Tropical Enumeration of Real Curves in Toric Varieties

Hülya Argüz

Université de Versailles, France

April 27, 2020

- Correspondence theorems between algebraic curves in toric varieties and tropical curves in \mathbb{R}^n .
- Toric degenerations of toric varieties.
- Maximally degenerate curves in the central fiber and their tropicalizations.
- Lifting maximally degenerate curves to log curves
- Global tropical multiplicities of Nishinou-Siebert.
- Real log curves and their enumeration.
- Tropical Welschinger invariants
- Log Welschinger invariants

- Correspondence theorems between algebraic curves in toric varieties and tropical curves in \mathbb{R}^n .
- Toric degenerations of toric varieties.
- Maximally degenerate curves in the central fiber and their tropicalizations.
- Lifting maximally degenerate curves to log curves
- Global tropical multiplicities of Nishinou-Siebert
- Real log curves and their enumeration.
- Tropical Welschinger invariants.
- Log Welschinger invariants

- Correspondence theorems between algebraic curves in toric varieties and tropical curves in \mathbb{R}^n .
- Toric degenerations of toric varieties.
- Maximally degenerate curves in the central fiber and their tropicalizations.
- Lifting maximally degenerate curves to log curves
- Global tropical multiplicities of Nishinou–Siebert.
- Real log curves and their enumeration.
- Tropical Welschinger invariants.
- Log Welschinger invariants.

- Correspondence theorems between algebraic curves in toric varieties and tropical curves in \mathbb{R}^n .
- Toric degenerations of toric varieties.
- Maximally degenerate curves in the central fiber and their tropicalizations.
- Lifting maximally degenerate curves to log curves.
- Global tropical multiplicities of Nishinou-Siebert.
- Real log curves and their enumeration.
- Tropical Welschinger invariants.
- Log Welschinger invariants.

- Correspondence theorems between algebraic curves in toric varieties and tropical curves in \mathbb{R}^n .
- Toric degenerations of toric varieties.
- Maximally degenerate curves in the central fiber and their tropicalizations.
- Lifting maximally degenerate curves to log curves.
- Global tropical multiplicities of Nishinou-Siebert.
- Real log curves and their enumeration.
- Tropical Welschinger invariants.
- Log Welschinger invariants.

- Correspondence theorems between algebraic curves in toric varieties and tropical curves in \mathbb{R}^n .
- Toric degenerations of toric varieties.
- Maximally degenerate curves in the central fiber and their tropicalizations.
- Lifting maximally degenerate curves to log curves.
- Global tropical multiplicities of Nishinou-Siebert.
- Real log curves and their enumeration.
- Tropical Welschinger invariants.
- Log Welschinger invariants.

- Correspondence theorems between algebraic curves in toric varieties and tropical curves in \mathbb{R}^n .
- Toric degenerations of toric varieties.
- Maximally degenerate curves in the central fiber and their tropicalizations.
- Lifting maximally degenerate curves to log curves.
- Global tropical multiplicities of Nishinou-Siebert.
- Real log curves and their enumeration.
- Tropical Welschinger invariants.
- Log Welschinger invariants.

- Correspondence theorems between algebraic curves in toric varieties and tropical curves in \mathbb{R}^n .
- Toric degenerations of toric varieties.
- Maximally degenerate curves in the central fiber and their tropicalizations.
- Lifting maximally degenerate curves to log curves.
- Global tropical multiplicities of Nishinou-Siebert.
- Real log curves and their enumeration.
- Tropical Welschinger invariants.
- Log Welschinger invariants.

- An enumerative problem in \mathbb{CP}^2 : Fix $d \in \mathbb{Z}_{>0}$, and a generic set of points $\mathbf{Pt}_{3d-1}(\mathbb{CP}^2) := \{p_1, \dots, p_{3d-1}\}.$
- $N_d = \# \text{Alg. curves}$, deg. =d, g=0, matching $\mathsf{Pt}_{3d-1}(\mathbb{CP}^2)$

Theorem (Mikhalkin)

 $\mathcal{M}^{\text{trop}} = \text{Trop. curves in } \mathbb{R}^2, \text{ deg.} = d, g = 0, \text{ matching } \mathbf{Pt}_{3d-1}(\mathbb{R}^2).$ Then.

$$N_d = \sum_{\Gamma \in \mathcal{M}^{\mathrm{trop}}} \mathrm{Mult}(\Gamma)$$

where $\operatorname{Mult}^M(\Gamma)$ is given as a product of **local vertex multiplicities**.

- An enumerative problem in \mathbb{CP}^2 : Fix $d \in \mathbb{Z}_{>0}$, and a generic set of points $\mathbf{Pt}_{3d-1}(\mathbb{CP}^2) := \{p_1, \dots, p_{3d-1}\}.$
- $N_d = \# \text{Alg. curves}$, deg. =d, g=0, matching $\mathsf{Pt}_{3d-1}(\mathbb{CP}^2)$.

Theorem (Mikhalkin)

 $\mathcal{M}^{\mathrm{trop}} = \mathrm{Trop.}$ curves in \mathbb{R}^2 , deg. = d, g = 0, matching $\mathbf{Pt}_{3d-1}(\mathbb{R}^2)$. Then,

$$N_d = \sum_{\Gamma \in \mathcal{M}^{\mathrm{trop}}} \mathrm{Mult}(\Gamma)$$

where $\operatorname{Mult}^{M}(\Gamma)$ is given as a product of **local vertex multiplicities**.

