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The moduli space:

In algebraic geometry, a moduli space is a geomet-
ric space whose points represent algebraic-geometric
objects (curves, surfaces) of some fixed type, or iso-
morphism classes of such objects.

If we can show that a collection of interesting sur-
faces induces the structure of a geometric space, then
one can parameterize such surfaces by introducing co-
ordinates on the resulting space.

In higher dimensions, moduli of algebraic surfaces
are more difficult to construct and study.

The talk: We give a comprehensive scientific back-
ground and list of methods to ease the classification.
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Classification of surfaces: Catanese, Ku-

likov, Manetti, Moishezon-Teicher.

Let X ↪→ CPN be an embedded algebraic surface,

f : X → CP2 be a generic projection of degree n.

The branch curve of X in the plane CP2 is S.

We compute the fundamental group π1(CP2 − S),

this group induces connected components in the mod-

uli space: surfaces with the same group π1(CP2 − S)

are in the same connected component (Moishezon-

Teicher).

The ultimate goal of the classification:

The group π1(CP2 − S) is sometimes complicated

V finding new invariants which distinguish connected

components of the moduli space of surfaces (of general

type).
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The set-up

X ⊂ CPN1

f
��

degeneration
// X0 ⊂ CPN0

��

S ⊂ CP2 S0 ⊂ CP2regeneration
oo

Steps of work:

(1) Degeneration of X to X0,

(2) Projection of X0 onto CP2 to get S0.

(3) Regeneration of S0 to S.

(4) Braid monodromy technique of Moishezon-Teicher.

(5) Fundamental group of the complement of S.

(6) Fundamental group of the Galois cover of X .
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Step 1.

Take a surface X embedded in CPN1, we degenerate

X to a union of planes X0.

The surface X = CP1 × CP1 (Moishezon, Te-

icher).

1

Figure 1. X0 =
2∪
CP2.
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Figure 2. X0 =
4∪
CP2.

Explanation:

The surface CP1 × CP1 is defined by
z1z2 − 1z0z3 = 0 ↪→ CP3.

When t = 0 in z1z2 − tz0z3 = 0, we get z1z2 = 0, which is CP2 ∪ CP2.

Therefore X
degeneration−−−−−−→ X0 =

numberofplanes∪
CP2.
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The Veronese surface Vn (A., Lehman, Shwartz,

Teicher).
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Figure 3. Degeneration X0 of the Veronese V2.

The Hirzebruch surface Fk(a, b) (A., Ogata).

0

5m4m

3m2
m

1mm

31
2

Figure 4. Degeneration of the Hirzebruch F2(1, 1).
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The surface T × T (A., Teicher, Vishne).
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Figure 5. Degeneration of T × T .
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The K3 surfaces (A., Ciliberto, Miranda, Te-

icher).
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Figure 6. The (2, 2)-pillow degeneration.
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Step 2.

Projecting X0 to the projective plane CP2 to get the

branch curve S0.

Example:

X0 = the degenerated Hirzebruch surface F1(2, 2).
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Figure 7. The degenerated Hirzebruch X0.

A generic projection f0 : X0 → CP2 is the degener-

ation of f . Under f0, each of the 12 planes is mapped

isomorphically to CP2. The ramification locus R0 of

f0 is composed of points in which f0 is not isomor-

phism locally. Thus R0 is the union of the 13 inter-

section lines. Let S0 = f0(R0) be the degenerated

branch curve; it is a line arrangement, composed of

the images of the 13 lines.
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Very interesting papers.

Before we continue.....

Moishezon-Teicher 1986-1996:

(1) B. Moishezon, M. Teicher,

”Braid group techniques in complex geometry

III, Projective degeneration of V3”,

Contemporary Math. 162 (1994), p. 313-332.

(2) B. Moishezon, M. Teicher,

”Braid group techniques in complex geometry

IV, Braid monodromy of S3, the branch curve

of f3 : V3 → CP2 and applications to π1(CP2−
S3)”,

Contemporary Math. 162 (1994), p. 333-358.
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Step 3.

We regenerate the curve S0 and recover the branch

curve S.

Regeneration Rules of Moishezon-Teicher on k-points:

2-points.
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Figure 8. Regeneration of the 2-point 3.

3-points.
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Figure 9. Regeneration of the two types of 3-point.



12

6-points.

