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The gluing result

Here is a minimalist statement:

Theorem (ACGS 2020)

The evaluation maps M̃(X , τ)→ X n of the moduli stack M̃(X , τ) of
stable marked punctured curves of type τ in a log scheme X are virtually
idealized log smooth.
Given an edge of τ with splitting τ ′ we have a cartesian splitting diagram

M̃(X/B, τ) //

��

M̃(X , τ ′)

��
X // X × X

of fs log stacks with compatible virtual structure.

There is a lot I need to explain and motivate.
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Rational plane curves

Definition

Nd =#




C ⊂ P2 a rational curve,
degC = d , and
p1, . . . p3d−1 ∈ C



 .
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Kontsevich’s theorem

Definition

Nd =#




C ⊂ P2 a rational curve,
degC = d , and
p1, . . . p3d−1 ∈ C



 .

Theorem (Kontsevich)

For d > 1 we have

Nd =
∑

d = d1 + d2
d1, d2 > 0

Nd1Nd2

(
d2
1d

2
2

(
3d − 4

3d1 − 2

)
− d3

1d2

(
3d − 4

3d1 − 1

))
.

The first few numbers are

N1 = 1, N2 = 1, N3 = 12, N4 = 620, N5 = 87304.
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Kontsevich’s theorem: setup

1-parameter family C → B: fix only p1 . . . , p3d−2,
and two lines `1, `2 meeting at a point called p3d−3:

LECTURES ON GROMOV–WITTEN INVARIANTS OF ORBIFOLDS 5

q

r

p3d−2

p2

p1

ℓ1

ℓ2

1.2.3. The geometric equation. We have a cross-ratio map

B
λ−→ M0,4

C #→ CR(p1, p2, q, r)

Since points on P1 are homologically equivalent we get

degB λ−1(p1, p2|q, r) = degB λ−1(p1, q|p2, r).

1.2.4. The right hand side. Now, each curve counted in degB λ−1(p1, q|p2, r)
is of the following form:

• It has two components C1, C2 of respective degrees d1, d2 satisfying
d1 + d2 = d.

• We have p1 ∈ C1 as well as 3d1 − 2 other points among the 3d − 4
points p3, . . . p3d−2.

• We have p2 ∈ C2 as well as the remaining 3d2 − 2 points from
p3, . . . p3d−2.

• We select one point z ∈ C1 ∩ C2. where the two abstract curves are
attached.

• We mark one point q ∈ C1 ∩ ℓ1 and one point r ∈ C2 ∩ ℓ2.

We choose q among C ∩ `1, and r among C ∩ `2.
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Kontsevich’s theorem: preview

The equation

Nd =
∑

d = d1 + d2
d1, d2 > 0

Nd1Nd2

(
d2
1d

2
2

( 3d−4
3d1−2

)
− d3

1d2
( 3d−4
3d1−1

))
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q

r

p3d−2

p2

p1

ℓ1

ℓ2

1.2.3. The geometric equation. We have a cross-ratio map

B
λ−→ M0,4

C #→ CR(p1, p2, q, r)

Since points on P1 are homologically equivalent we get

degB λ−1(p1, p2|q, r) = degB λ−1(p1, q|p2, r).

1.2.4. The right hand side. Now, each curve counted in degB λ−1(p1, q|p2, r)
is of the following form:

• It has two components C1, C2 of respective degrees d1, d2 satisfying
d1 + d2 = d.

• We have p1 ∈ C1 as well as 3d1 − 2 other points among the 3d − 4
points p3, . . . p3d−2.

• We have p2 ∈ C2 as well as the remaining 3d2 − 2 points from
p3, . . . p3d−2.

• We select one point z ∈ C1 ∩ C2. where the two abstract curves are
attached.

• We mark one point q ∈ C1 ∩ ℓ1 and one point r ∈ C2 ∩ ℓ2.

translates to
degB(p1, p2|q, r) = degB(p1, q|p2, r)

coming from the cross ratio map λ : B → P1.
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Kontsevich’s theorem: computation

degB(p1, p2|q, r) = degB(p1, q|p2, r)

LECTURES ON GROMOV–WITTEN INVARIANTS OF ORBIFOLDS 7

ℓ1

ℓ2q = r = p3d−1

p2 p1

Now, each reducible curve counted in degB λ−1(p1, p2|q, r) is of the fol-
lowing form:

• It has two components C1, C2 of respective degrees d1, d2 satisfying
d1 + d2 = d.

• We have 3d1 − 1 points among the 3d − 4 points p3, . . . p3d−2 are on
C1.

• We have p1, p2 ∈ C2 as well as the remaining 3d2 − 2 points from
p3, . . . p3d−2.

• We select one point z ∈ C1 ∩ C2. where the two abstract curves are
attached.

• We mark one point q ∈ C1 ∩ ℓ1 and one point r ∈ C1 ∩ ℓ2.

