Families of real projective algebraic hypersurfaces with large asymptotic Betti numbers

MA-LI
 I N N O V

* Région
* îledeFrance

Table of Contents

Preliminaries

The construction method

Asymptotically large Betti numbers

Preliminaries

Definition

A real algebraic hypersurface X of degree d in the n-dimensional projective space \mathbb{P}^{n} is a non-trivial homogeneous element $P \in \mathbb{R}\left[X_{0}, \ldots, X_{n}\right] / \mathbb{R}^{*}$ of degree d, where \mathbb{R}^{*} acts by multiplication.

Definition

A real algebraic hypersurface X of degree d in the n-dimensional projective space \mathbb{P}^{n} is a non-trivial homogeneous element $P \in \mathbb{R}\left[X_{0}, \ldots, X_{n}\right] / \mathbb{R}^{*}$ of degree d, where \mathbb{R}^{*} acts by multiplication.

One can consider the real part of X,

$$
\mathbb{R} X:=\left\{\left[x_{0}, \ldots, x_{n}\right] \in \mathbb{R P}^{n} \mid P\left(\left[x_{0}, \ldots, x_{n}\right]\right)=0\right\}
$$

as well as its complex part,

$$
\mathbb{C} X:=\left\{\left[x_{0}, \ldots, x_{n}\right] \in \mathbb{C P}^{n} \mid P\left(\left[x_{0}, \ldots, x_{n}\right]\right)=0\right\}
$$

Definition

A real algebraic hypersurface X of degree d in the n-dimensional projective space \mathbb{P}^{n} is a non-trivial homogeneous element $P \in \mathbb{R}\left[X_{0}, \ldots, X_{n}\right] / \mathbb{R}^{*}$ of degree d, where \mathbb{R}^{*} acts by multiplication.

One can consider the real part of X,

$$
\mathbb{R} X:=\left\{\left[x_{0}, \ldots, x_{n}\right] \in \mathbb{R P}^{n} \mid P\left(\left[x_{0}, \ldots, x_{n}\right]\right)=0\right\}
$$

as well as its complex part,

$$
\mathbb{C} X:=\left\{\left[x_{0}, \ldots, x_{n}\right] \in \mathbb{C P}^{n} \mid P\left(\left[x_{0}, \ldots, x_{n}\right]\right)=0\right\}
$$

We always assume our hypersurfaces to be smooth.

Topology of real algebraic hypersurfaces

We focus on the Betti numbers of the real part

$$
b_{i}(\mathbb{R} X):=\operatorname{dim}_{\mathbb{Z}_{2}} H_{i}\left(\mathbb{R} X ; \mathbb{Z}_{2}\right),
$$

with the notation $\mathbb{Z}_{2}:=\mathbb{Z} / 2 \mathbb{Z}$.

Topology of real algebraic hypersurfaces

For given degree and ambient dimension, what Betti numbers can be achieved?

Topology of real algebraic hypersurfaces

For given degree and ambient dimension, what Betti numbers can be achieved?
\rightarrow Constraints

Topology of real algebraic hypersurfaces

For given degree and ambient dimension, what Betti numbers can be achieved?
\rightarrow Constraints
\rightarrow Constructions

Some constraints

Smith-Thom inequality
Let X be a real projective algebraic hypersurface. Then

$$
\sum_{q} b_{q}(\mathbb{R} X) \leq \sum_{q} b_{q}(\mathbb{C} X)
$$

Some constraints

Smith-Thom inequality

Let X be a real projective algebraic hypersurface. Then

$$
\sum_{q} b_{q}(\mathbb{R} X) \leq \sum_{q} b_{q}(\mathbb{C} X)
$$

\rightarrow maximal

Some constraints

Finer inequalities can be obtained under stricter hypotheses.

Some constraints

Finer inequalities can be obtained under stricter hypotheses.

Renaudineau, Shaw (2018)

Let X be a real projective algebraic hypersurface obtained by patchworking using a primitive triangulation. Then

$$
b_{q}(\mathbb{R} X) \leq \sum_{p} h^{p, q}(\mathbb{C} X)
$$

where $h^{p, q}(\mathbb{C} X)$ is the (p, q)-th Hodge number of $\mathbb{C} X$.

Some constraints

Related to the following conjecture by Viro, itself related to the famous Ragsdale conjecture.

