A short proof of the multiple cover formula for point insertions in abelian surfaces

Thomas Blomme

Online seminar, March 20th 2025

• Goal : give a formula to compute the number of genus g curves of degree β passing through g points in an abelian surface $\mathbb{C}A$.

- Goal : give a formula to compute the number of genus g curves of degree β passing through g points in an abelian surface $\mathbb{C}A$.
- Ingredients:
 - explicit formula in primitive case
 - reduction to the primitive case
- Tools: tropical geometry and correspondence theorem.

Complex torus $\mathbb{C}A = \mathbb{C}^2/\Omega$, where $\Omega \in \mathcal{M}_{2,4}(\mathbb{C})$. L lattice spanned by Ω .

Complex torus $\mathbb{C}A = \mathbb{C}^2/\Omega$, where $\Omega \in \mathcal{M}_{2,4}(\mathbb{C})$. L lattice spanned by Ω .

Definition

 $\mathbb{C}A$ complex torus is an abelian surface if there exists a *polarization* $Q \in \mathcal{A}_4(\mathbb{Z})$ skew-symmetric satisfying Riemann conditions:

$$\left\{ \begin{array}{l} \Omega Q^{-1}\Omega^{\mathsf{T}} = 0, \\ -i\Omega Q^{-1}\overline{\Omega}^{\mathsf{T}} > 0. \end{array} \right.$$

Complex torus $\mathbb{C}A = \mathbb{C}^2/\Omega$, where $\Omega \in \mathcal{M}_{2,4}(\mathbb{C})$. L lattice spanned by Ω .

Definition

 $\mathbb{C}A$ complex torus is an abelian surface if there exists a *polarization* $Q \in \mathcal{A}_4(\mathbb{Z})$ skew-symmetric satisfying Riemann conditions:

$$\begin{cases} \Omega Q^{-1} \Omega^{\mathsf{T}} = 0, \\ -i\Omega Q^{-1} \overline{\Omega}^{\mathsf{T}} > 0. \end{cases}$$

It means $\mathbb{C}A$ is projective, and Q is the chern class of an ample line bundle:

$$Q = c_1(\mathcal{L}) \in H^2(\mathbb{C}A, \mathbb{Z}) \simeq \wedge^2 L^*.$$

Complex torus $\mathbb{C}A = \mathbb{C}^2/\Omega$, where $\Omega \in \mathcal{M}_{2,4}(\mathbb{C})$. L lattice spanned by Ω .

Definition

 $\mathbb{C}A$ complex torus is an abelian surface if there exists a *polarization* $Q \in \mathcal{A}_4(\mathbb{Z})$ skew-symmetric satisfying Riemann conditions:

$$\begin{cases} \Omega Q^{-1} \Omega^{\mathsf{T}} = 0, \\ -i\Omega Q^{-1} \overline{\Omega}^{\mathsf{T}} > 0. \end{cases}$$

It means $\mathbb{C}A$ is projective, and Q is the chern class of an ample line bundle:

$$Q = c_1(\mathcal{L}) \in H^2(\mathbb{C}A, \mathbb{Z}) \simeq \wedge^2 L^*.$$

Up to a change of basis, we have for some $d_1|d_2$,

$$Q = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \\ -d_1 & 0 \\ 0 & -d_2 \end{pmatrix}.$$

We can then assume that $\omega = (I \ Z)$ for some $Z \in \mathcal{M}_2(\mathbb{C})$.

Curves in abelian surfaces

Consider stable maps

$$f:(C,p_1,\ldots,p_n)\longrightarrow \mathbb{C}A,$$

where (C, p_1, \ldots, p_n) is a genus g nodal curve with n marked points.

• Its degree is $\beta = f_*[C] \in H_2(\mathbb{C}A, \mathbb{Z})$.

Curves in abelian surfaces

Consider stable maps

$$f:(C,p_1,\ldots,p_n)\longrightarrow \mathbb{C}A,$$

where (C, p_1, \ldots, p_n) is a genus g nodal curve with n marked points.

- Its degree is $\beta = f_*[C] \in H_2(\mathbb{C}A, \mathbb{Z})$.
- If section of $\mathcal L$ with $c_1(\mathcal L)=Q$, then

$$\beta = \operatorname{Pf}(Q)Q^{-1} \in H_2(\mathbb{C}A, \mathbb{Z}) = \wedge^2 L \simeq \mathcal{A}_4(\mathbb{Z}).$$

Curves in abelian surfaces

Consider stable maps

$$f:(C,p_1,\ldots,p_n)\longrightarrow \mathbb{C}A,$$

where (C, p_1, \ldots, p_n) is a genus g nodal curve with n marked points.

