_t are diffeomorphic.

The proof of Moser's theorem

THEOREM: (Moser)

The **Teichmüler space** Teich_s is a manifold (possibly, non-Hausdorff), and the **period map** Per: Teich_s $\longrightarrow H^2(M,\mathbb{R})$ is locally a diffeomorphism.

Proof. Step 1: We can locally find a section S for the Diff₀-action on Symp, producing a local decomposition Symp = $O \times S$, where O is a Diff₀-orbit. Here O and S are both Frechet manifolds.

Step 2: The period map $P: U \longrightarrow H^2(M,\mathbb{R})$ is a smooth submersion. By Theorem 1, the fibers of P are 0-dimensional. Therefore, P is locally a diffeomorphism. \blacksquare

Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM\otimes \mathbb{C}=T^{0,1}M\oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case I is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg)

This definition is equivalent to the usual one.

Kähler manifolds

DEFINITION: A Riemannian metric g on a complex manifold (M, I) is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called the Hermitian form of (M,I,g).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called **Kähler** if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called **the Kähler** class of M, and ω the **Kähler form**.

REMARK: This is equivalent to $\nabla \omega = 0$, where ∇ is Levi-Civita connection.

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

CLAIM: A compact hyperkähler manifold M has maximal holonomy of Levi-Civita connection Sp(n) if and only if $\pi_1(M) = 0$, $h^{2,0}(M) = 1$.

THEOREM: (Bogomolov decomposition)

Any compact hyperkähler manifold has a finite covering isometric to a product of a torus and several maximal holonomy hyperkähler manifolds.

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: In this talk, all holomorphically symplectic manifolds are assumed to be Kähler and compact.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I \cdot, \cdot)$, $\omega_J := g(J \cdot, \cdot)$, $\omega_K := g(K \cdot, \cdot)$.

CLAIM: In these assumptions, $\omega_J + \sqrt{-1} \omega_K$ is holomorphic symplectic on (M,I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold of maximal holonomy.

EXAMPLES.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: $T^*\mathbb{C}P^n$ (Calabi).

REMARK: $T^*\mathbb{C}P^1$ is a resolution of a singularity $\mathbb{C}^2/\pm 1$.

EXAMPLE: Take a 2-dimensional complex torus T, then the singular locus of $T/\pm 1$ is of form $(\mathbb{C}^2/\pm 1) \times T$. Its resolution $T/\pm 1$ is called a Kummer surface. It is holomorphically symplectic.

REMARK: Take a symmetric square $\operatorname{Sym}^2 T$, with a natural action of T, and let $T^{[2]}$ be a blow-up of a singular divisor. Then $T^{[2]}$ is naturally isomorphic to the Kummer surface $T/\pm 1$.

DEFINITION: A complex surface is called **K3 surface** if it a deformation of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification) Let M be a compact complex surface which is hyperkähler. Then M is either a torus or a K3 surface.

Hilbert schemes

DEFINITION: A Hilbert scheme $M^{[n]}$ of a complex surface M is a classifying space of all ideal sheaves $I \subset \mathcal{O}_M$ for which the quotient \mathcal{O}_M/I has dimension n over \mathbb{C} .

REMARK: A Hilbert scheme is obtained as a resolution of singularities of the symmetric power $\operatorname{Sym}^n M$.

THEOREM: (Fujiki, Beauville) A Hilbert scheme of a hyperkähler surface is hyperkähler.

EXAMPLE: A Hilbert scheme of K3 is hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely and properly by translations. For n=2, the quotient $T^{[n]}/T$ is a Kummer K3-surface. For n>2, a universal covering of $T^{[n]}/T$ is called a generalized Kummer variety.

REMARK: There are 2 more "sporadic" examples of compact hyperkähler manifolds, constructed by K. O'Grady. **All known compact hyperkaehler manifolds are these 2 and the two series:** Hilbert schemes of K3, and generalized Kummer.

Main result

DEFINITION: A symplectic structure ω on a torus is called **standard** if there exists a flat torsion-free connection preserving ω . A symplectic structure ω on a hyperkähler manifold is called **standard** if ω is a Kähler form for some hyperkähler structure.