Viro's conjecture

Let X be a simply-connected real projective algebraic surface. Then

$$
b_{1}(\mathbb{R} X) \leq h^{1,1}(\mathbb{C} X)
$$

Some constraints

Guiding principle

$$
b_{q}(\mathbb{R} X) \leq \sum_{p} h^{p, q}(\mathbb{C} X)
$$

Asymptotic Betti numbers

We consider families $\left\{X_{d}\right\}_{d \in \mathbb{N}}$ of real projective algebraic hypersurfaces in \mathbb{P}^{n}, where d is the degree of X_{d}, and the asymptotic behaviour of $b_{q}\left(\mathbb{R} X_{d}\right)$ as $d \rightarrow \infty$.

Asymptotic Betti numbers

We consider families $\left\{X_{d}\right\}_{d \in \mathbb{N}}$ of real projective algebraic hypersurfaces in \mathbb{P}^{n}, where d is the degree of X_{d}, and the asymptotic behaviour of $b_{q}\left(\mathbb{R} X_{d}\right)$ as $d \rightarrow \infty$.

Given $f, g: \mathbb{N} \longrightarrow \mathbb{R}$ two functions, we use the notation $f(d) \stackrel{n}{\leq} g(d)$ (respectively, $f(d) \stackrel{n}{=} g(d))$ to signify that $f(d) \leq g(d)+\mathcal{O}\left(d^{n-1}\right)$ (respectively, that $\left.f(d)=g(d)+\mathcal{O}\left(d^{n-1}\right)\right)$ as $d \longrightarrow \infty$.

Asymptotic Betti numbers

Smith-Thom inequality gives the asymptotic upper bound

$$
\sum_{q} b_{q}\left(\mathbb{R} X_{d}\right) \stackrel{n}{\leq} d^{n}
$$

Asymptotic Betti numbers

Smith-Thom inequality gives the asymptotic upper bound

$$
\sum_{q} b_{q}\left(\mathbb{R} X_{d}\right) \leq d^{n}
$$

\rightarrow asymptotically maximal

Asymptotic Betti numbers

Smith-Thom inequality gives the asymptotic upper bound

$$
\sum_{q} b_{q}\left(\mathbb{R} X_{d}\right){ }^{n} d^{n}
$$

\rightarrow asymptotically maximal

We try to make the asymptotic value of $\left\{b_{q}\left(\mathbb{R} X_{d}\right)\right\}_{d \in \mathbb{N}}$ as large as possible.

Asymptotic Betti numbers

For any $n \in \mathbb{N}$ and $q=0, \ldots, n-1$, there exists $a_{q}^{n} \in \mathbb{R}_{>0}$ such that

$$
\sum_{p} h^{p, q}\left(\mathbb{C} X_{d}\right) \stackrel{n}{=} a_{q}^{n} \cdot d^{n}
$$

for any (smooth) real projective algebraic hypersurface X_{d} in \mathbb{P}^{n}.

Asymptotic Betti numbers

For any $n \in \mathbb{N}$ and $q=0, \ldots, n-1$, there exists $a_{q}^{n} \in \mathbb{R}_{>0}$ such that

$$
\sum_{p} h^{p, q}\left(\mathbb{C} X_{d}\right) \stackrel{n}{=} a_{q}^{n} \cdot d^{n}
$$

for any (smooth) real projective algebraic hypersurface X_{d} in \mathbb{P}^{n}.

For all $x \in \mathbb{R}$,

$$
a_{\left\lfloor\frac{n-1}{2}+x \sqrt{n}\right\rfloor}^{n}=\sqrt{\frac{6}{\pi(n+1)}} \exp \left(-6 x^{2}\right)+\mathcal{O}\left(n^{-\frac{3}{2}}\right) .
$$

Asymptotic Betti numbers

Various combinatorial interpretations of a_{q}^{n} :

Asymptotic Betti numbers

Various combinatorial interpretations of a_{q}^{n} :

In terms of the volume of a certain "thick" slice of the cube $[0,1]^{n}$.

Asymptotic Betti numbers

Various combinatorial interpretations of a_{q}^{n} :

In terms of the volume of a certain "thick" slice of the cube $[0,1]^{n}$.
$a_{q}^{n}=\frac{1}{n!} E(n, q)$, where $E(n, q)$ is the number of permutations of $\{1, \ldots, n\}$ in which exactly q elements are greater than the previous element - the (n, q)-th Euler number.