5 3
��
�

��

7 5 2
46

��

��
��

=⇒

2

2
==

==
==

==
==

==
==

==
==

==
==

==
==

==
=

4
4ZZZ

ZZZZZZZZ
ZZZZZZZZ

Z

5
5dddddddddddddddddddd

7

7�����������������������������6′
6

3
3′

Figure 10. Regeneration of the 6-point 5.
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Figure 11. Regeneration of a 4-point.

In the next regeneration step, each tangency point

regenerates to 3 cusps. Therefore S is a cuspidal curve.
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Step 4.

The braid monodromy of Moishezon-Teicher:

1. Find singularities in a curve S and take their x-

coordinates xi,

2. take ”good” points Mi next to these xi,

3. take loops around the xi at Mi,

4. lift them and project to the fiber above Mi,

5. get a motion of the intersection points of S with

the fiber over Mi.

Example: The curve y2 = x2.

M=1

(1,1)

(1,−1)

y=x

y=−x

y=x

(1,1)

y=−x

M=1

x x

(1,−1)

Figure 12. The braid monodromy.
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Proposition (Moishezon-Teicher).

Take the curve S defined by y2 = xm. Then the braid

monodromy is hm, where h is a positive half-twist.

Proof.

Take a tiny loop coming from the ”good” point 1 to

x1, denoted by x = e2πit, t ∈ [0, 1]. We lift this loop

to the curve S and get two paths:

(e2πit, e2πimt/2)

(e2πit,−e2πimt/2).
We project them onto the fiber above 1 and get two

paths:

eπimt

−eπimt.
This gives the m-th power of the motion correspond-

ing to [−1, 1]:

eπit

−eπit.
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Step 5.

We compute the group π1(CP2 − S) = ⟨Γj
∣∣ {R}⟩,

it is the fundamental group of the complement of the

branch curve S in CP2.
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Figure 13. The elements of the fundamental group.

Example: Elements in π1(CP2 − S).

Γi = Γ3Γ2Γ1Γ
−1
2 Γ−1
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Figure 14. Example of elements in the fundamental group.
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We give the Theorem of Zariski-van Kampen for cus-

pidal curves:

Theorem (Zariski-van Kampen).

Let S be a cuspidal curve of degree n, then the funda-

mental group is generated by n generators and admits

the following relations:

(1) Γi = Γi+1 for a branch point,

(2) [Γi,Γi+1] = ΓiΓi+1Γ
−1
i Γ−1

i+1 = e for a node,

(3) ⟨Γi,Γi+1⟩ = ΓiΓi+1ΓiΓ
−1
i+1Γ

−1
i Γ−1

i+1 = e for a cusp.

Example:

For the surface T ×T , the group π1(CP2−S) has 54

generators and admits around 2000 relations.

COMPLICATED!!!
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Step 6.

The group π1(CP2 − S) is relatively complicated,

therefore there is a new invariant, the fundamental

group of the Galois cover of a surface X .

Very interesting paper.

B. Moishezon, M. Teicher,

”Simply connected algebraic surfaces with positive

index”,

Inventiones Math. 89 (1987), p. 601-643.

Definition. We define the fibred product

(1 ≤ k ≤ n)

X ×f · · · ×f X︸ ︷︷ ︸
k

= {(x1, . . . , xk) ∈ Xk
∣∣ f (x1) = · · · = f (xk)}

and the extended diagonal

∆ = {(x1, . . . , xk) ∈ Xk
∣∣ xi = xj for some i ̸= j}.

The closure Xk
Gal = X ×f · · · ×f X −∆ is called the

Galois cover w.r.t. the symmetric group Sk.
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Remark. There are many Galois covers w.r.t. Sk,

k < n, but only for k = n we identify the π1(XGal)

as the needed group. The Galois cover is a minimal

smooth surface of general type.

Finding π1(XGal):

Take a canonical surjection ψ from π1(CP2 − S) to

the symmetric group Sn:

1 → π1(XGal) → π1(CP2 − S)/⟨Γ2
j⟩ → Sn → 1

The fundamental group π1(XGal) is the kernel of this

surjection (Moishezon-Teicher).
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Various Results:

X = CP1 × CP1 ↪→ CP3 :

π1(XGal) is finite and commutative, a ≥ 3, b ≥ 2.

π1(XGal) = 0, a, b relatively prime (gcd(a, b) = 1).