- An enumerative problem in \mathbb{CP}^2 : Fix $d \in \mathbb{Z}_{>0}$, and a generic set of points $\mathbf{Pt}_{3d-1}(\mathbb{CP}^2) := \{p_1, \dots, p_{3d-1}\}.$
- $N_d = \# \text{Alg. curves}, \text{ deg.} = d, g = 0, \text{ matching } \mathbf{Pt}_{3d-1}(\mathbb{CP}^2).$

•	d	1	2	3	4	5	6	
	N_d	1	1	12	640	84000	26 ·10 ⁶	

Theorem (Mikhalkin)

 $\mathcal{M}^{\text{trop}} = \text{Trop. curves in } \mathbb{R}^2, \text{ deg.} = d, g = 0, \text{ matching } \mathbf{Pt}_{3d-1}(\mathbb{R}^2).$ Then,

$$N_d = \sum_{\Gamma \in \mathcal{M}^{\mathrm{trop}}} \mathrm{Mult}(\Gamma)$$

where $\operatorname{Mult}^{M}(\Gamma)$ is given as a product of **local vertex multiplicities**.

- An enumerative problem in \mathbb{CP}^2 : Fix $d \in \mathbb{Z}_{>0}$, and a generic set of points $\mathbf{Pt}_{3d-1}(\mathbb{CP}^2) := \{p_1, \dots, p_{3d-1}\}.$
- $N_d = \# \text{Alg. curves}, \text{ deg.} = d, g = 0, \text{ matching } \mathbf{Pt}_{3d-1}(\mathbb{CP}^2).$

•	d	1	2	3	4	5	6	
	N_d	1	1	12	640	84000	26 ·10 ⁶	

Theorem (Mikhalkin)

 $\mathcal{M}^{\mathrm{trop}} = \mathrm{Trop.}$ curves in \mathbb{R}^2 , deg. = d, g = 0, matching $\mathbf{Pt}_{3d-1}(\mathbb{R}^2)$. Then,

$$\mathcal{N}_d = \sum_{\Gamma \in \mathcal{M}^{\mathrm{trop}}} \mathrm{Mult}(\Gamma)$$

where $\operatorname{Mult}^{M}(\Gamma)$ is given as a product of **local vertex multiplicities**.

Tropical Enumerative Geometry In \mathbb{R}^n : Nishinou–Siebert

Let X_{Σ} be a toric variety of $\dim_{\mathbb{C}} = n$. Fix the following data:

- Genus: g = 0.
- Degree: Δ , a map $\Delta: M \setminus \{0\} \to \mathbb{N}$ with support contained in the union of rays of Σ . This defines the degree d of a curve in X_{Σ} .
- $\mathbf{A} = (A_1, \dots, A_\ell)$: a tuple of affine linear subspaces A_j of \mathbb{R}^n with codimension $d_j + 1$ such that $\sum_{i=1}^{\ell} d_i = (n-3)(1-g) + |\Delta|$.
- $\mathbf{P} = (P_1, \dots, P_\ell)$: a tuple of real points in the big torus of X.
- Incidences $Z_{\mathbf{A},\mathbf{P}} \in X_{\Sigma}$: defined by **A** and **P**.

Theorem (Nishinou-Siebert)

Let $\mathcal{M}^{\mathrm{trop}} = \mathrm{Trop.}$ curves in \mathbb{R}^n , deg. = d, g = 0, matching A, and $\mathcal{M}^{alg} = \{ \mathrm{Algebraic} \ \mathrm{curves} \ \mathrm{in} \ X_{\Sigma} \ \mathrm{of} \ \mathrm{degree} \ d \ \mathrm{matching} \ Z_{\mathbf{A},\mathbf{P}} \}$. Then,

$$\#\{\mathcal{M}^{alg}\} = \sum_{\Gamma \in \mathcal{M}^{\mathrm{trop}}} \mathrm{Mult}^{NS}(\Gamma)$$

where $\operatorname{Mult}^{NS}(\Gamma)$ is a **globally defined tropical multiplicity**.

Tropical Enumerative Geometry In \mathbb{R}^n : Nishinou–Siebert

Let X_{Σ} be a toric variety of $\dim_{\mathbb{C}} = n$. Fix the following data:

- Genus: g = 0.
- Degree: Δ , a map $\Delta: M \setminus \{0\} \to \mathbb{N}$ with support contained in the union of rays of Σ . This defines the degree d of a curve in X_{Σ} .
- $\mathbf{A} = (A_1, \dots, A_\ell)$: a tuple of affine linear subspaces A_j of \mathbb{R}^n with codimension $d_j + 1$ such that $\sum_{j=1}^{\ell} d_j = (n-3)(1-g) + |\Delta|$.
- $\mathbf{P} = (P_1, \dots, P_\ell)$: a tuple of real points in the big torus of X.
- Incidences $Z_{\mathbf{A},\mathbf{P}} \in X_{\Sigma}$: defined by **A** and **P**.

Theorem (Nishinou-Siebert)

Let $\mathcal{M}^{\mathrm{trop}}=\mathrm{Trop.}$ curves in \mathbb{R}^n , deg. =d,g=0, matching A, and $\mathcal{M}^{alg}=\{\mathrm{Algebraic}$ curves in X_{Σ} of degree d matching $Z_{\mathbf{A},\mathbf{P}}\}$. Then,

$$\#\{\mathcal{M}^{\textit{alg}}\} = \sum_{\Gamma \in \mathcal{M}^{\operatorname{trop}}} \operatorname{Mult}^{\textit{NS}}(\Gamma)$$

where $\operatorname{Mult}^{NS}(\Gamma)$ is a globally defined tropical multiplicity.

Algebraic curves in toric degenerations

Theorem (Nishinou-Siebert)

Every curve $(\phi: C \to X_{\Sigma}) \in \mathcal{M}^{alg}$ is obtained as a deformation of a **maximally-degenerate log curve** $\phi_0: C_0 \to X_0$ into the central fiber of a **toric degeneration** of X_{Σ} .

• A toric degeneration of X_{Σ} is a degeneration

$$\pi: \mathcal{X} \longrightarrow \mathbb{A}^1$$

where the central fiber X_0 is a **broken toric variety**, that is, a union of toric varieties glued along toric strata.