REMARK: Any known symplectic structure on a hyperkähler manifold or a torus is of this type. **It was conjectured that non-standard symplectic structures don't exist.**

THEOREM: Let M be a maximal holonomy hyperkähler manifold. Then the period map $Per: Teich_s \longrightarrow H^2(M,\mathbb{R})$ is an open embedding on the set of all standard symplectic structures, and its image is the set of all cohomology classes v such that $q(\omega,\omega)>0$, where q is a quadratic form on cohomology defined below.

Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M=2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta,\eta)^n$, for some primitive integer quadratic form q on $H^2(M,\mathbb{Z})$, and c>0 an integer number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_{X} \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_{X} \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n} \right) \left(\int_{X} \eta \wedge \Omega^{n} \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: q has signature $(b_2 - 3,3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

MBM classes

DEFINITION: Kähler cone of a Kähler manifold is the set of all cohomology classes $\omega \in H^{1,1}(M)$

DEFINITION: Face of a Kähler cone K is a subset $V \cap \partial K$ containing an open subset of V, for some hyperplane $V \subset H^{1,1}(M)$.

DEFINITION: Let M be a hyperkähler manifold. A homology class $z \in H_2(M,\mathbb{Q})$ is called **an MBM class** (monodromy birational minimal) if for some complex structure in the same deformation class, the annihilator z^{\perp} contains a face of its Kähler cone.

DEFINITION: A cohomology class $z \in H^2(M, \mathbb{Q})$ is called **MBM class** if it becomes MBM after an identification $H^2(M, \mathbb{Q}) \cong H_2(M, \mathbb{Q})$ provided by the Bogomolov-Beauville-Fujiki form.

Properties of MBM classes

DEFINITION: Negative class on a hyperkähler manifold is $\eta \in H^2(M, \mathbb{R})$ satisfying $q(\eta, \eta) < 0$.

THEOREM: Let (M,I) be a hyperkähler manifold, $\operatorname{rk} H^{1,1}(M,\mathbb{Z})=1$, and $z\in H_{1,1}(M,I)$ a non-zero negative class. Then z is MBM if and only if $\pm z$ is Q-effective, that is, λz is represented by a complex curve.

DEFINITION: Positive cone Pos(M) on a Kähler surface is the one of the two components of

$$\{v \in H^{1,1}(M,\mathbb{R}) \mid \int_M \eta \wedge \eta > 0\}$$

which contains a Kähler form.

THEOREM: Let (M,I) be a hyperkähler manifold, and $S \subset H_{1,1}(M,I)$ the set of all MBM classes in $H_{1,1}(M,I)$. Consider the corresponding set of hyperplanes $S^{\perp} := \{W = z^{\perp} \mid z \in S\}$ in $H^{1,1}(M,I)$. Then the Kähler cone of (M,I) is a connected component of $Pos(M,I) \setminus \cup S^{\perp}$, where Pos(M,I) is a positive cone of (M,I).

Teichmüller space of hyperkähler structures

DEFINITION: Consider the infinite-dimensional space Hyp of all quaternionic triples I, J, K on M which are induced by some hyperkähler structure, with C^{∞} -topology, and let Teich_h : Hyp/Diff₀ be the corresponding Teichmüller space, called **Teichmüller space of hyperkähler structures**.

DEFINITION: Consider the space $\mathbb{P}er_h$ of all triples x,y,z satisfying $x^2+y^2+z^2>0$. Let M be a hyperkähler manifold of maximal holonomy, and $\mathrm{Per}: \mathrm{Teich}_h \longrightarrow \mathbb{P}er_h$ the map associating to a hyperkähler structure (M,I,J,K,g) the truple $\omega_I,\omega_J,\omega_K$. This map called **the period map for the Teichmüller space of hyperkähler structures**, and $\mathbb{P}er_h$ **the period space of hyperkähler structures**.