Asymptotic Betti numbers

Various combinatorial interpretations of a_{q}^{n} :

In terms of the volume of a certain "thick" slice of the cube $[0,1]^{n}$.
$a_{q}^{n}=\frac{1}{n!} E(n, q)$, where $E(n, q)$ is the number of permutations of $\{1, \ldots, n\}$ in which exactly q elements are greater than the previous element - the (n, q)-th Euler number.

Also related to B-splines and lattice paths.

Pre-existing results

Itenberg, Viro (2007)

For any $n \in \mathbb{N}$, there exists a family $\left\{I_{d}^{n}\right\}_{d \in \mathbb{N}}$ of real projective algebraic hypersurfaces in \mathbb{P}^{n} such that

$$
b_{q}\left(\mathbb{R} I_{d}^{n}\right) \stackrel{n}{=} a_{q}^{n} \cdot d^{n}
$$

for $q=0, \ldots, n-1$.

Goal

We try to find extreme asymptotic counterexamples to our guiding principle

$$
b_{q}(\mathbb{R} X) \leq \sum_{p} h^{p, q}(\mathbb{C} X)
$$

Goal

We try to find extreme asymptotic counterexamples to our guiding principle

$$
b_{q}(\mathbb{R} X) \leq \sum_{p} h^{p, q}(\mathbb{C} X)
$$

\longrightarrow Asymptotic families $\left\{X_{d}\right\}_{d \in \mathbb{N}}$ of hypersurfaces in \mathbb{P}^{n} such that $b_{q}\left(\mathbb{R} X_{d}\right)$ is asymptotically much larger than $a_{q}^{n} \cdot d^{n}$.

New asymptotic results

First asymptotic theorem (A.)
For any $n \geq 3$ and any $q=0, \ldots, n-1$, there exists $b_{q}^{n}>a_{q}^{n}$ and an asymptotically maximal family $\left\{Y_{d}^{n}\right\}_{d \in \mathbb{N}}$ of real projective algebraic hypersurfaces in \mathbb{P}^{n} such that

$$
b_{q}\left(\mathbb{R} Y_{d}^{n}\right) \geq^{n} b_{q}^{n} \cdot d^{n}
$$

New asymptotic results

Second asymptotic theorem, first part (A.)

For any $n \geq 3$, there exists an asymptotically maximal family $\left\{Y_{d}^{+, n}\right\}_{d \in \mathbb{N}}$ of real projective algebraic hypersurfaces in \mathbb{P}^{n}, as well as $c_{q}^{n} \in \mathbb{R}$ (for every $q \in \mathbb{Z}$), such that for $q=0, \ldots, n-1$, we have

$$
b_{q}\left(\mathbb{R} Y_{d}^{+, n}\right) \stackrel{n}{=} c_{q}^{n} \cdot d^{n}
$$

and such that we have, for all $x \in \mathbb{R}$,

$$
c_{\left\lfloor\frac{n-1}{2}+x \sqrt{n}\right\rfloor}^{n}=\frac{2}{\sqrt{\pi}} \frac{1}{\sqrt{n}} \exp \left(-4 x^{2}\right)+o\left(n^{-\frac{1}{2}}\right),
$$

where the error term $\circ\left(n^{-\frac{1}{2}}\right)$ is uniform in x.

New asymptotic results

Second asymptotic theorem, second part (A.)

For any $n \geq 3$, there exists an asymptotically maximal family $\left\{Y_{d}^{-, n}\right\}_{d \in \mathbb{N}}$ of real projective algebraic hypersurfaces in \mathbb{P}^{n}, as well as $d_{q}^{n} \in \mathbb{R}$ (for every $q \in \mathbb{Z}$), such that for $q=0, \ldots, n-1$, we have

$$
b_{q}\left(\mathbb{R} Y_{d}^{-, n}\right) \stackrel{n}{=} d_{q}^{n} \cdot d^{n}
$$

and such that we have, for all $x \in \mathbb{R}$,

$$
d_{\left\lfloor\frac{n-1}{2}+x \sqrt{n}\right\rfloor}^{n}=\frac{\sqrt{20}}{\sqrt{3 \pi}} \frac{1}{\sqrt{n}} \exp \left(\frac{-20 x^{2}}{3}\right)+o\left(n^{-\frac{1}{2}}\right),
$$

where the error term $o\left(n^{-\frac{1}{2}}\right)$ is uniform in x.

New asymptotic results

The construction method

Viro's patchworking method

A method for "gluing" together real algebraic hypersurfaces to get more complicated hypersurfaces.

