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Preliminaries



Definition

A real algebraic hypersurface X of degree d in the n-dimensional
projective space Pn is a non-trivial homogeneous element
P ∈ R[X0, . . . ,Xn]/R∗ of degree d , where R∗ acts by
multiplication.

One can consider the real part of X ,

RX := {[x0, . . . , xn] ∈ RPn| P([x0, . . . , xn]) = 0},

as well as its complex part,

CX := {[x0, . . . , xn] ∈ CPn| P([x0, . . . , xn]) = 0}.

We always assume our hypersurfaces to be smooth.
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Topology of real algebraic hypersurfaces

We focus on the Betti numbers of the real part

bi (RX ) := dimZ2 Hi (RX ;Z2),

with the notation Z2 := Z/2Z.



Topology of real algebraic hypersurfaces

For given degree and ambient dimension, what Betti numbers can
be achieved?

→ Constraints

→ Constructions
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Some constraints

Finer inequalities can be obtained under stricter hypotheses.

Renaudineau, Shaw (2018)

Let X be a real projective algebraic hypersurface obtained by
patchworking using a primitive triangulation. Then

bq(RX ) ≤
∑
p

hp,q(CX )

where hp,q(CX ) is the (p, q)-th Hodge number of CX .
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Some constraints

Related to the following conjecture by Viro, itself related to the
famous Ragsdale conjecture.

Viro’s conjecture

Let X be a simply-connected real projective algebraic surface. Then

b1(RX ) ≤ h1,1(CX ).



Some constraints

Guiding principle

bq(RX ) ≤
∑
p

hp,q(CX )



Asymptotic Betti numbers

We consider families {Xd}d∈N of real projective algebraic
hypersurfaces in Pn, where d is the degree of Xd , and the
asymptotic behaviour of bq(RXd) as d →∞.

Given f , g : N −→ R two functions, we use the notation

f (d)
n
≤ g(d) (respectively, f (d)

n
= g(d)) to signify that

f (d) ≤ g(d) +O(dn−1) (respectively, that
f (d) = g(d) +O(dn−1)) as d −→∞.
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Asymptotic Betti numbers

Smith-Thom inequality gives the asymptotic upper bound∑
q

bq(RXd)
n
≤ dn.

→ asymptotically maximal

We try to make the asymptotic value of {bq(RXd)}d∈N as large as
possible.
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Asymptotic Betti numbers

For any n ∈ N and q = 0, . . . , n − 1, there exists anq ∈ R>0 such
that ∑

p

hp,q(CXd)
n
= anq · dn

for any (smooth) real projective algebraic hypersurface Xd in Pn.

For all x ∈ R,

anb n−1
2

+x
√
nc =

√
6

π(n + 1)
exp

(
−6x2

)
+O

(
n−

3
2

)
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Asymptotic Betti numbers

Various combinatorial interpretations of anq :

In terms of the volume of a certain ”thick” slice of the cube [0, 1]n.

anq = 1
n!E (n, q), where E (n, q) is the number of permutations of

{1, . . . , n} in which exactly q elements are greater than the
previous element - the (n, q)-th Euler number.

Also related to B-splines and lattice paths.
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Pre-existing results

Itenberg, Viro (2007)

For any n ∈ N, there exists a family {I nd }d∈N of real projective
algebraic hypersurfaces in Pn such that

bq(RI nd )
n
= anq · dn

for q = 0, . . . , n − 1.



Goal

We try to find extreme asymptotic counterexamples to our guiding
principle

bq(RX ) ≤
∑
p

hp,q(CX )

−→ Asymptotic families {Xd}d∈N of hypersurfaces in Pn such that
bq(RXd) is asymptotically much larger than anq · dn.
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New asymptotic results

First asymptotic theorem (A.)

For any n ≥ 3 and any q = 0, . . . , n − 1, there exists bnq > anq and
an asymptotically maximal family {Y n

d }d∈N of real projective
algebraic hypersurfaces in Pn such that

bq(RY n
d )

n
≥ bnq · dn.



