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The moduli space:

In algebraic geometry, a moduli space is a geomet-
ric space whose points represent algebraic-geometric
objects (curves, surfaces) of some fixed type, or iso-
morphism classes of such objects.

If we can show that a collection of interesting sur-
faces induces the structure of a geometric space, then
one can parameterize such surfaces by introducing co-
ordinates on the resulting space.

In higher dimensions, moduli of algebraic surfaces
are more difficult to construct and study:.

The talk: We give a comprehensive scientific back-
oround and list of methods to ease the classification.
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Classification of surfaces: Catanese, Ku-

likov, Manetti, Moishezon-Teicher.

Let X — CP" be an embedded algebraic surface,
f : X — CP? be a generic projection of degree n.
The branch curve of X in the plane CP? is S.

We compute the fundamental group m;(CP* — 9),
this group induces connected components in the mod-
uli space: surfaces with the same group m(CP? — S)

are in the same connected component (Moishezon-
Teicher).

The ultimate goal of the classification:
The group m(CP? — S) is sometimes complicated
= finding new invariants which distinguish connected

components of the moduli space of surfaces (of general

type).



The set-up

X ¢ CPM desenerton xo « cpMo
f | |
g C CPQ regeneration SO C (C]P)Q

Steps of work:

(1) Degeneration of X to Xy,

(2) Projection of X onto CP* to get Sp.
(3) Regeneration of Sy to S.
(
(
(

)
)
4) Braid monodromy technique of Moishezon-Teicher.
5) Fundamental group of the complement of S.

)

6) Fundamental group of the Galois cover of X.



Step 1.
Take a surface X embedded in CP, we degenerate

X to a union of planes X.

The surface X = CP! x CP! (Moishezon, Te-

icher).

2
FIGURE 1. X, = |JCP2
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FIGURE 2. X, = |JCP2
Explanation:
The surface CP! x CP! is defined by

2122 — 12023 = 0 — (CPg.

When ¢t =0 in 2122 — tzo2zz = 0, we get 2122 = 0, which is CP? U CP?.

numbero fplanes

> X = U CP~.

degeneration

Therefore X




The Veronese surface V,, (A., Lehman, Shwartz,
Teicher).

FIGURE 3. Degeneration X of the Veronese V5.

The Hirzebruch surface Fj(a,b) (A., Ogata).

FIGURE 4. Degeneration of the Hirzebruch F5(1,1).



The surface T x T (A., Teicher, Vishne).

FIGURE 5. Degeneration of T' x T'.



The K3 surfaces (A., Ciliberto,

icher).
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FIGURE 6. The (2,2)-pillow degeneration.



Step 2.
Projecting Xy to the projective plane CP? to get the

branch curve 9.

Example:
X = the degenerated Hirzebruch surface Fi(2,2).

FIGURE 7. The degenerated Hirzebruch Xj.

A generic projection fy : Xy — CP? is the degener-
ation of f. Under fj, each of the 12 planes is mapped
isomorphically to CP?. The ramification locus Ry of
fo is composed of points in which f; is not isomor-
phism locally. Thus Ry is the union of the 13 inter-
section lines. Let Sy = fo(Rpy) be the degenerated
branch curve; it is a line arrangement, composed of

the images of the 13 lines.
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Very interesting papers.

Before we continue.....

Moishezon-Teicher 1986-1996:
(1) B. Moishezon, M. Teicher,

" Braid group techniques in complexr geometry

I1I, Projective degeneration of V3",
Contemporary Math. 162 (1994), p. 313-332.

(2) B. Moishezon, M. Teicher,
" Braid group techniques in complexr geometry
IV, Braid monodromy of S3, the branch curve
of f3: V3 — CP? and applications to m(CP? —
53)”,
Contemporary Math. 162 (1994), p. 333-358.
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Step 3.
We regenerate the curve Sy and recover the branch
curve S.

Regeneration Rules of Moishezon-Teicher on k-points:

2-points.
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FIGURE 8. Regeneration of the 2-point 3.

3-points.
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FIGURE 9. Regeneration of the two types of 3-point.
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6-points.
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FIGURE 10. Regeneration of the 6-point 5.

FIGURE 11. Regeneration of a 4-point.

In the next regeneration step, each tangency point

regenerates to 3 cusps. Therefore S'is a cuspidal curve.
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Step 4.
The braid monodromy of Moishezon-Teicher:

1. Find singularities in a curve S and take their z-
coordinates x;,

2. take "good” points M; next to these z;,

3. take loops around the z; at M.

4. lift them and project to the fiber above M;,

5. get a motion of the intersection points of .S with

the fiber over M;.
2

Example: The curve y* = 22,

1.1)

(1,-1)

FiGURE 12. The braid monodromy.



Proposition (Moishezon-Teicher).
Take the curve S defined by y? = ™. Then the braid

monodromy is A", where h is a positive half-twist.

Proof.

Take a tiny loop coming from the ”"good” point 1 to
z1, denoted by x = e*™ t € [0,1]. We lift this loop
to the curve S and get two paths:

2mit _2mimt /2
(e )

, €

2mit 2mimt /2
(e )-

, —€
We project them onto the fiber above 1 and get two
paths:

em'mt

. em'mt.
This gives the m-th power of the motion correspond-
ing to [—1, 1]:

it

it
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Step 5.
We compute the group m1(CP? — S) = (T ’ {R}),

it is the fundamental group of the complement of the

branch curve S in CIP?.
M M

k I
] ] ] %
FI1GURE 13. The elements of the fundamental group.

M

Example: Elements in 7(CP? — S).
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FIGURE 14. Example of elements in the fundamental group.
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We give the Theorem of Zariski-van Kampen for cus-
pidal curves:

Theorem (Zariski-van Kampen).