Viro's patchworking method

Viro's patchworking method

Viro's patchworking method

Viro's patchworking method

The Newton polytope $\Delta(P)$ of a polynomial $P(X)=\sum_{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda} c_{\lambda} X_{1}^{\lambda_{1}} \ldots X_{n}^{\lambda_{n}}$, where Λ is a finite subset of \mathbb{Z}^{n} and $c_{\lambda} \in \mathbb{R}^{*}$ for all $\lambda \in \Lambda$, is the convex hull in \mathbb{R}^{n} of Λ.

Viro's patchworking method

The ingredients

An improvement on an idea by Itenberg and Viro (see [IV]).

The ingredients

An improvement on an idea by Itenberg and Viro (see [IV]).

We start with families $\left\{X_{d}^{k}\right\}_{d \in \mathbb{N}}$ of real projective algebraic hypersurfaces in ambient dimension $k=1, \ldots, n-1$, which we call ingredients.

The ingredients

Pictured below are the Newton polytopes of polynomials representing the hypersurfaces X_{d}^{k}.

The main idea

We use these ingredients to define real projective algebraic hypersurfaces in ambient dimension $n-1$, which we call \tilde{Y}_{d}^{n-1}, then in dimension n, which we call Y_{d}^{n}.

Intermediate constructions \tilde{Y}_{d}^{n-1}

Pictured below is the Newton polytope of a polynomial associated to \tilde{Y}_{5}^{2} ($n=3$ here).

The polynomials corresponding to the faces of dimension $k=1,2$ are the same as those defining the ingredients X_{d}^{k} (up to a change of variables).

Intermediate constructions \tilde{Y}_{d}^{n-1}

Final constructions Y_{d}^{n}

Final constructions Y_{d}^{n}
We suspend the previous construction to obtain something in dimension n ($n=3$ here).

Final constructions Y_{d}^{n}
Pictured below is the Newton polytope of a polynomial associated to Y_{d}^{3} ($n=3$ here).

Applying the patchworking method

We choose coefficients such that the Patchworking method applies, and such that the pieces glued together correspond to suspensions and joins of the ingredients.

Applying the patchworking method

Applying the patchworking method

Join

Applying the patchworking method

Suspension

Suspensions

$$
\begin{gathered}
P(X) \in \mathbb{R}\left[X_{1}^{ \pm}, \ldots, X_{n-1}^{ \pm}\right] \\
\Downarrow \\
P(X)+Z+Z^{-1} \in \\
\mathbb{R}\left[X_{1}^{ \pm}, \ldots, X_{n-1}^{ \pm}, Z^{ \pm}\right]
\end{gathered}
$$

Suspensions

$$
\begin{gathered}
P(X) \in \mathbb{R}\left[X_{1}^{ \pm}, \ldots, X_{n-1}^{ \pm}\right] \\
\Downarrow \\
P(X)+Z+Z^{-1} \in \\
\mathbb{R}\left[X_{1}^{ \pm}, \ldots, X_{n-1}^{ \pm}, Z^{ \pm}\right]
\end{gathered}
$$

Each k-cycle in $\{P(X)=0\}$ yields a k-cycle and a $(k+1)$-cycle in

$$
\left\{P(X)+Z+Z^{-1}=0\right\}
$$

Suspensions

For positive Z.

Suspensions

For negative Z.

Joins

Joins

Each k_{1}-cycle in $\left\{P_{1}(X)=0\right\}$ and k_{2}-cycle in $\left\{P_{2}(Y)=0\right\}$ yields a $\left(k_{1}+k_{2}+1\right)$-cycle in $\left\{P_{1}(X)+Z \cdot P_{2}(Y)=0\right\}$.

Joins

Counting cycles

Given a family of k-cycles $\left\{\alpha_{t}\right\}_{t}$ in the real part $\mathbb{R} X$ of some real algebraic projective hypersurface X of dimension $n-1$, we say that the cycles of a family $\left\{\beta_{t}\right\}_{t}$ of $(n-1-k)$-cycles in the complement of $\mathbb{R} X$ in the ambient space $\left(\left(\mathbb{R}^{*}\right)^{n}, \mathbb{R}^{n}\right.$ or $\left.\mathbb{R P}^{n}\right)$ are axes for the cycles α_{t} if their linking numbers in the ambient space are well-defined and verify