- Its degree is $\beta = f_*[C] \in H_2(\mathbb{C}A, \mathbb{Z})$.
- If section of $\mathcal L$ with $c_1(\mathcal L)=Q$, then

$$\beta = \operatorname{Pf}(Q)Q^{-1} \in H_2(\mathbb{C}A, \mathbb{Z}) = \wedge^2 L \simeq \mathcal{A}_4(\mathbb{Z}).$$

Problem

How many degree β genus g curves pass through g points inside $\mathbb{C}A$?

Example

If g=2, look for curves whose jacobian is a covering of $\mathbb{C}A$. Map is determined up to translation.

Problem

Equivalently, for n = g, what is the degree of the evaluation map

ev :
$$\mathcal{M}_{g,n}(\mathbb{C}A,\beta) \longrightarrow \mathbb{C}A^n$$
.

• The answer $N_{g,\beta}$ does not depend on the choice of $\mathbb{C}A$ (with the right polarization) nor the points.

Problem

Equivalently, for n = g, what is the degree of the evaluation map

ev :
$$\mathcal{M}_{g,n}(\mathbb{C}A,\beta) \longrightarrow \mathbb{C}A^n$$
.

- The answer $N_{g,\beta}$ does not depend on the choice of $\mathbb{C}A$ (with the right polarization) nor the points.
- β is an element of $H_2(\mathbb{C}A,\mathbb{Z}) \simeq U^{\oplus 3} \simeq \mathbb{Z}^6$. Up to automorphism, it is determined by its divisibility $(=d_1)$ and square β^2 $(=2d_1d_2)$.
- $N_{g,\beta}$ depends on β through divisibility and self-intersection.

Problem

What is the value of $N_{g,\beta}$?

Results

Results

• closed formula if β primitive (divisibility 1)

Theorem (Bryan-Leung)

If β is primitive with $\beta^2 = 2n$,

$$N_{g,\beta} = g \sum_{a_1 + \dots + a_{g-1} = n} \prod_{i=1}^{s-1} a_i \sigma_1(a_i), \text{ with } \sigma_1(a) = \sum_{d|a} d.$$

Results

• closed formula if β primitive (divisibility 1)

Theorem (Bryan-Leung)

If β is primitive with $\beta^2 = 2n$,

$$N_{g,\beta} = g \sum_{a_1 + \dots + a_{g-1} = n} \prod_{i=1}^{g-1} a_i \sigma_1(a_i), \text{ with } \sigma_1(a) = \sum_{d|a} d.$$

formula for non-primitive case

Theorem (B.)

For $k|\beta$ let $\widetilde{\beta/k}$ be a primitive class with $\widetilde{\beta/k}^2 = (\beta/k)^2$.

$$N_{g,\beta} = \sum_{k|\beta} k^{4g-3} N_{g,\widetilde{\beta/k}}.$$

Example

Assume $\beta \in U \oplus 0 \oplus 0 \subset U^{\oplus 3} = H_2(\mathbb{C}A, \mathbb{Z})$, so that classes are $\beta = (a, b)$ with $\beta^2 = 2ab$.

Example

Assume $\beta \in U \oplus 0 \oplus 0 \subset U^{\oplus 3} = H_2(\mathbb{C}A, \mathbb{Z})$, so that classes are $\beta = (a, b)$ with $\beta^2 = 2ab$. Then, we have

$$N_{g,(2,2)} = N_{g,(1,4)} + 2^{4g-3}N_{g,(1,1)},$$

Example

Assume $\beta \in U \oplus 0 \oplus 0 \subset U^{\oplus 3} = H_2(\mathbb{C}A, \mathbb{Z})$, so that classes are $\beta = (a, b)$ with $\beta^2 = 2ab$. Then, we have

$$N_{g,(2,2)} = N_{g,(1,4)} + 2^{4g-3}N_{g,(1,1)},$$

and

$$N_{g,(3,6)} = N_{g,(1,18)} + 3^{4g-3}N_{g,(1,2)},$$

Example

Assume $\beta \in U \oplus 0 \oplus 0 \subset U^{\oplus 3} = H_2(\mathbb{C}A, \mathbb{Z})$, so that classes are $\beta = (a, b)$ with $\beta^2 = 2ab$. Then, we have

$$N_{g,(2,2)} = N_{g,(1,4)} + 2^{4g-3}N_{g,(1,1)},$$

and

$$N_{g,(3,6)} = N_{g,(1,18)} + 3^{4g-3}N_{g,(1,2)},$$

and

$$N_{g,(6,6)} = N_{g,(1,36)} + 2^{4g-3}N_{g,(1,9)} + 3^{4g-3}N_{g,(1,4)} + 6^{4g-3}N_{g,(1,1)}.$$

Recall we have a formula for $N_{g,(1,n)}$!