The toric degeneration constructed from ${\cal P}$

- We construct $\pi \colon \mathcal{X} \longrightarrow \mathbb{A}^1$ from the data of (Δ, \mathbf{A}) :
- Consider all tropical curves matching (Δ, \mathbf{A}) , to obtain a polyhedral decomposition \mathcal{P} of \mathbb{R}^n .
- We construct the toric fan $\Sigma_{\mathcal{X}}$ by taking the cones over cells of \mathcal{P} in $\mathbb{R}^n \times \mathbb{R}_{\geq 0}$.
- There is a map of fans $\Sigma_{\mathcal{X}} \to \Sigma_{\mathbb{A}^1}$ given by projection onto height.
- At height zero the asymptotic fan prescribes the general fiber

Figure : A degeneration of \mathbb{P}^2 into $\mathcal{X}_0 = \prod_{s} \mathbb{P}^2$

The toric degeneration constructed from ${\mathcal P}$

- We construct $\pi \colon \mathcal{X} \longrightarrow \mathbb{A}^1$ from the data of (Δ, \mathbf{A}) :
- Consider all tropical curves matching (Δ, \mathbf{A}) , to obtain a polyhedral decomposition \mathcal{P} of \mathbb{R}^n .
- We construct the toric fan $\Sigma_{\mathcal{X}}$ by taking the cones over cells of \mathcal{P} in $\mathbb{R}^n \times \mathbb{R}_{\geq 0}$.
- There is a map of fans $\Sigma_{\mathcal{X}} \to \Sigma_{\mathbb{A}^1}$ given by projection onto height.
- At height zero the asymptotic fan prescribes the general fiber

Figure : A degeneration of \mathbb{P}^2 into $\mathcal{X}_0 = \prod_{\alpha} \mathbb{P}^2$

The toric degeneration constructed from ${\mathcal P}$

- We construct $\pi \colon \mathcal{X} \longrightarrow \mathbb{A}^1$ from the data of (Δ, \mathbf{A}) :
- Consider all tropical curves matching (Δ, \mathbf{A}) , to obtain a polyhedral decomposition \mathcal{P} of \mathbb{R}^n .
- We construct the toric fan $\Sigma_{\mathcal{X}}$ by taking the cones over cells of \mathcal{P} in $\mathbb{R}^n \times \mathbb{R}_{>0}$.
- There is a map of fans $\Sigma_{\mathcal{X}} \to \Sigma_{\mathbb{A}^1}$ given by projection onto height.
- At height zero the asymptotic fan prescribes the general fiber

Figure : A degeneration of \mathbb{P}^2 into $\mathcal{X}_0 = \prod_{n} \mathbb{P}^2$

The toric degeneration constructed from ${\cal P}$

- We construct $\pi \colon \mathcal{X} \longrightarrow \mathbb{A}^1$ from the data of (Δ, \mathbf{A}) :
- Consider all tropical curves matching (Δ, \mathbf{A}) , to obtain a polyhedral decomposition \mathcal{P} of \mathbb{R}^n .
- We construct the toric fan $\Sigma_{\mathcal{X}}$ by taking the cones over cells of \mathcal{P} in $\mathbb{R}^n \times \mathbb{R}_{>0}$.
- There is a map of fans $\Sigma_{\mathcal{X}} \to \Sigma_{\mathbb{A}^1}$ given by projection onto height.
- At height zero the asymptotic fan prescribes the general fiber.

Figure : A degeneration of \mathbb{P}^2 into $\mathcal{X}_0 = \prod_a \mathbb{P}^2$

The toric degeneration constructed from ${\cal P}$

- We construct $\pi \colon \mathcal{X} \longrightarrow \mathbb{A}^1$ from the data of (Δ, \mathbf{A}) :
- Consider all tropical curves matching (Δ, \mathbf{A}) , to obtain a polyhedral decomposition \mathcal{P} of \mathbb{R}^n .
- We construct the toric fan $\Sigma_{\mathcal{X}}$ by taking the cones over cells of \mathcal{P} in $\mathbb{R}^n \times \mathbb{R}_{>0}$.
- There is a map of fans $\Sigma_{\mathcal{X}} \to \Sigma_{\mathbb{A}^1}$ given by projection onto height.
- At height zero the asymptotic fan prescribes the general fiber.

Figure : A degeneration of \mathbb{P}^2 into $\mathcal{X}_0 = \coprod_4 \mathbb{P}^2$

Maximally degenerate curves in X_0

Definition

Let $\underline{\varphi}_0 \colon C_0 \to X_0 = \prod_{\nu} X_{\nu}$ be a stable map. We call $\underline{\varphi}_0$ maximally degenerate if it is

- **Torically transverse**; that is, the image is disjoint from all toric strata of codimension greater than 1.
- The **kissing condition** is satisfied: If $P \in C_0$ maps to the singular locus of X_0 , then C_0 has a node at P, and $\underline{\varphi}_0$ has the same intersection index with the two irreducible components of X_0 .
- ullet For every $v\in \mathscr{P}^{[0]}$ the projection $\mathit{C}_0 imes_{X_0}X_v o X_v$ is a line

Maximally degenerate curves in X_0

Definition

Let $\underline{\varphi}_0\colon C_0\to X_0=\prod_{v}X_v$ be a stable map. We call $\underline{\varphi}_0$ maximally degenerate if it is

- **Torically transverse**; that is, the image is disjoint from all toric strata of codimension greater than 1.
- The **kissing condition** is satisfied: If $P \in C_0$ maps to the singular locus of X_0 , then C_0 has a node at P, and $\underline{\varphi}_0$ has the same intersection index with the two irreducible components of X_0 .
- ullet For every $v\in \mathscr{P}^{[0]}$ the projection $\mathit{C}_0 imes_{X_0}X_v o X_v$ is a line

Maximally degenerate curves in X_0

Definition

Let $\underline{\varphi}_0\colon C_0\to X_0=\prod_{v}X_v$ be a stable map. We call $\underline{\varphi}_0$ maximally degenerate if it is

- **Torically transverse**; that is, the image is disjoint from all toric strata of codimension greater than 1.
- The **kissing condition** is satisfied: If $P \in C_0$ maps to the singular locus of X_0 , then C_0 has a node at P, and $\underline{\varphi}_0$ has the same intersection index with the two irreducible components of X_0 .
- For every $v \in \mathscr{P}^{[0]}$ the projection $C_0 \times_{X_0} X_v \to X_v$ is a **line**.