THEOREM: Let M be a hyperkähler manifold of maximal holonomy, and $\operatorname{Per}:\operatorname{Teich}_h\longrightarrow\operatorname{\mathbb{P}er}_h$ the period map for the Teichmüller space of hyperkähler structures. Then the period map $\operatorname{Per}:\operatorname{Teich}_h\longrightarrow\operatorname{\mathbb{P}er}_h$ is an open embedding for each connected component. Moreover, its image is the set of all spaces $W\in\operatorname{\mathbb{P}er}_h$ such that the orthogonal complement W^\perp contains no MBM classes.

Sketch of a proof: Follows immediately from Calabi-Yau theorem, global Torelli theorem for hyperkähler manifolds, and the description of the Kähler cone in terms of the MBM classes.

Torelli theorem for symplectic structures

THEOREM: Let M be a maximal holonomy hyperkähler manifold. Then the period map $Per: Teich_s \longrightarrow H^2(M,\mathbb{R})$ is an open embedding on the set of all standard symplectic structures, and its image is the set of all cohomology classes v such that q(v,v)>0.

Proof. Step 1: Let P: Teich $_h \longrightarrow$ Teich $_s$ be the forgetful map putting $\omega_I, \omega_J, \omega_K$ to ω_I . Calabi-Yau implies that P is surjective. Indeed, any Kähler form can be deformed to a Ricci-flat Kähler form in the same cohomology class.

Step 2: From Torelli theorem for hyperkähler structures it follows that the fiber $P^{-1}(\omega)$ of P is the space of pairs $x,y\in H^2(M)$ satisfying $x^2=y^2=\omega^2>0$, such that the space $\langle \omega,x,y\rangle^{\perp}$ contains no MBM classes.

Step 3: Since the fibers of P are complements to subsets of codimension 2, they are connected. By Moser's theorem, for each $(M, \omega_I, \omega_J, \omega_K) \in P^{-1}(\omega)$ the symplectic forms ω_I are diffeomorphic.

Torelli theorem for symplectic structures (2)

THEOREM: Let M be a maximal holonomy hyperkähler manifold. Then the period map Per: $Teich_s \longrightarrow H^2(M,\mathbb{R})$ is an open embedding on the set of all standard symplectic structures, and its image is the set of all cohomology classes v such that q(v,v)>0.

Step 4: Consider the diagram

$$\begin{array}{cccc} \operatorname{Teich}_h & \xrightarrow{P} & \operatorname{Teich}_s \\ & & & & & \\ & & & & & \\ |\operatorname{Per}_h & & & & |\operatorname{Per}_s| & \\ |\{x,y,z\in H^2(M)|x^2=y^2=z^2>0,\\ & & & & \\ \langle x,y,z\rangle^\perp \text{ contains no MBM classes} \} & \longrightarrow & \{x\in H^2(M)|x^2>0\} \end{array}$$

Step 3 implies that the arrow Per_s on the above diagram is injective. The rest of the arrows are surjective as shown, hence Per_s is also surjective.

Ergodicity of mapping class group action

THEOREM: (V., 2009)

Let M be a maximal holonomy hyperkähler manifold. Then the image of the mapping class group Γ in $O(H^2(M,\mathbb{Z}))$ has finite index.

COROLLARY: \(\text{ acts on Teich}_s \) with dense orbits.

Proof: We use a theorem of Calvin Moore:

THEOREM: (Calvin C. Moore, 1966) Let Γ be a lattice in a non-compact simple Lie group G with finite center, and $H \subset G$ a non-compact semisimple Lie subgroup. Then the left action of Γ on G/H is ergodic.

Applying this theorem to Γ inside $G = SO(H^2(M, \mathbb{R}), q)$ and H the stabilizer of $\omega \in H^2(M, \mathbb{R})$, we obtain that action of Γ on Teich $_s \subset H^2(M, \mathbb{R})$ is ergodic, hence has dense orbits.

QUESTION: The Teichmüller space of standard symplectic structures on K3 is Hausdorff, as shown above. Are there any non-Hausdorff non-standard symplectic structures in the same connected component of Teich $_s$?