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Overview

The Severi variety Vg,d ⊂ |OP2(d)| parametrizes degree-d reduced
and irreducible curves in P2 with geometric genus g. It was intro-
duced by Francesco Severi in 1920s to analyse Mg via the rational
map Vg,d 99KMg.

dimVg,d = 3d+ g − 1 and it is regular at nodal curves of geometric
genus g.

The notion of Severi variety generalizes naturally: let S be a pro-
jective surface and L a line bundle on S. The Severi variety Vg,L is
the closure of the following loci in |L|:{

[C] ∈ |L| |C is reduced and irreducible, C ∩ Ssing = ∅, pg(C) = g
}

Severi gave a proof of the irreducibility of Vg,d which contains a gap.
The correct proof is given by Harris in 1980s in characteristic zero.
The result was generalized to other rational surfaces. In particular,
Tyomkin proved the irreducibility for Hirzebruch surfaces (also in
characteristic zero), and in a recent project of Christ, Tyomkin and
the speaker, a characteristic free proof the plane case is given.
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Overview

The proof mentioned above consist of two essential steps:

To show that each irreducible component of Vg,d contains the locus
V0,d of rational curves of degree d (or the locus of certain more de-
generated curves). This is basically by induction: showing that each
component of Vg,d contains a component of Vg−1,d (or a codimension
one sublocus of curves of genus less than g).

Show that there is a unique component of Vg,d containing V0,d. This
is by a monodromy argument: the monodromy group of V0,d acts
transitively on the nodes of a general curve in V0,d.

The first step is more involved and lead to substantial progress in var-
ious directions, including Caporaso and Harris’ recursive formula of
the number of plane curves of degree d and genus g passing through
3d+ g − 1 = dimVg,d general points (the Severi degree).
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Overview

The main result

In this talk, we give a proof of the irreducibility of Vg,d that does not
involve induction process or monodromy argument, and also extend the
irreducibility to the locus in Vg,d cut out by point constraints.

For simplicity we work over K the algebraic closure of a complete dis-
crete valuation ring with characteristic zero whose residue field is also
algebraically closed. Let n = 3d+g−1 and p1, ..., pn−1 be general points
in P2.

Theorem(Christ-He-Tyomkin)

The sublocus in Vg,d consisting of curves passing through p1, ..., pn−1 is
irreducible.
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Basic tropical geometry

The tropicalization map

Let Tn = (K∗)n be the algebraic torus. We define Trop: Tn → Rn by

(x1, ..., xn)→ (−val(x1), ...,−val(xn)).

For a closed subvariety X of Tn, trop(X) is a tropical variety, i.e. a
(pure dimensional) rational weighted balanced polyhedral complex. Its
dimension is dim(X).

Example (The tropicalization of X = {x+ y + 1 = 0} ⊂ T 2)

(0,−1)(−1, 0)

(1, 1)

O

weight 1

weight 1

weight 1

1 · (0,−1) + 1 · (−1, 0) + 1 · (1, 1) = 0
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Basic tropical geometry

Tropical intersection theory

Stable intersection

For two tropical varieties V1, V2 ⊂ Rn, one can construct the stable in-
tersection V1 • V2 of V1 and V2 such that:

V1 • V2 is a tropical variety which is also a subcomplex of V1 ∩ V2,
its codimension in Rn is codimV1 + codimV2;

If τ is a face of V1 ∩ V2 along which V1 intersects V2 properly, i.e. τ
is maximal and codimτ = codimV1 + codimV2, then τ ⊂ V1 • V2.

Example

(1, 0)

O

trop(x+ y + 1 = 0)trop
(
y = x2

)
(1, 2)

2O
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Basic tropical geometry

The tropical lifting theorem (Osserman-Payne)

Let X,X ′ ⊂ Tn. Assume that trop(X) and trop(X ′) intersect properly
along a face τ of trop(X)∩trop(X ′). Then τ is contained in trop(X∩X ′)
and

i(τ ; trop(X) • trop(X ′)) =
∑
Z

i(Z;X •X ′)mtrop(Z)(τ)

where the summation is over all irreducible components Z of X ∩X ′.

The theorem can be generalized to intersecting more than 2 subvarieties.

Example

trop(x+ y + 1 = 0)

trop
(
y = x2

)
2O

1

1
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Tropicalizing the Severi variety

Tropicalizing the Severi variety

We have a natural inclusion Vg,d ⊂ PN = |OP2(d)| where N = d(d+3)
2 .

Let TN be the maximal torus in PN consisting of points with non-zero
coordinates. Pick general points p1, ..., pn in T 2 ⊂ P2 tropicalizing to n
general points q1, ..., qn ⊂ R2. Let Hi be the hyperplane in PN cut out
by passing through pi. Then the Severi variety (with point constraints)
is Vg,d ∩H1 ∩ · · · ∩Hn−1.