New asymptotic results

Second asymptotic theorem, first part (A.)

For any n ≥ 3, there exists an asymptotically maximal family
{Y +,n

d }d∈N of real projective algebraic hypersurfaces in Pn, as well
as cnq ∈ R (for every q ∈ Z), such that for q = 0, . . . , n − 1, we
have

bq(RY +,n
d )

n
= cnq · dn

and such that we have, for all x ∈ R,

cnb n−1
2

+x
√
nc =

2√
π

1√
n

exp
(
−4x2

)
+ o

(
n−

1
2

)
,

where the error term o
(
n−

1
2

)
is uniform in x .



New asymptotic results

Second asymptotic theorem, second part (A.)

For any n ≥ 3, there exists an asymptotically maximal family
{Y−,nd }d∈N of real projective algebraic hypersurfaces in Pn, as well
as dn

q ∈ R (for every q ∈ Z), such that for q = 0, . . . , n − 1, we
have

bq(RY−,nd )
n
= dn

q · dn

and such that we have, for all x ∈ R,

dn
b n−1

2
+x
√
nc =

√
20√
3π

1√
n

exp

(
−20x2

3

)
+ o

(
n−

1
2

)
,

where the error term o
(
n−

1
2

)
is uniform in x .



New asymptotic results



The construction method



Viro’s patchworking method

A method for ”gluing” together real algebraic hypersurfaces to get
more complicated hypersurfaces.
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Viro’s patchworking method

The Newton polytope ∆(P) of a polynomial
P(X ) =

∑
λ=(λ1,...,λn)∈Λ cλX

λ1
1 . . .Xλn

n , where Λ is a finite subset
of Zn and cλ ∈ R∗ for all λ ∈ Λ, is the convex hull in Rn of Λ.



Viro’s patchworking method



The ingredients

An improvement on an idea by Itenberg and Viro (see [IV]).

We start with families {X k
d }d∈N of real projective algebraic

hypersurfaces in ambient dimension k = 1, . . . , n− 1, which we call
ingredients.
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The ingredients

Pictured below are the Newton polytopes of polynomials
representing the hypersurfaces X k

d .



The main idea

We use these ingredients to define real projective algebraic
hypersurfaces in ambient dimension n − 1, which we call Ỹ n−1

d ,
then in dimension n, which we call Y n

d .



Intermediate constructions Ỹ n−1
d

Pictured below is the Newton polytope of a polynomial associated
to Ỹ 2

5 (n = 3 here).

The polynomials corresponding to the faces of dimension k = 1, 2
are the same as those defining the ingredients X k

d (up to a change
of variables).



Intermediate constructions Ỹ n−1
d



Final constructions Y n
d



Final constructions Y n
d

We suspend the previous construction to obtain something in
dimension n (n = 3 here).



Final constructions Y n
d

Pictured below is the Newton polytope of a polynomial associated
to Y 3

d (n = 3 here).



Applying the patchworking method

We choose coefficients such that the Patchworking method
applies, and such that the pieces glued together correspond to
suspensions and joins of the ingredients.
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Applying the patchworking method

Suspension



Suspensions

P(X ) ∈ R[X±1 , . . . ,X
±
n−1]w�

P(X ) + Z + Z−1 ∈
R[X±1 , . . . ,X

±
n−1,Z

±]

Each k-cycle in {P(X ) = 0} yields a k-cycle and a (k + 1)-cycle in
{P(X ) + Z + Z−1 = 0}.
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Suspensions

For negative Z .