Tropicalization of maximally degenerate curves

Definition

The tropicalization of a maximally degenerate curve $\underline{\varphi}_0 \colon C_0 \to X_0$ is the dual intersection graph of $\underline{\varphi}_0$.

Figure : A maximally degenerate stable map $\underline{\varphi}_0:C_0\to X_0\cong\prod_4\mathbb{P}^2$, and the associated tropical curve.

Tropicalization of maximally degenerate curves

Definition

The tropicalization of a maximally degenerate curve $\underline{\varphi}_0 \colon C_0 \to X_0$ is the dual intersection graph of φ_0 .

Figure : A maximally degenerate stable map $\underline{\varphi}_0$: $C_0 \to X_0 \cong \prod_4 \mathbb{P}^2$, and the associated tropical curve.

Counts of maximally degenerate curves in X_0

Theorem (Nishinou–Siebert)

The number of maximally degenerate stable maps to X_0 with associated tropical curve (Γ, \mathbf{E}, h) equals the lattice index $\mathcal D$ of

$$\operatorname{Hom}(\Gamma^{[0]}, M) \to \prod_{E \in \Gamma^{[1]} \setminus \Gamma^{[1]}_{\infty}} M / \mathbb{Z} u_{(\partial^{-}E, E)} \times \prod_{j=1}^{\ell} M / (\mathbb{Z} u_{(\partial^{-}E, E)} + L(A_{j}))$$

$$\phi \mapsto ((\phi(\partial^{+}E) - \phi(\partial^{-}E))_{E}, (\phi(\partial^{-}E))_{j}).$$

where $\{\partial^+ E, \partial^- E\}$ is the set of vertices adjacent to E.

Counts of maximally degenerate curves in X_0

Theorem (Nishinou–Siebert)

The number of maximally degenerate stable maps to X_0 with associated tropical curve (Γ, \mathbf{E}, h) equals the lattice index $\mathcal D$ of

$$\operatorname{Hom}(\Gamma^{[0]}, M) \to \prod_{E \in \Gamma^{[1]} \setminus \Gamma^{[1]}_{\infty}} M / \mathbb{Z} u_{(\partial^{-}E, E)} \times \prod_{j=1}^{\ell} M / (\mathbb{Z} u_{(\partial^{-}E, E)} + L(A_{j}))$$

$$\phi \mapsto ((\phi(\partial^{+}E) - \phi(\partial^{-}E))_{E}, (\phi(\partial^{-}E))_{j}).$$

where $\{\partial^+ E, \partial^- E\}$ is the set of vertices adjacent to E.

Log Structures

Definition

A log structure on a scheme X is a sheaf of monoids $\mathcal M$ on X together with a homomorphism $\alpha:\mathcal M\longrightarrow (\mathcal O_X,\cdot)$ which induces an isomorphism

$$\alpha|_{\alpha^{-1}(\mathcal{O}_X^{\times})}: \alpha^{-1}(\mathcal{O}_X^{\times}) \longrightarrow \mathcal{O}_X^{\times}$$

Example (The divisorial log structure)

Let $D \subset X$ be a divisor, and $j: X \setminus D \to X$. Define $\mathcal{M}_{(X,D)} := j_*(\mathcal{O}_{X\setminus D}^\times) \cap \mathcal{O}_X$, and $\alpha_X : \mathcal{M}_{(X,D)} \hookrightarrow \mathcal{O}_X$ to be the inclusion

Example (The standard log point)

Let $X:=\operatorname{Spec}\mathbb{C}$, $\mathcal{M}_X:=\mathbb{C}^\times\oplus\mathbb{N}$, and define $\alpha_X:\mathcal{M}_X\to\mathbb{C}$ as follows:

$$\alpha_X(x,n) := \begin{cases} x & \text{if } n = 0 \\ 0 & \text{if } n \neq 0 \end{cases}$$

Log Structures

Definition

A log structure on a scheme X is a sheaf of monoids $\mathcal M$ on X together with a homomorphism $\alpha:\mathcal M\longrightarrow (\mathcal O_X,\cdot)$ which induces an isomorphism

$$\alpha|_{\alpha^{-1}(\mathcal{O}_X^{\times})}: \alpha^{-1}(\mathcal{O}_X^{\times}) \longrightarrow \mathcal{O}_X^{\times}$$

Example (The divisorial log structure)

Let $D \subset X$ be a divisor, and $j: X \setminus D \to X$. Define

 $\mathcal{M}_{(X,D)} := j_*(\mathcal{O}_{X \setminus D}^\times) \cap \mathcal{O}_X \text{, and } \alpha_X : \mathcal{M}_{(X,D)} \hookrightarrow \mathcal{O}_X \text{ to be the inclusion.}$

Example (The standard log point)

Let $X:=\operatorname{Spec}\mathbb{C},\ \mathcal{M}_X:=\mathbb{C}^{\times}\oplus\mathbb{N}$, and define $\alpha_X:\mathcal{M}_X\to\mathbb{C}$ as follows:

$$\alpha_X(x,n) := \begin{cases} x & \text{if } n = 0\\ 0 & \text{if } n \neq 0 \end{cases}$$