Denote V ◦g,d = Vg,d ∩ TN and H◦i = Hi ∩ TN . We want to calculate
trop(V ◦g,d) • trop(H◦1 ) • · · · • trop(H◦n−1).

Each point in RN = RN+1/R · (1, ..., 1) defines a degree d tropical
curve in R2;

trop(H◦i ) consists of points in RN defining tropical plane curves
passing through qi.
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Tropicalizing the Severi variety

Calculate trop(V ◦g,d) • trop(H
◦
1) • · · · • trop(H◦n−1)

Mikhalkin’s Correspondence theorem (Mikhalkin; Nishinou, Shustin, Tyomkin, etc.)

For each degree-d and genus-g tropical plane curve Γ passing through all
{qi}1≤i≤n there are mult(Γ) distinct curves in Vg,d passing through all
pi whose tropicalization is Γ. Here mult(Γ) is the product of the twice
areas of all triangles in the dual subdivision of Γ.

Example

A degree-3 tropical curve with genus 0 and multiplicity 4.
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Tropicalizing the Severi variety

The main idea

Let Γ be a tropical curve passing through all qi’s such that mult(Γ) = 1.
Then there is a unique point w ∈ RN whose corresponding tropical curve
is Γ and trop(V ◦g,d) intersects transversely with {trop(H◦i )}i≤n along w.

It follows from Mikhalkin’s theorem and tropical lifting theorem that

i(w; trop(V ◦g,d) • trop(H◦1 ) • · · · • trop(H◦n)) = 1.

Let τ be a face of trop(V ◦g,d)∩ trop(H◦1 )∩ · · · ∩ trop(H◦n−1) containing w,
then

i(τ ; trop(V ◦g,d) • trop(H◦1 ) • · · · • trop(H◦n−1)) = 1.

The main idea

According to the tropical lifting theorem, it suffices to show that for any
irreducible component Z of Vg,d ∩H1 ∩ · · · ∩Hn−1, trop(Z) contains τ .
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Tropicalizing a family of curves

Parametrized tropical curves

An abstract tropical curve is a metric graph Γ = (G, `) where G is a
(connected) graph with legs, and ` : E(G)→ R>0 is the length function.

*In general, tropical curves are equipped with a weight function g : V (G)→ Z≥0
which is considered as the genus of each vertex. We assume that the weights
are zero for simplicity in this talk.

Parametrized tropical curves

A parametrized (plane) tropical curve is a pair (Γ, h), where Γ is an abstract
tropical curve, and h : Γ→ R2 is a map such that:

for any edge e ∈ E(G), the restriction h|e is an integral affine function;

(Balancing condition) for any vertex v ∈ V (G) we have
∑

~e∈Star(v)
∂h
∂~e = 0.
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Tropicalizing a family of curves

Example

An example of parametrized tropical curve with degree 3 and genus 0.
The slopes are equal to the primitive vectors on the image of each edge.
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Tropicalizing a family of curves

Floor decomposed tropical curves

A parametrized tropical curve (Γ, h) is called floor decomposed if for any
edge e of Γ, the slope ∂h

∂~e is either (±1, ∗) or (0, ∗). In other words the
edges in its dual subdivision has vertical length at most one.

If the image of a non-contracted edge (resp. leg) is vertical, then the
edge (resp. leg) is called an elevator. After removing the interior of all
elevators in Γ, we are left with a disconnected graph. The non-contracted
connected components of this graph are called the floors of Γ.
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Tropicalizing a family of curves

Tropicalizing a family of curves

Let C ⊂ P2 be an integral curve of degree d which do not contain any
orbit of P2. Let {σi} be a set of marked non-singular points of C that
contains C\T 2. Normalizing C gives a map f : Cν → P2. Let C0 be the
stable reduction of Cν and ΓC the dual graph of C0.

ΓC is an abstract tropical curve with legs corresponding to σi, and f
induces a map hC : ΓC → R2 which realizes ΓC as a parametrized tropical
curve. The edges of ΓC can be contacted by hC . A leg li corresponding
to σi is contracted by hC if and only if σi ∈ T 2. Moreover, hC(Γ) is dual
to a subdivision of the triangle (0, 0)− (0, d)− (d, 0).
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In particular, if σi ∈ T 2 then hC(li) = trop(σi).
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Tropicalizing a family of curves

The balancing theorem(Christ-He-Tyomkin)

Let Z be an irreducible component of Vg,d ∩H1 ∩ · · · ∩Hn−1. For each
[C] ∈ Z mark the point p1, ..., pn−1 as well as the points in C\T 2. Then
Λ := {(ΓC , hC)|[C] ∈ Z general} is a family of paramatrized tropical
curves such that:
(1) If (Γ, h) ∈ Λ is a tri-valent submersed tropical curve then Λ contains
certain degenerations of (Γ, h);
(2) If (Γ, h) ∈ Λ is tri-valent and submersed except for a four-valent
vertex v, then Λ contains all three deformation types of Γ such that v
becomes two three-valent vertices.