Joins

P1(X ) ∈ R[X±1 , . . . ,X
±
m1

],

P2(Y ) ∈ R[Y±1 , . . . ,Y
±
m2

]

w�
P1(X ) + Z · P2(Y ) ∈

R[X±1 , . . . ,X
±
m1
,Y±1 , . . . ,Y

±
m2
,Z±]

Each k1-cycle in {P1(X ) = 0} and k2-cycle in {P2(Y ) = 0} yields
a (k1 + k2 + 1)-cycle in {P1(X ) + Z · P2(Y ) = 0}.
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Joins

Join of cycles



Counting cycles

Given a family of k-cycles {αt}t in the real part RX of some real
algebraic projective hypersurface X of dimension n− 1, we say that
the cycles of a family {βt}t of (n − 1− k)-cycles in the
complement of RX in the ambient space ((R∗)n, Rn or RPn) are
axes for the cycles αt if their linking numbers in the ambient space
are well-defined and verify

l(αt , βs) = δs,t .

In particular, this implies that the classes [αt ] are linearly
independent in Hk(RX ).
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Counting cycles

•We choose cycles {αt}t in the hypersurfaces RX k
d .

•Using a variant of Alexander duality, we find axes {βt}t for the
cycles {αt}t in the complement of RX k

d .

•Cycles yield new cycles {α̃t} in the suspensions and joins, hence
in RY n

d . Similarly, axes yield new axes {β̃t} for those new cycles in
the complement of RY n

d .

•This shows that the classes of the new cycles are linearly
independent in the homology of RY n

d .
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Cooking Theorem

Cooking Theorem (A.)

Let n ≥ 2. For k = 1, . . . , n − 1, let {X k
d }d∈N be a family of real

projective algebraic hypersurfaces in Pk such that X k
d is of degree

d . Suppose additionally that for k = 1, . . . , n − 1 and
i = 0, . . . , k − 1,

bi (RX k
d )

k
≥ xki · dk

for some xki ∈ R≥0. Then there exists a family {Y n
d }d∈N of real

projective algebraic hypersurfaces in Pn such that Y n
d is of degree

d and such that for i = 0, . . . , n − 1

bi (RY n
d )

n
≥ 1

n

xn−1
i + xn−1

i−1 +
n−2∑
k=1

i−1∑
j=0

xkj · xn−1−k
i−1−j

 · dn,

where xkj is set to be 0 for j 6∈ {0, . . . , k − 1}.



Cooking Theorem

bi (RY n
d )

n
≥ 1

n

xn−1
i + xn−1

i−1 +
n−2∑
k=1

i−1∑
j=0

xkj · xn−1−k
i−1−j

 · dn,

Suspension Join



Asymptotically large Betti numbers



First asymptotic result

First asymptotic theorem (A.)

For any n ≥ 3 and any q = 0, . . . , n − 1, there exists bnq > anq and
an asymptotically maximal family {Y n

d }d∈N of real projective
algebraic hypersurfaces in Pn such that

bq(RY n
d )

n
≥ bnq · dn.



Second asymptotic result

Second asymptotic theorem, first part (A.)

For any n ≥ 3, there exists an asymptotically maximal family
{Y +,n

d }d∈N of real projective algebraic hypersurfaces in Pn, as well
as cnq ∈ R (for every q ∈ Z), such that for q = 0, . . . , n − 1, we
have

bq(RY +,n
d )

n
= cnq · dn

and such that we have, for all x ∈ R,

cnb n−1
2

+x
√
nc =

2√
π

1√
n

exp
(
−4x2

)
+ o

(
n−

1
2

)
,

where the error term o
(
n−

1
2

)
is uniform in x .



Second asymptotic result

Second asymptotic theorem, second part (A.)

For any n ≥ 3, there exists an asymptotically maximal family
{Y−,nd }d∈N of real projective algebraic hypersurfaces in Pn, as well
as dn

q ∈ R (for every q ∈ Z), such that for q = 0, . . . , n − 1, we
have

bq(RY−,nd )
n
= dn

q · dn

and such that we have, for all x ∈ R,
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2
+x
√
nc =

√
20√
3π

1√
n

exp

(
−20x2

3

)
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1
2
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1
2
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is uniform in x .