$$
I\left(\alpha_{t}, \beta_{s}\right)=\delta_{s, t} .
$$

Counting cycles

Given a family of k-cycles $\left\{\alpha_{t}\right\}_{t}$ in the real part $\mathbb{R} X$ of some real algebraic projective hypersurface X of dimension $n-1$, we say that the cycles of a family $\left\{\beta_{t}\right\}_{t}$ of $(n-1-k)$-cycles in the complement of $\mathbb{R} X$ in the ambient space $\left(\left(\mathbb{R}^{*}\right)^{n}, \mathbb{R}^{n}\right.$ or $\left.\mathbb{R P}^{n}\right)$ are axes for the cycles α_{t} if their linking numbers in the ambient space are well-defined and verify

$$
I\left(\alpha_{t}, \beta_{s}\right)=\delta_{s, t} .
$$

In particular, this implies that the classes $\left[\alpha_{t}\right]$ are linearly independent in $H_{k}(\mathbb{R} X)$.

Counting cycles

- We choose cycles $\left\{\alpha_{t}\right\}_{t}$ in the hypersurfaces $\mathbb{R} X_{d}^{k}$.

Counting cycles

- We choose cycles $\left\{\alpha_{t}\right\}_{t}$ in the hypersurfaces $\mathbb{R} X_{d}^{k}$.
- Using a variant of Alexander duality, we find axes $\left\{\beta_{t}\right\}_{t}$ for the cycles $\left\{\alpha_{t}\right\}_{t}$ in the complement of $\mathbb{R} X_{d}^{k}$.

Counting cycles

- We choose cycles $\left\{\alpha_{t}\right\}_{t}$ in the hypersurfaces $\mathbb{R} X_{d}^{k}$.
- Using a variant of Alexander duality, we find axes $\left\{\beta_{t}\right\}_{t}$ for the cycles $\left\{\alpha_{t}\right\}_{t}$ in the complement of $\mathbb{R} X_{d}^{k}$.
- Cycles yield new cycles $\left\{\tilde{\alpha}_{t}\right\}$ in the suspensions and joins, hence in $\mathbb{R} Y_{d}^{n}$. Similarly, axes yield new axes $\left\{\tilde{\beta}_{t}\right\}$ for those new cycles in the complement of $\mathbb{R} Y_{d}^{n}$.

Counting cycles

- We choose cycles $\left\{\alpha_{t}\right\}_{t}$ in the hypersurfaces $\mathbb{R} X_{d}^{k}$.
- Using a variant of Alexander duality, we find axes $\left\{\beta_{t}\right\}_{t}$ for the cycles $\left\{\alpha_{t}\right\}_{t}$ in the complement of $\mathbb{R} X_{d}^{k}$.
- Cycles yield new cycles $\left\{\tilde{\alpha}_{t}\right\}$ in the suspensions and joins, hence in $\mathbb{R} Y_{d}^{n}$. Similarly, axes yield new axes $\left\{\tilde{\beta}_{t}\right\}$ for those new cycles in the complement of $\mathbb{R} Y_{d}^{n}$.
- This shows that the classes of the new cycles are linearly independent in the homology of $\mathbb{R} Y_{d}^{n}$.

Cooking Theorem

Cooking Theorem (A.)

Let $n \geq 2$. For $k=1, \ldots, n-1$, let $\left\{X_{d}^{k}\right\}_{d \in \mathbb{N}}$ be a family of real projective algebraic hypersurfaces in \mathbb{P}^{k} such that X_{d}^{k} is of degree d. Suppose additionally that for $k=1, \ldots, n-1$ and $i=0, \ldots, k-1$,

$$
b_{i}\left(\mathbb{R} X_{d}^{k}\right) \geq x_{i}^{k} \cdot d^{k}
$$

for some $x_{i}^{k} \in \mathbb{R}_{\geq 0}$. Then there exists a family $\left\{Y_{d}^{n}\right\}_{d \in \mathbb{N}}$ of real projective algebraic hypersurfaces in \mathbb{P}^{n} such that Y_{d}^{n} is of degree d and such that for $i=0, \ldots, n-1$

$$
b_{i}\left(\mathbb{R} Y_{d}^{n}\right) \geq \frac{n}{n}\left(x_{i}^{n-1}+x_{i-1}^{n-1}+\sum_{k=1}^{n-2} \sum_{j=0}^{i-1} x_{j}^{k} \cdot x_{i-1-j}^{n-1-k}\right) \cdot d^{n}
$$

where x_{j}^{k} is set to be 0 for $j \notin\{0, \ldots, k-1\}$.