Take $\mathbb{C}A = E \times F$ where E, F elliptic curves, and $\beta = [E] + n[F]$, which satisfies $\beta^2 = 2n$.

Take $\mathbb{C}A = E \times F$ where E, F elliptic curves, and $\beta = [E] + n[F]$, which satisfies $\beta^2 = 2n$. Curves in the class β consist in an horizontal copy of E, and coverings of F-fibers.

Take $\mathbb{C}A = E \times F$ where E, F elliptic curves, and $\beta = [E] + n[F]$, which satisfies $\beta^2 = 2n$. Curves in the class β consist in an horizontal copy of E, and coverings of F-fibers. To pass through g points, we need the following:

the copy of E has to pass through one of the g points,

Take $\mathbb{C}A = E \times F$ where E, F elliptic curves, and $\beta = [E] + n[F]$, which satisfies $\beta^2 = 2n$. Curves in the class β consist in an horizontal copy of E, and coverings of F-fibers. To pass through g points, we need the following:

- the copy of E has to pass through one of the g points,
- we need the g-1 fibers passing through the remaining points, genus of the component covering it is at least 1, so equal to 1,
- the degree splits among fibers $n = a_1 + \cdots + a_{g-1}$,

Take $\mathbb{C}A = E \times F$ where E, F elliptic curves, and $\beta = [E] + n[F]$, which satisfies $\beta^2 = 2n$. Curves in the class β consist in an horizontal copy of E, and coverings of F-fibers. To pass through g points, we need the following:

- the copy of E has to pass through one of the g points,
- we need the g-1 fibers passing through the remaining points, genus of the component covering it is at least 1, so equal to 1,
- the degree splits among fibers $n = a_1 + \cdots + a_{g-1}$,
- we have $\sigma_1(a_i)$ degree a_i coverings of a torus by a torus, times a_i for choice of marked point.

Take $\mathbb{C}A = E \times F$ where E, F elliptic curves, and $\beta = [E] + n[F]$, which satisfies $\beta^2 = 2n$. Curves in the class β consist in an horizontal copy of E, and coverings of F-fibers. To pass through g points, we need the following:

- the copy of E has to pass through one of the g points,
- ullet we need the g-1 fibers passing through the remaining points, genus of the component covering it is at least 1, so equal to 1,
- the degree splits among fibers $n = a_1 + \cdots + a_{g-1}$,
- we have $\sigma_1(a_i)$ degree a_i coverings of a torus by a torus, times a_i for choice of marked point.

$$N_{g,\beta}=g\sum_{a_1+\cdots+a_{g-1}=n}\prod_{i=1}^{g-1}a_i\sigma_1(a_i), \text{ with } \sigma_1(a)=\sum_{d\mid a}d.$$

It does not work if non-primitive, consider for instance 2[E] + 2n[F].

Strategy of proof of the multiple cover formula

- We have a tropical correspondence theorem from Nishinou: enumeration is transformed into piecewise affine graph combinatorics.
- Theoretically, if one is brave enough, we can compute everything and witness the formula.
- First proof [B.'22] with many tropical technicalities.

Strategy of proof of the multiple cover formula

- We have a tropical correspondence theorem from Nishinou: enumeration is transformed into piecewise affine graph combinatorics.
- Theoretically, if one is brave enough, we can compute everything and witness the formula. However, it would be better to prove the formula without having to compute anything.
- First proof [B.'22] with many tropical technicalities.
- Second proof [B.'25] free of tropical technicalities.

Strategy of proof of the multiple cover formula

- We have a tropical correspondence theorem from Nishinou: enumeration is transformed into piecewise affine graph combinatorics.
- Theoretically, if one is brave enough, we can compute everything and witness the formula. However, it would be better to prove the formula without having to compute anything.
- First proof [B.'22] with many tropical technicalities.
- Second proof [B.'25] free of tropical technicalities.

Contrarily to the toric case, provided one knows the primitive case, no tropical enumeration is required to prove the formula.

Tropical abelian surfaces

A real torus $\mathbb{T}A$ is a quotient \mathbb{R}^2/S where $S:\mathbb{Z}^2\hookrightarrow\mathbb{R}^2$ is a lattice in \mathbb{R}^2 with image $\Lambda\subset\mathbb{R}^2$.

Tropical abelian surfaces

A real torus $\mathbb{T}A$ is a quotient \mathbb{R}^2/S where $S:\mathbb{Z}^2\hookrightarrow\mathbb{R}^2$ is a lattice in \mathbb{R}^2 with image $\Lambda\subset\mathbb{R}^2$.