Log Structures

Definition

A log structure on a scheme X is a sheaf of monoids $\mathcal M$ on X together with a homomorphism $\alpha:\mathcal M\longrightarrow (\mathcal O_X,\cdot)$ which induces an isomorphism

$$\alpha|_{\alpha^{-1}(\mathcal{O}_X^{\times})}: \alpha^{-1}(\mathcal{O}_X^{\times}) \longrightarrow \mathcal{O}_X^{\times}$$

Example (The divisorial log structure)

Let $D \subset X$ be a divisor, and $j: X \setminus D \to X$. Define

 $\mathcal{M}_{(X,D)} := j_*(\mathcal{O}_{X\setminus D}^{\times}) \cap \mathcal{O}_X$, and $\alpha_X : \mathcal{M}_{(X,D)} \hookrightarrow \mathcal{O}_X$ to be the inclusion.

Example (The standard log point)

Let $X:=\operatorname{Spec}\mathbb{C}$, $\mathcal{M}_X:=\mathbb{C}^{\times}\oplus\mathbb{N}$, and define $\alpha_X:\mathcal{M}_X\to\mathbb{C}$ as follows:

$$\alpha_X(x,n) := \begin{cases} x & \text{if } n = 0 \\ 0 & \text{if } n \neq 0 \end{cases}$$

Log maps in X_0

- ullet On the total space ${\mathcal X}$ we consider the divisorial log structure ${\mathcal M}_{({\mathcal X},X_0)}.$
- Pulling back $\mathcal{M}_{(\mathcal{X},X_0)}$ to X_0 we obtain a log structure \mathcal{M}_{X_0} .

Definition

A morphism of log schemes $f:(C_0,\mathcal{M}_{C_0})\to (X_0,\mathcal{M}_{X_0})$ is called a **log** map if it fits into the following commutative diagram

where π is \log smooth.

• The log structure of log smooth curves $(C_0, \mathcal{M}_{C_0}) \to (\operatorname{Spec} \mathbb{C}, \mathbb{N} \oplus \mathbb{C}^*)$ is classified by Kato.

Log maps in X_0

- On the total space $\mathcal X$ we consider the divisorial log structure $\mathcal M_{(\mathcal X,X_0)}$.
- ullet Pulling back $\mathcal{M}_{(\mathcal{X},X_0)}$ to X_0 we obtain a log structure \mathcal{M}_{X_0} .

Definition

A morphism of log schemes $f:(C_0,\mathcal{M}_{C_0})\to (X_0,\mathcal{M}_{X_0})$ is called a **log** map if it fits into the following commutative diagram

where π is \log smooth.

• The log structure of log smooth curves $(C_0, \mathcal{M}_{C_0}) \to (\operatorname{Spec} \mathbb{C}, \mathbb{N} \oplus \mathbb{C}^*)$ is classified by Kato.

Log maps in X_0

- On the total space $\mathcal X$ we consider the divisorial log structure $\mathcal M_{(\mathcal X,X_0)}$.
- Pulling back $\mathcal{M}_{(\mathcal{X},X_0)}$ to X_0 we obtain a log structure \mathcal{M}_{X_0} .

Definition

A morphism of log schemes $f:(C_0,\mathcal{M}_{C_0})\to (X_0,\mathcal{M}_{X_0})$ is called a **log** map if it fits into the following commutative diagram

where π is \log smooth.

• The log structure of log smooth curves $(C_0, \mathcal{M}_{C_0}) \to (\operatorname{Spec} \mathbb{C}, \mathbb{N} \oplus \mathbb{C}^*)$ is classified by Kato.

Lifting maximally degenerate curves to log maps in X_0

Theorem (Nishinou–Siebert)

The number of log maps $\varphi: C_0 \to X_0$ with underlying maximally degenerate map $\varphi: C_0 \to X_0$ with associated tropicalization (Γ, \mathbf{E}, h) is

$$\prod_{E\in\Gamma^{[1]}\setminus\Gamma^{[1]}_{\infty}}w(E)\cdot\prod_{i=1}^{\ell}w(E_i)$$

Hence, the tropical multiplicity of Nishinou-Siebert is given by

$$\boxed{\operatorname{Mult}^{\mathit{NS}}(\Gamma) = \mathcal{D} \prod_{E \in \Gamma^{[1]} \setminus \Gamma_{\infty}^{[1]}} w(E) \cdot \prod_{i=1}^{\ell} w(E_i)}$$

Real maximally degenerate curves in X_0

- A real structure on a scheme X over $\mathbb C$ is an anti-holomorphic involution $\iota\colon X\to X$ on the set of complex points of X.
- A real morphism between complex algebraic varieties with real structures (X, ι_X) and (Y, ι_Y) is a morphism $f: X \to Y$ such that $\iota_Y \circ f = f \circ \iota_X$ as morphisms of R-schemes.

Theorem

The number of **real** maximally degenerate stable maps to X_0 with associated tropical curve (Γ, \mathbf{E}, h) equals the **twisted real lattice index** $\mathcal{D}^{\mathbb{R}}$ of

$$\operatorname{Hom}(\Gamma^{[0]}, M) \to \prod_{E \in \Gamma^{[1]} \setminus \Gamma^{[1]}_{\infty}} M / \mathbb{Z} u_{(\partial^{-}E, E)} \times \prod_{j=1}^{\ell} M / (\mathbb{Z} u_{(\partial^{-}E, E)} + L(A_{j}))$$

$$\phi \mapsto ((\phi(\partial^{+}E) - \phi(\partial^{-}E))_{E}, (\phi(\partial^{-}E))_{j}).$$

where $\{\partial^+ E, \partial^- E\}$ is the set of vertices adjacent to E.