Cooking Theorem

$$
b_{i}\left(\mathbb{R} Y_{d}^{n}\right) \geq \frac{n}{n}\left(x_{i}^{n-1}+x_{i-1}^{n-1}+\sum_{k=1}^{n-2} \sum_{j=0}^{i-1} x_{j}^{k} \cdot x_{i-1-j}^{n-1-k}\right) \cdot d^{n},
$$

Asymptotically large Betti numbers

First asymptotic result

First asymptotic theorem (A.)
For any $n \geq 3$ and any $q=0, \ldots, n-1$, there exists $b_{q}^{n}>a_{q}^{n}$ and an asymptotically maximal family $\left\{Y_{d}^{n}\right\}_{d \in \mathbb{N}}$ of real projective algebraic hypersurfaces in \mathbb{P}^{n} such that

$$
b_{q}\left(\mathbb{R} Y_{d}^{n}\right) \geq^{n} b_{q}^{n} \cdot d^{n}
$$

Second asymptotic result

Second asymptotic theorem, first part (A.)

For any $n \geq 3$, there exists an asymptotically maximal family $\left\{Y_{d}^{+, n}\right\}_{d \in \mathbb{N}}$ of real projective algebraic hypersurfaces in \mathbb{P}^{n}, as well as $c_{q}^{n} \in \mathbb{R}$ (for every $q \in \mathbb{Z}$), such that for $q=0, \ldots, n-1$, we have

$$
b_{q}\left(\mathbb{R} Y_{d}^{+, n}\right) \stackrel{n}{=} c_{q}^{n} \cdot d^{n}
$$

and such that we have, for all $x \in \mathbb{R}$,

$$
c_{\left\lfloor\frac{n-1}{2}+x \sqrt{n}\right\rfloor}^{n}=\frac{2}{\sqrt{\pi}} \frac{1}{\sqrt{n}} \exp \left(-4 x^{2}\right)+o\left(n^{-\frac{1}{2}}\right),
$$

where the error term $\circ\left(n^{-\frac{1}{2}}\right)$ is uniform in x.

Second asymptotic result

Second asymptotic theorem, second part (A.)

For any $n \geq 3$, there exists an asymptotically maximal family $\left\{Y_{d}^{-, n}\right\}_{d \in \mathbb{N}}$ of real projective algebraic hypersurfaces in \mathbb{P}^{n}, as well as $d_{q}^{n} \in \mathbb{R}$ (for every $q \in \mathbb{Z}$), such that for $q=0, \ldots, n-1$, we have

$$
b_{q}\left(\mathbb{R} Y_{d}^{-, n}\right) \stackrel{n}{=} d_{q}^{n} \cdot d^{n}
$$

and such that we have, for all $x \in \mathbb{R}$,

$$
d_{\left\lfloor\frac{n-1}{2}+x \sqrt{n}\right\rfloor}^{n}=\frac{\sqrt{20}}{\sqrt{3 \pi}} \frac{1}{\sqrt{n}} \exp \left(\frac{-20 x^{2}}{3}\right)+o\left(n^{-\frac{1}{2}}\right),
$$

where the error term $o\left(n^{-\frac{1}{2}}\right)$ is uniform in x.

A crucial ingredient

In the proofs of both asymptotic theorems, the main ingredient used in the Cooking Theorem is a result by E. Brugallé (from [Bru]), which yields the most extreme known asymptotic values of b_{0} and b_{1} in ambient dimension 3.

A crucial ingredient

In the proofs of both asymptotic theorems, the main ingredient used in the Cooking Theorem is a result by E. Brugallé (from [Bru]), which yields the most extreme known asymptotic values of b_{0} and b_{1} in ambient dimension 3.

Brugallé himself made use of a method developped by F. Bihan.

A crucial ingredient

Brugallé (2006)