ℓ1

ℓ2

r

q

z

p1 p2

C2

C1

For every choice of splitting d1 + d2 = d we have
(

3d−4
3d1−1

)
ways to choose

the set of 3d1 − 1 points on C1 from the 3d − 4 points p3, . . . p3d−2. We have
Nd1 choices for the curve C1 and Nd2 choices for C2. We have d1 · d2 choices
for z, d1 choices for q and d1 for r. This gives
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ℓ1

ℓ2

C1

C2

p1
p2

zr

q

For every choice of splitting d1 + d2 = d we have
(

3d−4
3d1−2

)
ways to choose

the set of 3d1 − 2 points on C1 from the 3d − 4 points p3, . . . p3d−2. We have
Nd1 choices for the curve C1 and Nd2 choices for C2. We have d1 · d2 choices
for z, d1 choices for q and d2 for r. This gives the term

degB λ−1(p1, q|p2, r) =
∑

d = d1 + d2

d1, d2 > 0

(
3d − 4

3d1 − 2

)
· Nd1 Nd2 · d1d2 · d1·d2.

A simple computation in deformation theory shows that each of these
curves actually occurs in a fiber of the family C → B, and it occurs exactly
once with multiplicity 1.

1.2.5. The left hand side. Curves counted in degB λ−1(p1, p2|q, r) come in
two flavors: there are irreducible curves passing through q = r = ℓ1 ∩ ℓ2 This
is precisely Nd.

Figure: Nd +
∑

d3
1d2
(
3d−4
3d1−1

)
Nd1Nd2 =

∑
d2
1d

2
2

(
3d−4
3d1−2

)
Nd1Nd2 ,

as needed! ♠
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Moduli spaces
Let M(X , τ) be the Kontsevich moduli stack of stable maps in X
with type specified by decorated graph τ = (G , h, β).
to each vertex v of G we assign a genus h(v) and a curve class β(v).
The legs are marked:
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The gluing principle on moduli spaces

Proposition

The evaluation maps M(X , τ)→ Xm are virtually smooth.
Given an edge of τ with splitting τ ′ we have a cartesian splitting diagram

M(X/B, τ) //

��

M(X , τ ′)

��
X // X × X

of stacks with compatible virtual fundamental classes.
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The gluing principle on curves

LECTURES ON GROMOV–WITTEN INVARIANTS OF ORBIFOLDS 9

The basic result, treated among other places in [30], [21], is

Theorem 1.3.3. Mg,n(X, β) is a proper Deligne–Mumford stack with pro-
jective coarse moduli space.

1.4. Natural maps. The moduli spaces come with a rich structure of maps
tying them, and X , together.

1.4.1. Evaluation. First, for any 1 ≤ i ≤ n we have natural morphisms,
called evaluation morphisms

Mg,n(X, β)
ei−→ X

(C
f→ X, p1, . . . , pn) $→ f(pi)

1.4.2. Contraction. Next, given a morphism φ : X → Y and n > m we get
an induced morphism

Mg,n(X, β) −→ Mg,m(Y, φ∗β)

(C
f→ X, p1, . . . , pn) $→ stabilization of (C

φ◦f→ Y, p1, . . . , pm).

Here in the stabilization we contract those rational components of C which
are mapped to a point by φ ◦ f and have fewer than 3 special points. This
is well defined if either φ∗β ≠ 0 or 2g − 2 + n > 0.

For instance, if n > 4 we get a morphism M0,n(X, β) → M0,4.

1.5. Boundary of moduli. Understanding the subspace of maps with de-
generate source curve C is key to Gromov–Witten theory.

1.5.1. Fixed degenerate curve. Suppose we have a degenerate curve

C1 C2

p

C = C1

p
∪C2.

So C is a fibered coproduct of two curves. By the universal property of
coproducts

Hom(C, X) = Hom(C1, X) ×
Hom(p,X)

Hom(C2, X)

= Hom(C1, X) ×
X

Hom(C2, X)

implying

Hom(C ,X ) = Hom(C1,X ) ×
Hom(p,X )

Hom(C2,X )

= Hom(C1,X ) ×
X

Hom(C2,X )

spreading out to

M(X/B, τ) //

��

M(X , τ ′)

��
X // X × X
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From gluing to quantum cohomology

Note that we relied on
X = Hom(p,X ).

One defines quantum cohomology based on the operation

〈γ1 . . . γn, ∗〉β = en+1 ∗
(
[M]virt ∩ e∗1γ1 · · · e∗nγn

)
.

Associativity is a result of gluing.
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Example: plane sections of a cubic
12 = number of rational cubics through p1, . . . , p8

More generally
12 = number of rational curves in an elliptic pencil on a rational surface
specifically
12 = number of rational plane sections of X (3) ⊂ P3 through p1, p2
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Method:
degeneration.