A crucial ingredient

In the proofs of both asymptotic theorems, the main ingredient
used in the Cooking Theorem is a result by E. Brugallé (from
[Bru]), which yields the most extreme known asymptotic values of
b0 and b1 in ambient dimension 3.

Brugallé himself made use of a method developped by F. Bihan.
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A crucial ingredient

Brugallé (2006)

There exist asymptotically maximal families {B+
d }d∈N and

{B−d }d∈N of real projective algebraic surfaces in P3 such that

b0(RB+
d )

3
=

3

8
· d3 =

(
1

6
+

5

24

)
· d3 =

(
a3

0 +
5

24

)
· d3,

b1(RB+
d )

3
=

1

4
· d3 =

(
2

3
− 5

12

)
· d3 =

(
a3

1 −
5

12

)
· d3,

and

b0(RB−d )
3
=

1

8
· d3 =

(
1

6
− 1

24

)
· d3 =

(
a3

0 −
1

24

)
· d3,

b1(RB−d )
3
=

3

4
· d3 =

(
2

3
+

1

12

)
· d3 =

(
a3

1 +
1

12

)
· d3.



The construction yielding the second asymptotic theorem

We start with the asymptotic constructions {I nd }d∈N by Itenberg
and Viro (from [IV]) in ambient dimension n = 1 and n = 2, and
the families {B±d }d∈N by Brugallé in ambient dimension n = 3.

We proceed by induction, and use the families of real projective
algebraic hypersurfaces available in dimension less than or equal to
n − 1 as ingredients to obtain a family in dimension n using the
Cooking Theorem.
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The construction yielding the second asymptotic theorem

n = 4:
{I 1

d }d , {I 2
d }d and {B±d }d

Cooking Thm−−−−−−−−→ {Y±,4d }d

n = 5:
{I 1

d }d , {I 2
d }d , {B±d }d , {Y±,4d }d

Cooking Thm−−−−−−−−→ {Y±,5d }d

...

n + 1:

{I 1
d }d , {I 2

d }d , {B±d }d , {{Y±,kd }d}nk=4

Cooking Thm−−−−−−−−→ {Y±,n+1
d }d
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Computing the asymptotic Betti numbers

Yields the recursive formula

xni =
1

n

xn−1
i + xn−1

i−1 +
n−2∑
k=1

i−1∑
j=0

xkj · xn−1−k
i−1−j

 ,

where
bi (RY±,nd )

n
= xni · dn.

How to compute the asymptotic behavior of the xni ?
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Computing the asymptotic Betti numbers

After a change of variables, the formula becomes

x̃n+1
i =

1

n

n∑
k=1

∑
j∈Z

x̃kj · x̃n+1−k
i−j .

This can be interpreted in terms of discrete random variables,
whose probability density functions are the x̃ki .



Computing the asymptotic Betti numbers

After a change of variables, the formula becomes

x̃n+1
i =

1

n

n∑
k=1

∑
j∈Z

x̃kj · x̃n+1−k
i−j .

This can be interpreted in terms of discrete random variables,
whose probability density functions are the x̃ki .



Computing the asymptotic Betti numbers

{x̃kj }j∈Z  random variable X̃ k .

∑
j∈Z x̃

k
j · x̃

n+1−k
i−j  sum of random variables X̃ k and X̃ n+1−k .

1
n

∑n
k=1

∑
j∈Z x̃

k
j · x̃

n+1−k
i−j  sum of X̃K and X̃ n−1−K , where K is

a uniform random variable on {1, . . . , n}.
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What now?

- Generalize to more general ambient toric varieties and to
complete intersections.

- Find new low-dimensional asymptotic families (in particular,
families obtained using the combinatorial patchworking) to which
we could recursively apply the Cooking Theorem.

- Cleverer ways of applying the Cooking Theorem.
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