The twisted real lattice index

Definition

Let $\Psi: M_1 \to M_2$ be an inclusion of lattices of finite index. Let

$$\operatorname{Coker}(\Psi) = \mathbb{Z}/_{(p_1)^{e_1}\mathbb{Z}} \times \ldots \times \mathbb{Z}/_{(p_n)^{e_n}\mathbb{Z}}$$

be the primary decomposition of the free abelian group $\operatorname{Coker}(\Psi)$. We define the *real index* of Ψ as $\mathcal{D}_{\Psi}^{\mathbb{R}} := 2^{\#\{i \mid p_i = 2\}}$.

Lemma

Let
$$\Psi_{\mathbb{R}}: M_1 \otimes_{\mathbb{Z}} \mathbb{R}^{\times} \to M_2 \otimes_{\mathbb{Z}} \mathbb{R}^{\times}$$
. Then, $\#\{\operatorname{Ker} \Psi_{\mathbb{R}}\} = \mathcal{D}_{\Psi}^{\mathbb{R}}$.

• We introduce a **twisting** which deals with the issue that the map $\Psi_{\mathbb{R}}$ is not necessarily surjective.

From maximally degenerate real curves to real log maps

Definition

Let (X, \mathcal{M}_X) be a log scheme over $\mathbb C$ with a real structure $\iota_X \colon X \to X$ on the underlying scheme. A *real structure* on (X, \mathcal{M}_X) (*lifting* ι_X) is an involution

$$\tilde{\iota}_X = (\iota_X, \iota_X^{\flat}) : (X, \mathcal{M}_X) \longrightarrow (X, \mathcal{M}_X)$$

of log schemes over $\mathbb R$ with underlying scheme-theoretic morphism ι_X .

We define real log maps and obtain the following result:

Theorem (A. Bousseau)

The number of real log maps lifting a maximally degenerate curve in X_0 , with associated tropical curve (Γ, \mathbf{E}, h) equals

$$\prod_{E \in \Gamma^{[1]} \setminus \Gamma_{\infty}^{[1]}} w^{\mathbb{R}}(E) \cdot \prod_{j=1}^{\ell} w^{\mathbb{R}}(E_j) \text{ where } w^{\mathbb{R}}(E) = 2 \text{ if } w(E) \text{ is even, and } w^{\mathbb{R}}(E) = 1 \text{ if } w(E) \text{ is odd.}$$

The higher dimensional real correspondence theorem

• For every $t \in \mathbb{A}^1(\mathbb{R}) \setminus \{0\} \simeq \mathbb{R}^{\times}$, let $M_{(g,\Delta,\mathbf{A},\mathbf{P}),t}^{\mathbb{R}-\log}$ be the set of genus g real stable maps to X_t of degree Δ and matching incidences $\mathbf{Z}_{\mathbf{A},\mathbf{P},t}$. We denote

$$\boxed{N_{(g,\Delta,\mathbf{A},\mathbf{P}),t}^{\mathbb{R}-log} := \sharp M_{(g,\Delta,\mathbf{A},\mathbf{P}),t}^{\mathbb{R}-log}}.$$

- Every real log map in $M_{(g,\Delta,\mathbf{A},\mathbf{P}),t}^{\mathbb{R}-\log}$ is obtained by a deformation of a real log map in $M_{(g,\Delta,\mathbf{A},\mathbf{P}),0}^{\mathbb{R}-\log}$.
- Let $\mathcal{T}_{g,\ell,\Delta}(\mathbf{A})$ be the set of ℓ -marked tropical curves $h\colon\Gamma\to M_\mathbb{R}$ of genus g and degree Δ and matching the tropical incidences \mathbf{A} .

Theorem (A. Bousseau)

$$N_{(g,\Delta,\mathbf{A},\mathbf{P}),t}^{\mathbb{R}-log} = \sum_{(\Gamma,\mathbf{E},h)\in\mathcal{T}_{g,\ell,\Delta}(\mathbf{A})} \prod_{E\in\Gamma^{[1]}\setminus\Gamma^{[1]}_{\infty}} w^{\mathbb{R}}(E) \cdot \prod_{j=1}^{\ell} w(E_j) \cdot \mathcal{D}^{\mathbb{R}} \,.$$

• Note that $N_{(g,\Delta,\mathbf{A},\mathbf{P}),t}^{\mathbb{R}-log}$ is not an invariant.

- A real enumerative problem: Fix $d \in \mathbb{Z}_{>0}$, and a generic set of points $\mathbf{Pt}_{3d-1}(\mathbb{RP}^2) := \{p_1, \dots, p_{3d-1}\}.$
- $N_d^{\mathbb{R}} = \# \text{Real rational curves}$, deg. =d, matching $\mathsf{Pt}_{3d-1}(\mathbb{RP}^2)$.
- The Welschinger sign is $(-1)^s$, where s is the number of solitary (elliptic) nodes.
- Let $N_d^{\mathbb{R}^+}$ denote the number of real rational curves with an even number of solitary node, and $N_d^{\mathbb{R}^-}$ the ones with an odd number of solitary nodes.

Theorem

- A real enumerative problem: Fix $d \in \mathbb{Z}_{>0}$, and a generic set of points $\mathbf{Pt}_{3d-1}(\mathbb{RP}^2) := \{p_1, \dots, p_{3d-1}\}.$
- $N_d^{\mathbb{R}} = \# \text{Real$ $rational curves}$, deg. =d, matching $\mathsf{Pt}_{3d-1}(\mathbb{RP}^2)$.
- The Welschinger sign is $(-1)^s$, where s is the number of solitary (elliptic) nodes.
- Let $N_d^{\mathbb{R}^+}$ denote the number of real rational curves with an even number of solitary node, and $N_d^{\mathbb{R}^-}$ the ones with an odd number of solitary nodes.