Pick general planes H1(p1) = H2(p2) = 0;H3

Write pencil

H1H2H3 + tX (3) = 0

To make it a normal crossings degeneration, blow up H1 and then H2.

log smooth degeneration
X

��
B
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Log geometry (K. Kato, Fontaine, Illusie; Ogus)
schemes are glued from closed subsets of affine spaces - the
standard-issue smooth spaces.

log schemes are étale glued from closed subsets of affine toric
varieties - the standard-issue log smooth spaces.
idealized log schemes are étale glued from closed subsets of monomial
subschemes of affine toric varieties - the standard-issue idealized log
smooth spaces.
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Log structures (K. Kato, Fontaine–Illusie)

a log structure is a monoid homomorphism α : M → OX

such that α∗O× → O× is an isomorphism.

Morphisms are given by natural commutative diagrams. . .

A key example is the log structure associated to an open U ⊂ X ,

where M = OX ∩ O×U .
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Idealized log structures (Ogus)

a idealized log structure is a log structure α : M → OX

along with a monoid ideal K ⊂ M,

such that α(K ) = 0 ∈ O.
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Toric and log smooth Log structures (K. Kato)
When X is a toric variety and U the torus this is a prototypical
example of a log smooth structure.
In this case the monoid is associated to the regular monomials, with
O× thrown in.

In general X is log smooth if it is étale locally toric.
A morphism X → Y is log smooth if it is étale locally a base change
of a dominant morphism of toric varieties.
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Back to example:

For each singular point bi there is a plane Hi through p1, p2 and bi

get

12 = 9 Anomaly?!?

12
?
= 9 + ~(D . . . )
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The balance

There is a unique plane through p1, p2,O.

get

12 = 9 + 1×3

What’s with this multiplicity 3? Another talk!
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Log curves

A log curve is a reduced 1-dimensional fiber of a flat log smooth
morphism.

F. Kato showed that these are the same as nodal marked curves, with
“the natural” log structure.

A punctured curve is the idealized version of the above.
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Log curves under the microscope
Say C → S a log curve, S = Spec(MS → k).

A general point of C looks like Spec(MS → k[x ]).
A node looks like Spec(M → k[x , y ]/(xy)), where

M = MS〈log x , log y〉/(log x + log y = log t), t ∈ MS .

A marked point looks like Spec(M → k[x ]) where

M = MS ⊕ N log x .
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Punctured curves under the microscope
A puncturing of a marked curve is a log structure M at a marked
point with

MS + N log x ⊆ M ( MS + Z log x .

It is an instance of an idealized log smooth scheme.
In particular the splitting of a node is a punctrured curve.
In what follow, I insist that every marking is given with a section.
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Splitting

Consider X → A1 the total space of xy = t, and

C → S given by {y = 0} → {t = 0}.
At the origin MS + N log x ( M ( MS + Z log x .

It is not a log curve, but rather a punctured curve.
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Stable punctured log maps

Fix X a nice log smooth scheme. It has a cone complex Σ(X ) with
integer lattice.

A stable punctured log map C → X is a log morphism with stable
underlying morphism of schemes.

Marked points record contact orders with divisors of X .

These are recorded by integer tangent vectors to the space Σ(X )(N).

Stable punctured log maps have “standard issue” log structure, called
minimal.

Theorem ([ACGS])

M(X , τ), the stack of minimal stable punctured log maps of type τ , is a
Deligne–Mumford stack which is finite and representable over M(X , τ).
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Prestable and cut maps (B. Parker)
There is a range of choices for the punctured structure.

For muduli of maps purposes, we use prestable structures:
It is the minimal puncturing accommodating the map.
For the purpose of gluing along sections, one can use cut curve
structures.
There is the maximal puncturing accommodating the section.
The resulting categories are equivalent.
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Tropical picture
X has a cone complex Σ(X ) with integer lattice.
C → S has cone complex Σ(C )→ Σ(S). The fiber over u ∈ Σ(S) is
a tropical curve:
Components give vertices, nodes give edges, and punctured points
give legs.
Usual marked points give infinite legs.
Truly punctured points (and cut curves) give finite legs.
A stable punctured log map gives Σ(C )→ Σ(X ), a family of tropical
curves in Σ(X ).
The sections mark the legs.
Minimality is beautifully encoded in this picture. . .
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Gluing punctured curves

Lemma

Let C ◦1 ,C
◦
2 be two cut curves with underlying curves C i , over a log scheme

W with sections W → C ◦i along the puncture.
There is a unique log structure C, log smooth over W on the nodal curve
C = C 1 ∪p C 2, with a section at the node, restricting to C ◦i . Moreover, C
has the coproduct property:

Hom(C ,X ) = Hom(C ◦1 ,X )×Hom(W ,X ) Hom(C ◦2 ,X ).

This has a slightly more involved implication in terms of pre-stable
punctured maps.
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Gluing punctured curves: moduli

This gives part of the first claim:

Theorem (ACGS 2020)

. . . The following is cartesian:

M̃(X/B, τ) //

��

M̃(X , τ ′)

��
X // X × X
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The end

Thank you for your attention
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