X = CP1 × T ↪→ CP5 :

π1(XGal) ∼= Z10, and in general, π1(XGal) ∼= Z4n−2.

X = T × T ↪→ CP8 :

π1(XGal) is nilpotent of nilpotency class 3 (there is a

central series G = H1 ≥ H2 ≥ ... ≥ Hn = e such

that each Hi is a normal subgroup of G and Hi/Hi+1

is in the center of G/Hi+1 and in our case n = 3).

X = F1(2, 2) (Hirzebruch):

π1(XGal) ∼= Z10
2 .

In general, if c = gcd(a, b) and n = 2ab + kb2, then

π1(XGal) ∼= Zn−2
c .
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The breakthrough to Coxeter and Artin

groups:

”Coxeter covers of symmetric groups”

[Rowen, Teicher, Vishne]

C(T ) is a Coxeter group defined by a graph T :

- generators si are the edges of T

- relations

s2i = e ∀i
(sisj)

2 = e if si, sj are disjoint

(sisj)
3 = e if si meets sj in a vertex

C(T ) has a natural map onto Sn, where n is the num-

ber of vertices of T .

CY (T ) is a quotient of C(T ) and includes such cases:

S3

S1 S2v

The “fork” relation is (s1s2s3s2)
2 = e, ∀v ∈ T .
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Main Theorem [RTV].

CY (T ) ∼= At,n o Sn,

where

At,n is a group which contains t copies of Zn−1,

n is the number of vertices of T,

t is the number of cycles of T.

Generators:

xrij, 1 ≤ r ≤ t, 1 ≤ i, j ≤ n.

Relations:

• xrii = e, 1 ≤ r ≤ t; 1 ≤ i ≤ n

• (xrij)−1 = xrji, 1 ≤ r ≤ t; 1 ≤ i, j ≤ n

• xrijxrjk = xrjkx
r
ij = xrik, 1 ≤ r ≤ t; 1 ≤ i, j, k ≤ n (not necessarily distinct)

• xrijxskℓ = xskℓx
r
ij, 1 ≤ r, s ≤ t; 1 ≤ i, j, k, ℓ ≤ n (distinct)

Notation: G = NoH is a semidirect product, where

N is a normal subgroup of G and H = G/N is a

quotient group.
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The connection to algebraic geometry.

Example: Take the surface T × T , where T is the

complex torus.

Projecting T ×T to CP2, we get the branch curve S.

The group π1(CP2−S) has 54 generators and admits

around 2000 relations.

We compute the quotient π1(CP2 − S)/⟨Γ2
j⟩.

The following exact sequence holds:

1 → π1(XGal) → π1(CP2 − S)/⟨Γ2
j⟩ → S18 → 1.

And we get

π1(CP2 − S)/⟨Γ2
j⟩ ∼= π1(XGal)o S18,

where π1(XGal) is nilpotent of class 3.

• In general, there is a projection of the group

CY (T ) ∼= At,n o Sn on the group

π1(CP2 − S)/⟨Γ2
j⟩ ∼= π1(XGal)o Sn, so it is pos-

sible to calculate π1(XGal) explicitly.
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Line arrangements and conic-line arrange-

ments: Yau, Fan, Rybnikov, Nazir-Yoshinaga,

Ye.

1: Line arrangements.

Goal: Classification by Zariski pairs.

Two line arrangements are a Zariski pair if both

have the same topology but the fundamental group

of their complements are different.
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Figure 15. Example of construction of a line arrangement with 11 lines with a
quintic singularity, the singularity is a point at infinity.

Results: There is a partial classification up

to 11 lines. The last work done is with Gong,

Teicher, Xu on 11 lines with quintic singularity.
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2: Conic-line arrangements.

A., Teicher, Uludağ:

Fundamental groups are easy to compute: one

generator which corresponds to the conic, com-

mutes with the other generators which correspond

to the lines.

L

L1

n

T

Q
Figure 16. One conic, one tangent line, n intersecting lines.
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A., Garber, Teicher:

Complicated group, but the result is a ”big” group

(it contains a free subgroup, generated by two or

more generators).

n
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1

L

Q

L’1 L’m

L

Figure 17. Two conics, n+m tangent lines.
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Thank you !!!

Email: meiravt@sce.ac.il

Office: Ashdod Campus, room 2017