Let S be a cuspidal curve of degree n, then the funda-
mental group is generated by n generators and admits

the following relations:

(1) I'; = I';41 for a branch point,
<2> [F27 FH—I] — FiFi+1FZ‘_1F-_1

i1 = e for a node,

(3) (I';, T'ia1) = Fz'Fz'+1Fz'F¢_+11FZ-_1F;+11 = e for a cusp.

Example:
For the surface T x T, the group 7 (CP* — S) has 54

generators and admits around 2000 relations.
COMPLICATED!!!

NN

O1T—00—DbO
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O

ANANAY
ANANAY

w4

—_
——



17

Step 6.
The group m;(CP* — S) is relatively complicated,

therefore there is a new invariant, the fundamental
oroup of the Galois cover of a surface X.

Very interesting paper.

B. Moishezon, M. Teicher,

" Simply connected algebraic surfaces with positive
index”

Inventiones Math. 89 (1987), p. 601-643.
Definition. We define the fibred product
(1<k<n)

= {(a1,...,2) € X | fla1) =+ = flaw)}
and the extended diagonal

A={(x1,...,2;) € X" ! x; =x; forsome ¢+ j}.

The closure X’éal = X Xy Xy X — Aiscalled the

Galois cover w.r.t. the symmetric group Sy.
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Remark. There are many Galois covers w.r.t. S,
k < n, but only for k = n we identify the m (Xqa)
as the needed group. The Galois cover is a minimal

smooth surface of general type.

Finding 7 (Xga):
Take a canonical surjection v from 7 (CP? — S) to

the symmetric group .5,,:

1 — m1(Xea) = m(CP* = 8)/(T%) — S, — 1

The fundamental group m1(Xqa) is the kernel of this

surjection (Moishezon-Teicher).
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Various Results:
X = CP! x CP! — CP? :
m1(Xqal) is finite and commutative, a > 3, b > 2.

m1(Xga) = 0, a, b relatively prime (ged(a,b) = 1).

X=CP' xT < CP°:
m1(Xgal) = ZY. and in general, m1(Xga) = 74n—2

X =TxT— CP®:

m1(Xgal) is nilpotent of nilpotency class 3 (there is a
central series G = H; > Hy > ... > H, = e such
that each H; is a normal subgroup of G and H;/H; 1

is in the center of G/H; 1 and in our case n = 3).

X = Fi(2,2) (Hirzebruch):

m(Xqa) = Z3°.

In general, if ¢ = ged(a,b) and n = 2ab + kb?, then
m(Xga) = Z"2.

ydvdvdve
ydvd7d
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The breakthrough to Coxeter and Artin

groups:

”Coxeter covers of symmetric groups”
[Rowen, Teicher, Vishne]
C(T) is a Coxeter group defined by a graph T
- generators s; are the edges of T'

- relations
st =eVi
(sis;)* = e if s;, s; are disjoint
(sis;)° = e if s; meets s; in a vertex
C(T) has a natural map onto S, where n is the num-

ber of vertices of T'.

Cy(T) is a quotient of C(T') and includes such cases:

SINY/ S2
S3

The “fork” relation is (s1895382)° =€, Yo €T.
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Main Theorem [RTV].

Cy(T) = App X Sy,
where
Ay, is a group which contains ¢ copies of Z" !,
n is the number of vertices of T,

t is the number of cycles of T.

Generators:

Ty, 1<r<t 1<i,5<n
Relations:

oxgz-:e, 1<r<t 1<i<n

T . T r o _ r
o .CEULE']k — .I'Jkl'w — CCZk? 1<r<t 1<4,j,k<n (not necessarily distinct)

.

T S _ S
® LiiTlpp = Lpylij

1<rs<t; 1<i,7,kf<n (distinct)

Notation: G = N x H is a semidirect product, where
N is a normal subgroup of G and H = G/N is a

quotient group.
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The connection to algebraic geometry.

Example: Take the surface T" x T, where 1" is the
complex torus.
Projecting T' x T to CP?, we get the branch curve S.
The group 71 (CP? — S) has 54 generators and admits
around 2000 relations.
We compute the quotient 7(CP* — )/ (I%).

The following exact sequence holds:
1 — 71 (Xa) = m(CP* = 8)/(T%) — S5 — 1.
And we get
m(CP? — 8)/(I'7) = m(Xgar) ¥ Sis,

where 71(Xqa ) is nilpotent of class 3.

e In general, there is a projection of the group
Cy(T) = Ay xS, on the group
m1(CP? — 9)/(T5) = mi(Xaar) X Sy, 80 it is pos-
sible to calculate m1(Xqa) explicitly.
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Line arrangements and conic-line arrange-
ments: Yau, Fan, Rybnikov, Nazir-Yoshinaga,
Ye.

1: Line arrangements.
Goal: Classification by Zariski pairs.
Two line arrangements are a Zariski pair if both
have the same topology but the fundamental group
of their complements are different.
6 7 8

11
10

10

3

4

/
5410 9

FiGureE 15. Example of construction of a line arrangement with 11 lines with a
quintic singularity, the singularity is a point at infinity.

Results: There is a partial classification up
to 11 lines. The last work done is with Gong,

Teicher, Xu on 11 lines with quintic singularity.
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2: Conic-line arrangements.
A., Teicher, Uludag:
Fundamental groups are easy to compute: one
generator which corresponds to the conic, com-

mutes with the other generators which correspond

to the lines.

T

L1

O

FIGURE 16. One conic, one tangent line, n intersecting lines.
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A., Garber, Teicher:
Complicated group, but the result is a " big” group
(it contains a free subgroup, generated by two or

more generators).

Ficure 17. Two conics, n + m tangent lines.
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Thank you !!!

TN
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Office: Ashdod Campus, room 2017