Definition

A real torus is a *tropical abelian surface* if there exists a *polarization C* satisfying Riemann condition $C^{\intercal}S \in \mathcal{S}_{2}^{++}(\mathbb{R})$.

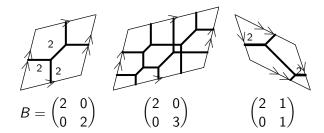
- Setting B = com(C), it equivalently means $BS^{\intercal} \in \mathcal{S}_2^{++}(\mathbb{R})$.
- C is the tropical chern class and plays the role of Q,
- B is the tropical degree and plays the role of β ,
- C and B are linked through Poincaré duality: C = com(B).

Tropical curves

Definition

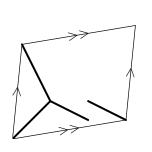
A parametrized tropical curve is a map $h: \Gamma \to \mathbb{T}A$ where

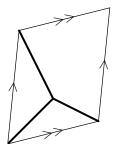
- **①** Γ is a metric graph (with n = g marked points)
- h is affine with integer slope on the edges
- **o** h is balanced: at each vertex v, $\sum_{e \ni v} \partial_e h = 0$.

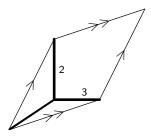


Curves have a degree B, a genus g and a gcd δ_{Γ} (the gcd of integer lengths of slopes)

The symmetry is due to the *gluing condition*.







Dimension of moduli space

The expected dimension is

$$(3g-3)-2g+2=g-1.$$

Dimension of moduli space

The expected dimension is

$$(3g-3)-2g+2=g-1.$$

Due to gluing conditions/Menelaus relation:

Proposition

The dimension of the deformation space of genus g curves in class C is g.

Dimension of moduli space

The expected dimension is

$$(3g-3)-2g+2=g-1.$$

Due to gluing conditions/Menelaus relation:

Proposition

The dimension of the deformation space of genus g curves in class C is g.

Problem

How many genus g curves in the class C pass through g points in general position ?

Tropicalization

Definition

A Mumford family of complex torus is of the form \mathbb{C}^2/Ω_t for 0<|t|<1 with $\Omega_t=(I\ Z+\frac{\log t}{2i\pi}S)$ for some S with \mathbb{Z} -coefficients. Its tropicalization is \mathbb{R}^2/S .

In multiplicative coordinates, a Mumford family is of the form

$$(\mathbb{C}^*)^2/\langle e^{2i\pi z_{ij}}t^{s_{ij}}\rangle.$$

Tropicalization

Definition

A Mumford family of complex torus is of the form \mathbb{C}^2/Ω_t for 0<|t|<1 with $\Omega_t=(I\ Z+\frac{\log t}{2i\pi}S)$ for some S with \mathbb{Z} -coefficients. Its tropicalization is \mathbb{R}^2/S .

In multiplicative coordinates, a Mumford family is of the form

$$(\mathbb{C}^*)^2/\langle e^{2i\pi z_{ij}}t^{s_{ij}}\rangle.$$

It fits in the exact sequence

$$0 o (S^1)^2 o \mathbb{C} A_t o \mathbb{R}^2/\log_t |\Omega_t| o 0.$$

The second map is the amoeba map, and amoeba of complex curves converge to tropical curves (correspondence).

From complex to tropical

Consider a Mumford family $\Omega_t = (I Z + \frac{\log t}{2i\pi}S)$.

ullet If Q is a polarization for each value of t, it needs to be of the form

$$Q = \begin{pmatrix} 0 & C \\ -C^\mathsf{T} & T \end{pmatrix} \text{ or equivalently } \beta = \begin{pmatrix} -T & B \\ -B^\mathsf{T} & 0 \end{pmatrix},$$

with C = com(B) a tropical polarization of \mathbb{R}^2/S , and $T = \begin{pmatrix} 0 & \tau \\ -\tau & 0 \end{pmatrix}$.

• | A complex polarization induces a tropical polarization.

From complex to tropical

Consider a Mumford family $\Omega_t = (I Z + \frac{\log t}{2i\pi}S)$.

ullet If Q is a polarization for each value of t, it needs to be of the form

$$Q = \begin{pmatrix} 0 & C \\ -C^\mathsf{T} & T \end{pmatrix} \text{ or equivalently } \beta = \begin{pmatrix} -T & B \\ -B^\mathsf{T} & 0 \end{pmatrix},$$

with C = com(B) a tropical polarization of \mathbb{R}^2/S , and $T = \begin{pmatrix} 0 & \tau \\ -\tau & 0 \end{pmatrix}$.