Theorem

- A real enumerative problem: Fix $d \in \mathbb{Z}_{>0}$, and a generic set of points $\mathbf{Pt}_{3d-1}(\mathbb{RP}^2) := \{p_1, \dots, p_{3d-1}\}.$
- $N_d^{\mathbb{R}} = \# \text{Real$ $rational curves}$, deg. =d, matching $\mathsf{Pt}_{3d-1}(\mathbb{RP}^2)$.
- The Welschinger sign is $(-1)^s$, where s is the number of solitary (elliptic) nodes.
- Let $N_d^{\mathbb{R}^+}$ denote the number of real rational curves with an even number of solitary node, and $N_d^{\mathbb{R}^-}$ the ones with an odd number of solitary nodes.

Theorem

- A real enumerative problem: Fix $d \in \mathbb{Z}_{>0}$, and a generic set of points $\mathbf{Pt}_{3d-1}(\mathbb{RP}^2) := \{p_1, \dots, p_{3d-1}\}.$
- $N_d^{\mathbb{R}} = \# \text{Real$ $rational curves}$, deg. =d, matching $\mathsf{Pt}_{3d-1}(\mathbb{RP}^2)$.
- The Welschinger sign is $(-1)^s$, where s is the number of solitary (elliptic) nodes.
- Let $N_d^{\mathbb{R}^+}$ denote the number of real rational curves with an even number of solitary node, and $N_d^{\mathbb{R}^-}$ the ones with an odd number of solitary nodes.

Theorem

- A real enumerative problem: Fix $d \in \mathbb{Z}_{>0}$, and a generic set of points $\mathbf{Pt}_{3d-1}(\mathbb{RP}^2) := \{p_1, \dots, p_{3d-1}\}.$
- $N_d^{\mathbb{R}} = \# \text{Real$ $rational curves}$, deg. =d, matching $\mathsf{Pt}_{3d-1}(\mathbb{RP}^2)$.
- The Welschinger sign is $(-1)^s$, where s is the number of solitary (elliptic) nodes.
- Let $N_d^{\mathbb{R}^+}$ denote the number of real rational curves with an even number of solitary node, and $N_d^{\mathbb{R}^-}$ the ones with an odd number of solitary nodes.

Theorem

Welschinger signs in degenerations

- ullet There are two possible types of nodes for curves in \mathcal{X}_t :
- . Nodes of curves in \mathcal{X}_0 that are preserved in the deformation.
- . Nodes that are generated during the smoothing.
- Nodes that are preserved in the deformation are captured by considering the associated tropical curve and counting integral points in the interiors of dual triangulation.
- We analyse nodes that are generated during the smoothing using log structures.

Figure: A maximally degenerate curve and its smoothing

Analysing the new nodes via log structures

- After a blow-up and base change the local equation around a point in double locus of X_0 in the total space is given by $\operatorname{Spec}\mathbb{C}[x,y,\gamma,t]/(xy-t^e)$.
- On a nghd of a nodal point $P \in C_0$ the local equation is of the form $\{z,w,t \mid z \cdot w = t^{e/\mu}\}$
- We analyse the following morphism for $c, c', d \in \mathbb{R}$:

$$\begin{array}{cccc} \mathcal{M}_{\mathcal{X},\varphi_0(P)} & \longrightarrow & \mathcal{M}_{C_0,P} \\ & x & \longmapsto & cz^{\mu} \\ & y & \longmapsto & c'w^{\mu} \\ & \gamma & \longmapsto & d(z+w-1) \\ & t & \longmapsto & t \end{array}$$

Figure: Tropical image after a shift

New nodes generated in the smoothing

Theorem (Shustin, A. Bousseau)

Let $C_0 \to X_0$ be a maximally degenerate real log curve, and let $P \in C_0$ be a nodal point corresponding to an edge E of the associated tropical curve with $w(E) = \mu$. Then, in the smoothing $\varphi : C \to X$ of φ_0 we have the following types of nodes:

- If μ is odd, then all the $\mu-1$ nodes of $\varphi(C)$ are elliptic.
- If μ is even, then there are two possibilities:
- . Either all the $\mu-1$ created nodes of $\varphi(C)$ are elliptic.
- . Or one of the nodes of $\varphi(C)$ is hyperbolic and the $\mu-2$ others form pairs of complex conjugated nodes.
- Therefore, there is no contribution to the Welschinger sign of the new nodes generated during the smoothing

New nodes generated in the smoothing

Theorem (Shustin, A. Bousseau)

Let $C_0 \to X_0$ be a maximally degenerate real log curve, and let $P \in C_0$ be a nodal point corresponding to an edge E of the associated tropical curve with $w(E) = \mu$. Then, in the smoothing $\varphi : C \to X$ of φ_0 we have the following types of nodes:

- If μ is odd, then all the $\mu-1$ nodes of $\varphi(C)$ are elliptic.
- If μ is even, then there are two possibilities:
- . Either all the $\mu-1$ created nodes of $\varphi(\mathcal{C})$ are elliptic.
- . Or one of the nodes of $\varphi(C)$ is hyperbolic and the $\mu-2$ others form pairs of complex conjugated nodes.
- Therefore, there is no contribution to the Welschinger sign of the new nodes generated during the smoothing

Tropical Welschinger signs

- Defined by Mikhalkin, Itenberg–Kharlamov–Shustin.
- For a tropical curve $(h: \Gamma \to M_{\mathbb{R}}) \in \mathcal{T}_{g,\ell,\Delta}(\mathbf{A})$, with $V \in \Gamma^{[0]}$ set

$$\operatorname{Mult}_{\mathbb{R}}(V) := (-1)^{I_{\Delta_{V}}},$$

where I_{Δ_V} is the number of integral points in the interior of Δ_V .

