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Prologue

Let k be a field, A∈Matn×n(k). The characteristic polynomial pA(t)=det[t1I−A].

1. Suppose pA(t) =
∏

pj(t), where {pj(t)} are coprime polynomials.

Then A
conjug .∼ ⊕Aj , with pAj (t) = pj(t). i.e. UAU−1 = ⊕Aj .

2. If k = k̄ then pA(t) splits into (powers of) linear factors. And A admits the
Jordan form (by conjugation).

This is the case of “constant" matrices. What about the “matrices of functions"?

A ∈ Matm×n(R), m ≤ n, for a (commutative, unital) ring R.
e.g. R = k[x1, . . . , xp], R = k[[x1, . . . , xp]], R = C∞(U), for an open U ⊆ Rp, . . .

The left-right equivalence: A l.r .∼ UAV−1, with U ∈ GL(m,R), V ∈ GL(n,R).
(This is much weaker than the conjugation.)
When is A equivalent to a (block-) diagonal matrix?
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Smith normal form
Theorem: Any matrix over a principal ideal domain (PID) admits the diagonal
reduction.

i.e. if R is PID and A ∈ Matm×n(R) then A
l.r .∼

λ1 0 . . .
0 λ2 0 . . .
0 . . . . . . . . .

, over R.
Examples of PID: k[x ], k[[x ]], k{x}, k[x , 1

x ].
(For R = C{x} the Smith normal form is known also as Birkhoff’s theorem.)

Geometrically: Spec(R) = A1
k
, or an open subset of A1

k
, or the germ (C , o) of a

smooth curve.

Interpretation (modules and sheaves): Consider A as a morphism of free modules,

Rn A→ Rm → Coker(A)→ 0.

Thus Coker(A) ∈ mod(R). Or Coker(A) ∈ Coh(Spec(R)).
Thus the reformulation: any module (coh.sheaf) over a PID is the direct sum of
“principal modules" (each generated by one element).

Corollary: Let F ∈ Coh(P1
k

). Then F ∼= ⊕OP1(dj)⊕ (Torsion).
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“Most" rings are non-PID. e.g. k[x1, . . . , xp], k[[x1, . . . , xp]], for p ≥ 2, C∞(U). . . .
There is no Smith normal form if dim(R) > 1.

Example: A =

[
x y
z w

]
for R = k[[x , y , z ,w ]]. Here det(A) = xw − yz is

irreducible in R. Thus A is not l.r. equivalent to a diagonal matrix.
(Not even to a triangular one.)

In 1950’s-70’s there was serious activity to characterize rings over which every
matrix admits the diagonal reduction. (i.e every module decomposes) Such rings
are called “elementary divisor rings". They are all close relatives of PID’s.
In particular dim(R) = 1, and Spec(R) is close to A1 or to a germ of A1.
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What to do when dim(R) > 1?
Note: if A ∼ A1 ⊕ A2 then det(A) = det(A1) · det(A2).
Thus “most matrices" are not equivalent to block-diagonal, as det(A) ∈ R is
irreducible.

For A ∈ Matm×n(R), m ≤ n, take the ideal of maximal minors, Im(A) ⊆ R.
If A ∼ ⊕Ai then Im(A) =

∏
Imi (Ai ). Therefore a necessary condition for

block-diagonalization is the factorization of Im(A).

Def. Suppose Im(A)=
∏
Ji . A is called {Ji}-decomposable if A l.r .∼ ⊕Ai , Imi (Ai)=Ji .

Recall: A Coker(A) ∈ mod(R). Then Im(A) = Fitt0(Coker(A)), the support of
the module.
Def. Let M ∈ mod(R) and Fitt0(M) =

∏
Ji . M is called {Ji}-decomposable if

M ∼ ⊕Mi , where Fitt0(Mi ) = Ji .

Facts: •
(
A is {Ji} decomposable

)
V

(
Coker(A) is {Ji}-decomposable.

)
• If R is a local ring then also W. (Uniqueness of the minimal resolution)
• Over an arbitrary ring:(
Coker(A) is {Ji}-decomposable.