There exist asymptotically maximal families $\left\{B_{d}^{+}\right\}_{d \in \mathbb{N}}$ and $\left\{B_{d}^{-}\right\}_{d \in \mathbb{N}}$ of real projective algebraic surfaces in \mathbb{P}^{3} such that

$$
\begin{aligned}
& b_{0}\left(\mathbb{R} B_{d}^{+}\right) \stackrel{3}{=} \frac{3}{8} \cdot d^{3}=\left(\frac{1}{6}+\frac{5}{24}\right) \cdot d^{3}=\left(a_{0}^{3}+\frac{5}{24}\right) \cdot d^{3}, \\
& b_{1}\left(\mathbb{R} B_{d}^{+}\right) \stackrel{3}{=} \frac{1}{4} \cdot d^{3}=\left(\frac{2}{3}-\frac{5}{12}\right) \cdot d^{3}=\left(a_{1}^{3}-\frac{5}{12}\right) \cdot d^{3},
\end{aligned}
$$

and

$$
\begin{aligned}
& b_{0}\left(\mathbb{R} B_{d}^{-}\right) \stackrel{3}{=} \frac{1}{8} \cdot d^{3}=\left(\frac{1}{6}-\frac{1}{24}\right) \cdot d^{3}=\left(a_{0}^{3}-\frac{1}{24}\right) \cdot d^{3} \\
& b_{1}\left(\mathbb{R} B_{d}^{-}\right) \stackrel{3}{=} \frac{3}{4} \cdot d^{3}=\left(\frac{2}{3}+\frac{1}{12}\right) \cdot d^{3}=\left(a_{1}^{3}+\frac{1}{12}\right) \cdot d^{3} .
\end{aligned}
$$

The construction yielding the second asymptotic theorem

We start with the asymptotic constructions $\left\{I_{d}^{n}\right\}_{d \in \mathbb{N}}$ by Itenberg and Viro (from [IV]) in ambient dimension $n=1$ and $n=2$, and the families $\left\{B_{d}^{ \pm}\right\}_{d \in \mathbb{N}}$ by Brugallé in ambient dimension $n=3$.

The construction yielding the second asymptotic theorem

We start with the asymptotic constructions $\left\{I_{d}^{n}\right\}_{d \in \mathbb{N}}$ by Itenberg and Viro (from [IV]) in ambient dimension $n=1$ and $n=2$, and the families $\left\{B_{d}^{ \pm}\right\}_{d \in \mathbb{N}}$ by Brugallé in ambient dimension $n=3$.

We proceed by induction, and use the families of real projective algebraic hypersurfaces available in dimension less than or equal to $n-1$ as ingredients to obtain a family in dimension n using the Cooking Theorem.

The construction yielding the second asymptotic theorem

$$
\begin{aligned}
& n=4: \\
& \left\{I_{d}^{1}\right\}_{d},\left\{I_{d}^{2}\right\}_{d} \text { and }\left\{B_{d}^{ \pm}\right\}_{d} \xrightarrow{\text { Cooking Thm }}\left\{Y_{d}^{ \pm, 4}\right\}_{d}
\end{aligned}
$$

The construction yielding the second asymptotic theorem

$$
\begin{aligned}
& n=4: \\
& \left\{I_{d}^{1}\right\}_{d},\left\{I_{d}^{2}\right\}_{d} \text { and }\left\{B_{d}^{ \pm}\right\}_{d} \xrightarrow{\text { Cooking Thm }}\left\{Y_{d}^{ \pm, 4}\right\}_{d} \\
& n=5: \\
& \left\{I_{d}^{1}\right\}_{d},\left\{I_{d}^{2}\right\}_{d},\left\{B_{d}^{ \pm}\right\}_{d},\left\{Y_{d}^{ \pm, 4}\right\}_{d} \xrightarrow{\text { Cooking Thm }}\left\{Y_{d}^{ \pm, 5}\right\}_{d} \\
& \ldots \\
& n+1: \\
& \left\{I_{d}^{1}\right\}_{d},\left\{I_{d}^{2}\right\}_{d},\left\{B_{d}^{ \pm}\right\}_{d},\left\{\left\{Y_{d}^{ \pm, k}\right\}_{d}\right\}_{k=4}^{n} \xrightarrow{\text { Cooking Thm }}\left\{Y_{d}^{ \pm, n+1}\right\}_{d}
\end{aligned}
$$

Computing the asymptotic Betti numbers

Yields the recursive formula

$$
x_{i}^{n}=\frac{1}{n}\left(x_{i}^{n-1}+x_{i-1}^{n-1}+\sum_{k=1}^{n-2} \sum_{j=0}^{i-1} x_{j}^{k} \cdot x_{i-1-j}^{n-1-k}\right),
$$

where

$$
b_{i}\left(\mathbb{R} Y_{d}^{ \pm, n}\right) \stackrel{n}{=} x_{i}^{n} \cdot d^{n} .
$$

Computing the asymptotic Betti numbers

Yields the recursive formula

$$
x_{i}^{n}=\frac{1}{n}\left(x_{i}^{n-1}+x_{i-1}^{n-1}+\sum_{k=1}^{n-2} \sum_{j=0}^{i-1} x_{j}^{k} \cdot x_{i-1-j}^{n-1-k}\right)
$$

where

$$
b_{i}\left(\mathbb{R} Y_{d}^{ \pm, n}\right) \stackrel{n}{=} x_{i}^{n} \cdot d^{n} .
$$

How to compute the asymptotic behavior of the x_{i}^{n} ?