Example

e1 e2

e3

e4

e1 e2

e3

e4

e1 e2

e3

e4

e1 e2

e3

e4

v

Xiang He (HUJI) 21 / 30



Tropicalizing a family of curves

The balancing theorem(Christ-He-Tyomkin)

Let Z be an irreducible component of Vg,d ∩H1 ∩ · · · ∩Hn−1. For each
[C] ∈ Z mark the point p1, ..., pn−1 as well as the points in C\T 2. Then
Λ := {(ΓC , hC)|[C] ∈ Z general} is a family of paramatrized tropical
curves such that:
(1) If (Γ, h) ∈ Λ is a tri-valent submersed tropical curve then Λ contains
certain degenerations of (Γ, h);
(2) If (Γ, h) ∈ Λ is tri-valent and submersed except for a four-valent
vertex v, then Λ contains all three deformation types of Γ such that v
becomes two three-valent vertices.

Example

e1 e2

e3

e4

e1 e2

e3

e4

e1 e2

e3

e4

e1 e2

e3

e4

v

Xiang He (HUJI) 21 / 30



Tropicalizing a family of curves

Example
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The proof
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The proof

Recall

We take general points p1, ..., pn−1 ∈ T 2 ⊂ P2 such that qi = trop(pi) ∈
R2 is in general position. Let Hi ⊂ PN = |OP2(d)| be the locus of curves
containing pi. We want to show that for any irreducible component Z
of Vg,d ∩H1 ∩ · · · ∩Hn−1, we have trop(Z) ⊂ RN contains τ , where τ is
a face of trop(V ◦g,d) ∩ trop(H◦1 ) ∩ · · · ∩ trop(H◦n−1) containing a point w
which induces a plane tropical curve of multiplicity one.
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The proof

Strategy of the proof

Pick general p1, ..., pn ∈ P2 and qn = trop(pn) such that for any i > j
we have: y(qi) − y(qj) > λ · |(x(qi) − x(qj))| for a fixed λ >> 0. Let
[C] ∈ Z ∩Hn, then trop(C) contains all qi. Let (ΓC , hC) be the induced
parametrized tropical curve from C by marking C\T 2 and p1, ..., pn−1.
It is tri-valent, submersed, and floor decomposed; each floor contains
exaclty one contracted leg mapping to some qi and all but one elevators
contain a contracted leg that maps to some qi, where 1 ≤ i ≤ n− 1; the
image of the last elevator contains qn.

qi

qn

d = 3, g = 0, n = 8
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The proof

Strategy of the proof

Pick general p1, ..., pn ∈ P2 and qn = trop(pn) such that for any i > j
we have: y(qi) − y(qj) > λ · |(x(qi) − x(qj))| for a fixed λ >> 0. Let
[C] ∈ Z ∩Hn, then trop(C) contains all qi. Let (ΓC , hC) be the induced
parametrized tropical curve from C by marking C\T 2 and p1, ..., pn−1.
It is tri-valent, submersed, and floor decomposed; each floor contains
exaclty one contracted leg mapping to some qi and all but one elevators
contain a contracted leg that maps to some qi, where 1 ≤ i ≤ n− 1; the
image of the last elevator contains qn.

The idea

Start from any (ΓC , hC) as above (in particular, h(Γ) can be of multi-
plicity one). We show that one can get a fixed parametrized tropical
curve via (small) deformation and degeneration, which is contained in
Λ := {(ΓC′ , hC′)|[C ′] ∈ Z} by the balancing theorem. Since the process
is revertable, Λ (which dominates trop(Z) ⊂ RN ) contains a family of
multiplicity-one tropical curves.
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The proof

Step 1

To get a parametrized curve without self-intersections

qn

qi

Step 2

To get a parametrized curve without self-intersections such that “the
genus is concentrated on the bottom” and “the weights of elevators on
the same floor are concentrated on the right side”.
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The proof
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The proof

Further Directions

Almost the same argument works for Hirzebruch surfaces.

Also works for certain toric surfaces associated to an h-transverse
polygon (the primitive vector on each edge is of the form (∗, 0) or
(∗,±1)), provided the existence of multiplicity-one tropical curves
with respect to given genus and complete linear system.
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The proof

Thank You!
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