)
V

(
A is “stably"-{Ji} decomposable

)
.

i.e. A⊕ 1I ∼ ⊕Ai ⊕ 1I.
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Example 1. A =

[
y xk

x l y

]
, det(A) = y2 − xk+l ∈ k[[x , y ]]. Thus Coker(A) is a

module over V (y2 − xk+l) ⊂ (k2, o). Assume k + l ∈ 2N (reducibility). Then

A
l.r .∼

[
y−x k+l

2 0
0 y+x

k+l
2

]
? I1

[
y−x k+l

2 0
0 y+x

k+l
2

]
=(y , x

k+l
2 ). (Assume 2 ∈ k×)

I1(A) = (y , xk , x l)
??
= (y , x

k+l
2 ). If k 6= l then A is indecomposable.

Def. Ij(A) ⊆ R is the ideal of all j × j minors of A.
R = I0(A) ⊇ I1(A) ⊇ · · · ⊇ Im(A) ⊇ Im+1(A) = 0.
Fact: Ij(A) is invariant under GL(m,R)× GL(n,R)-equivalence.

Theorem
Let det(A) = f1 · f2 ∈ R. Suppose f1, f2 are coprime, not zero divisors.
1. A is stably-{fi}-decomposable iff In−1(A) ⊆ (f1, f2) ⊆ R.
2. (R local) A is {fi}-decomposable iff In−1(A) ⊆ (f1, f2) ⊆ R.

Thus in Example 1: A is decomposable iff k = l .
Example 2. Let A ∈ Mat2×2(R), with R a local ring. Suppose det(A) = f1f2,
coprime, not zero divisors. Then A is {fi}-decomposable iff
(a11, a12, a21, a22) ⊆ (f1, f2).
Note: the condition In−1(A) ⊆ (f1, f2) is simple to verify.
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Theorem
Let det(A) = f1 · f2 ∈ R. Suppose f1, f2 are coprime, not zero divisors.
1. A is stably-{fi}-decomposable iff In−1(A) ⊆ (f1,2 ) ⊆ R.
2. (R local) A is {fi}-decomposable iff In−1(A) ⊆ (f1, f2) ⊆ R.

Geometry: Let M ∈ mod(R), of projective dimension one. or M ∈ Coh(Spec(R))
Suppose Supp(M) = V (f1) ∪ V (f2) ⊂ Spec(R), hypersurfaces with no common
component. If Fitt1(M) ⊆ (f1, f2) then M ∼= M|V (f1) ⊕M|V (f2).

Corollary. Let R =k[[x , y ]], m =(x , y), A∈Matn×n(m). (Thus ord [det(A)]≥n.)
Suppose det(A) = f1 · f2, such that the curve germs V (f1),V (f2) ⊂ (k2, o) have
no common tangents. Suppose ord [det(A)]=n. Then

Coker(A) ∼= Coker(A)|V (f1) ⊕ Coker(A)|V (f2).

The condition ord [det(A)]=n. means: A is a “locally maximal determinantal
representation". Also “Coker(A) is an Ulrich-maximal module".
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The graded version. Let R = ⊕d∈NRd . Suppose A is graded, ord(aij) = di + dj .
Then Coker(A) ∈ Coh(Proj(R)):

0→ ⊕jOProj(R)(−dj)
A→ ⊕jOProj(R)(dj)→ Coker(A)→ 0.

For each point x ∈ Proj(R) take an affine chart x ∈ U ⊂ Proj(R), and some local
coordinates. Get the local version, A(x) over R(x). Compare the global
decomposability, over Proj(R), to the local one, at each point of Proj(R).

Theorem
Suppose Supp(Coker(A)) = PV (f1) ∪ PV (f2) ⊂ Proj(R), hypersurfaces, no
common components. Suppose there exists a hypersurface V (g) intersecting
properly V (f1), V (f2), V (f1, f2) in Spec(R). TFAE:
• Coker(A) ∼= Coker(A)|PV (f1) ⊕ Coker(A)|PV (f2)

• Coker(A(x)) is locally decomposable for each x ∈ PV (f1) ∩ PV (f2)
• In−1(A(x)) ⊆ (f1, f2)(x) ⊆ O(Proj(R),x) for each x ∈ PV (f1) ∩ PV (f2).