Computing the asymptotic Betti numbers

After a change of variables, the formula becomes

$$
\tilde{x}_{i}^{n+1}=\frac{1}{n} \sum_{k=1}^{n} \sum_{j \in \mathbb{Z}} \tilde{x}_{j}^{k} \cdot \tilde{x}_{i-j}^{n+1-k} .
$$

Computing the asymptotic Betti numbers

After a change of variables, the formula becomes

$$
\tilde{x}_{i}^{n+1}=\frac{1}{n} \sum_{k=1}^{n} \sum_{j \in \mathbb{Z}} \tilde{x}_{j}^{k} \cdot \tilde{x}_{i-j}^{n+1-k} .
$$

This can be interpreted in terms of discrete random variables, whose probability density functions are the \tilde{x}_{i}^{k}.

Computing the asymptotic Betti numbers

$\left\{\tilde{x}_{j}^{k}\right\}_{j \in \mathbb{Z}} \rightsquigarrow$ random variable \tilde{X}^{k}.

Computing the asymptotic Betti numbers

$\left\{\tilde{x}_{j}^{k}\right\}_{j \in \mathbb{Z}} \rightsquigarrow$ random variable \tilde{X}^{k}.
$\sum_{j \in \mathbb{Z}} \tilde{x}_{j}^{k} \cdot \tilde{x}_{i-j}^{n+1-k} \rightsquigarrow$ sum of random variables \tilde{X}^{k} and \tilde{X}^{n+1-k}.

Computing the asymptotic Betti numbers

$\left\{\tilde{x}_{j}^{k}\right\}_{j \in \mathbb{Z}} \rightsquigarrow$ random variable \tilde{X}^{k}.
$\sum_{j \in \mathbb{Z}} \tilde{X}_{j}^{k} \cdot \tilde{x}_{i-j}^{n+1-k} \rightsquigarrow$ sum of random variables \tilde{X}^{k} and \tilde{X}^{n+1-k}.
$\frac{1}{n} \sum_{k=1}^{n} \sum_{j \in \mathbb{Z}} \tilde{x}_{j}^{k} \cdot \tilde{x}_{i-j}^{n+1-k} \rightsquigarrow \operatorname{sum}$ of \tilde{X}^{K} and \tilde{X}^{n-1-K}, where K is a uniform random variable on $\{1, \ldots, n\}$.

Computing the asymptotic Betti numbers

$\left\{\tilde{x}_{j}^{k}\right\}_{j \in \mathbb{Z}} \rightsquigarrow$ random variable \tilde{X}^{k}.
$\sum_{j \in \mathbb{Z}} \tilde{X}_{j}^{k} \cdot \tilde{x}_{i-j}^{n+1-k} \rightsquigarrow$ sum of random variables \tilde{X}^{k} and \tilde{X}^{n+1-k}.
$\frac{1}{n} \sum_{k=1}^{n} \sum_{j \in \mathbb{Z}} \tilde{x}_{j}^{k} \cdot \tilde{x}_{i-j}^{n+1-k} \rightsquigarrow \operatorname{sum}$ of \tilde{X}^{K} and \tilde{X}^{n-1-K}, where K is a uniform random variable on $\{1, \ldots, n\}$.

Allows us to conclude using an analog of the Local Limit Theorem.

What now?

- Generalize to more general ambient toric varieties and to complete intersections.
- Find new low-dimensional asymptotic families (in particular, families obtained using the combinatorial patchworking) to which we could recursively apply the Cooking Theorem.
- Cleverer ways of applying the Cooking Theorem.

Erwan Brugallé.
Real plane algebraic curves with asymptotically maximal number of even ovals.
Duke Math. J., 131(3):575-587.
围 Ilia Itenberg and Oleg Viro.
Asymptotically maximal real algebraic hypersurfaces of projective space.
In Proceedings of Gökova Geometry-Topology Conference 2006, pages 91-105. Gökova Geometry/Topology Conference (GGT), Gökova.