Define the real tropical multiplicity of a tropical curve as

$$\operatorname{Mult}_{\mathbb{R}}(h) := egin{cases} 0 & \text{if } \exists \ E \in \Gamma^{[1]} \ \text{with } w(E) \ \text{even} \\ \prod_{V} \operatorname{Mult}_{\mathbb{R}}(V) & \text{else.} \end{cases}$$

Set

$$\mathcal{W}_{(g,\Delta,\mathsf{A},\mathsf{P})}^{\mathbb{R}-trop}:=\sum_{(\mathsf{\Gamma},\mathsf{E},h)\in\mathcal{T}_{g,\ell,\Delta}(\mathsf{A})}\mathrm{Mult}_{\mathbb{R}}(h)$$

Tropical Welschinger signs

- Defined by Mikhalkin, Itenberg-Kharlamov-Shustin.
- For a tropical curve $(h: \Gamma \to M_{\mathbb{R}}) \in \mathcal{T}_{g,\ell,\Delta}(\mathbf{A})$, with $V \in \Gamma^{[0]}$ set

$$\operatorname{Mult}_{\mathbb{R}}(V) := (-1)^{I_{\Delta_V}},$$

where I_{Δ_V} is the number of integral points in the interior of Δ_V .

• Define the real tropical multiplicity of a tropical curve as

$$\operatorname{Mult}_{\mathbb{R}}(h) := \begin{cases} 0 & \text{if } \exists \ E \in \Gamma^{[1]} \text{ with } w(E) \text{ even} \\ \prod_{V} \operatorname{Mult}_{\mathbb{R}}(V) & \text{else.} \end{cases}$$

Set

$$\mathcal{W}_{(g,\Delta,\mathsf{A},\mathsf{P})}^{\mathbb{R}-trop}:=\sum_{(\mathsf{\Gamma},\mathsf{E},h)\in\mathcal{T}_{g,\ell,\Delta}(\mathsf{A})}\mathrm{Mult}_{\mathbb{R}}(h)$$

Tropical Welschinger signs

- Defined by Mikhalkin, Itenberg-Kharlamov-Shustin.
- For a tropical curve $(h: \Gamma \to M_{\mathbb{R}}) \in \mathcal{T}_{g,\ell,\Delta}(\mathbf{A})$, with $V \in \Gamma^{[0]}$ set

$$\operatorname{Mult}_{\mathbb{R}}(V) := (-1)^{I_{\Delta_V}},$$

where I_{Δ_V} is the number of integral points in the interior of Δ_V .

• Define the real tropical multiplicity of a tropical curve as

$$\operatorname{Mult}_{\mathbb{R}}(h) := \begin{cases} 0 & \text{if } \exists \ E \in \Gamma^{[1]} \text{ with } w(E) \text{ even} \\ \prod_V \operatorname{Mult}_{\mathbb{R}}(V) & \text{else.} \end{cases}$$

Set

$$\mathcal{W}_{(g,\Delta,\mathbf{A},\mathbf{P})}^{\mathbb{R}-\mathit{trop}} := \sum_{(\Gamma,\mathbf{E},h) \in \mathcal{T}_{g,\ell,\Delta}(\mathbf{A})} \operatorname{Mult}_{\mathbb{R}}(\mathit{h}) \,.$$

- The log Welschinger sign of $\varphi \colon C \to X$ is $\mathcal{W}^{\log}(\varphi) := (-1)^{m(\varphi)}$ where $m(\varphi)$ is the total number of elliptic nodes of $\varphi(C)$.
- The log Welschinger numbers are

$$\mathcal{W}_{(g,\Delta,\mathbf{A},\mathbf{P}),t}^{\mathbb{R}-log} := \sum_{arphi \in M_{(g,\Delta,\mathbf{A},\mathbf{P}),t}^{\mathbb{R}-log}} \mathcal{W}^{log}(arphi).$$

Theorem (A. Bousseau)

• For all $t \in \mathbb{A}^1(\mathbb{R}) \setminus \{0\} \simeq \mathbb{R}^{\times}$ sufficiently close to 0, we have

$$\mathcal{W}^{\mathbb{R}-log}_{(g,\Delta,\mathbf{A},\mathbf{P}),t} = \mathcal{W}^{\mathbb{R}-trop}_{(g,\Delta,\mathbf{A},\mathbf{P})}$$
 .

• For a toric del Pezzo surface $\mathcal{W}^{\mathbb{R}-log}_{(0,\Delta_d,\mathbf{A},\mathbf{P}),t}$ is independent of t and agrees with the Welschinger invariant defined symplectically.

- The log Welschinger sign of $\varphi \colon C \to X$ is $\mathcal{W}^{\log}(\varphi) := (-1)^{m(\varphi)}$ where $m(\varphi)$ is the total number of elliptic nodes of $\varphi(C)$.
- The log Welschinger numbers are

$$\mathcal{W}_{(g,\Delta,\mathbf{A},\mathbf{P}),t}^{\mathbb{R}-log} := \sum_{arphi \in M_{(g,\Delta,\mathbf{A},\mathbf{P}),t}^{\mathbb{R}-log}} \mathcal{W}^{log}(arphi).$$

Theorem (A. Bou<u>sseau)</u>

• For all $t \in \mathbb{A}^1(\mathbb{R}) \setminus \{0\} \simeq \mathbb{R}^{\times}$ sufficiently close to 0, we have

$$\mathcal{W}_{(g,\Delta,\textbf{A},\textbf{P}),t}^{\mathbb{R}-\textit{log}} = \mathcal{W}_{(g,\Delta,\textbf{A},\textbf{P})}^{\mathbb{R}-\textit{trop}}\,.$$

• For a toric del Pezzo surface $\mathcal{W}_{(0,\Delta_d,\mathbf{A},\mathbf{P}),t}^{\mathbb{R}-\log}$ is independent of t and agrees with the Welschinger invariant defined symplectically.