Thus a graded question in dim(R), i.e. a global question in dim(R)− 1, is
reduced to many local questions in dim(R)− 1.
Example 4. Let R = k[x0, x1, x2] and A homogeneous. Thus Coker(A) is a sheaf
on the curve V (det(A)) ⊂ P2. Suppose V (det(A)) = C1 ∪ C2, no common
components. Then Coker(A) ∈ Coh(P2) decomposes iff its stalks at all the points
of C1 ∩ C2 decompose. (A bit surprising, as one could expect monodromies.)
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Remarks and Applications

Until now: A ∈ Matn×n(R). The results extend to the rectangular case, with
many technicalities.

Until now the equivalence was: A l.r .∼ UAV−1. For square matrices one wants
the conjugation, A

conjug∼ UAU−1. The conjug.decomposition problem is
“embedded" into the l.r.decomposition, by the ring extension. R  R[[t]].

Then A
conjug∼ B iff (t1I− A)

l.r .∼ (t1I− B).

Corollary
Suppose the characteristic polynomial factorizes, det[t1I− A] = f1 · f2 ∈ R[[t]],

with f1, f2 co-prime. Then A
conjug∼ A1 ⊕ A2 iff In−1(t1I− A) ⊆ (f1, f2) ⊂ R[[t]].

Example. Is A =

[
y xk

x l y

]
diagonalizable? det[t1I− A] = (t − y)2 − xk+l .

Assume k + l ∈ 2N. Compare I1(t1I− A) = (t − y , xk , x l) to (t − y , x
k+l
2 ).

Then A is diagonalizable (by conjugation) iff k = l .
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(An application to operator theory) Given a set of matrices over a field
{A(ν)}ν (the set can be infinite/uncountable). When can these matrices be
simultaneously (whatever)? e.g. simultaneous block-diagonalization.
This was long studied through 20’th century, with numerous partial criteria.

Define A :=
∑
ν xνA

(ν) ∈ Matn×n(R), R = k[{xν}]. The necessary condition:
det(A) = f1 · f2 ∈ R. Assume f1, f2 coprime. Then

{A(ν)}ν
simult. l.r .∼ {A(ν)

1 ⊕ A
(ν)
2 }ν iff In−1(A) ⊆ (f1, f2).

For block-diagonalization by congjugation take A = t1I +
∑
ν xνA

(ν).
Get a similar criterion.
(An application to representation theory) Take a group G , resp. an algebra g.
Take a finite-dimensional representation,
G

ρ→ GLn(k), g
ρ→ Matn×n(k). Thus ρ(G ), resp. ρ(g) is a set of matrices.

(possibly uncountabe)
Then ρ is decomposable iff this set is simultaneously block-diagonalizable, by
conjugation. Now this is easy to verify.
Similarly one can treat the equivalence A UAU t , for (skew-)symmetric
matrices. More generally, we get the decomposition criterion for quiver
representations.
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Theorem
Let det(A) = f1 · f2 ∈ R. Suppose f1, f2 are coprime, not zero divisors.
1. A is stably-{fi}-decomposable iff In−1(A) ⊆ (f1,2 ) ⊆ R.
2. (R local) A is {fi}-decomposable iff In−1(A) ⊆ (f1, f2) ⊆ R.

(The meaning of assumptions)
V (det(A)) ⊂ Spec(R) is the locus of points where rank(A) < n.
V (In−1(A)) ⊂ Spec(R) is the locus of points where rank(A) < n − 1.
The condition “In−1(A) ⊆ (f1, f2)” means: “corank[A] ≥ 2 at the points of
V (f1) ∩ V (f2)".
The proof.
Step 1. Reduction to the case: R is local and henselian. (Using some
commutative algebra, Tor , Ext, . . . )
Step 2. For R local and henselian one uses “linear algebra over a ring".

Thanks for your attention!
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