- A complex polarization induces a tropical polarization.
- \bullet Furthermore, we also have by Riemann condition for Ω_1

$$b_{11}z_{12}-b_{12}z_{11}+b_{21}z_{22}-b_{22}z_{21}=\tau.$$

From tropical to complex

• Starting with a tropical abelian variety \mathbb{R}^2/S , we have MANY Mumford families with this given tropicalization: pick the matrix $Z=(z_{ij})$. However, most of them are not polarized.

From tropical to complex

- Starting with a tropical abelian variety \mathbb{R}^2/S , we have MANY Mumford families with this given tropicalization: pick the matrix $Z = (z_{ij})$. However, most of them are not polarized.
- ullet To get a polarization, one should pick z_{ij} such that

$$b_{11}z_{12}-b_{12}z_{11}+b_{21}z_{22}-b_{22}z_{21}=\tau,$$

for some τ which completes B in Q.

• We always have $\beta^2 = 2 \det B$, but not necessarily the same divisibility.

From tropical to complex

- Starting with a tropical abelian variety \mathbb{R}^2/S , we have MANY Mumford families with this given tropicalization: pick the matrix $Z=(z_{ij})$. However, most of them are not polarized.
- ullet To get a polarization, one should pick z_{ij} such that

$$b_{11}z_{12}-b_{12}z_{11}+b_{21}z_{22}-b_{22}z_{21}=\tau,$$

for some τ which completes B in Q.

• We always have $\beta^2 = 2 \det B$, but not necessarily the same divisibility.

We have some freedom in the choice of τ .

Correspondence

Let $\mathbb{C}A_t$ be a Mumford family with tropicalization $\mathbb{T}A$. \mathcal{P}_t a configuration of g points tropicalizing to $\mathcal{P} \subset \mathbb{T}A$.

Correspondence

Let $\mathbb{C}A_t$ be a Mumford family with tropicalization $\mathbb{T}A$. \mathcal{P}_t a configuration of g points tropicalizing to $\mathcal{P} \subset \mathbb{T}A$.

Theorem (Nishinou)

Let $h: \Gamma \to \mathbb{T}A$ be a trivalent tropical curve in $\mathbb{T}A$.

- The tropical curve can be deformed in the Mumford family if and only if it is phasable: $\exp\left(2i\pi\frac{b_{11}z_{12}-b_{12}z_{11}+b_{21}z_{22}-b_{22}z_{21}}{\delta_{\Gamma}}\right)=(-1)^{\sum m_{V}/\delta_{\Gamma}}$.
- ② If it can be deformed and passes through \mathcal{P} , there are exactly $m_{\Gamma} = \prod_{e} w_{e} \cdot \operatorname{Ind}\Theta$ deformations passing through \mathcal{P}_{t} .

Correspondence

Let $\mathbb{C}A_t$ be a Mumford family with tropicalization $\mathbb{T}A$. \mathcal{P}_t a configuration of g points tropicalizing to $\mathcal{P} \subset \mathbb{T}A$.

Theorem (Nishinou)

Let $h: \Gamma \to \mathbb{T}A$ be a trivalent tropical curve in $\mathbb{T}A$.

- The tropical curve can be deformed in the Mumford family if and only if it is phasable: $\exp\left(2i\pi\frac{b_{11}z_{12}-b_{12}z_{11}+b_{21}z_{22}-b_{22}z_{21}}{\delta_{\Gamma}}\right)=(-1)^{\sum m_{V}/\delta_{\Gamma}}$.
- ② If it can be deformed and passes through \mathcal{P} , there are exactly $m_{\Gamma} = \prod_{e} w_{e} \cdot \operatorname{Ind}\Theta$ deformations passing through \mathcal{P}_{t} .
 - The first point can be rewritten $e^{2i\pi\tau/\delta_{\Gamma}}=1$, or equivalently $\delta_{\Gamma}|\tau$.
- Multiplicity is (4g 3)-homogeneous:

$$m_{k\Gamma} = k^{4g-3}m_{\Gamma}.$$

This is because there are 3g - 3 + g edges.

Proof of the multiple cover formula

 $\mathbb{T}A$ tropical abelian surface with polarization B. Let $\mathcal{P} \subset \mathbb{T}A$ g points. $\mathscr{C}(B)$ set of tropical curves of degree B passing through \mathcal{P} . $\mathscr{C}_k(B)$ the subset of gcd k.

Proof of the multiple cover formula

 $\mathbb{T}A$ tropical abelian surface with polarization B. Let $\mathcal{P} \subset \mathbb{T}A$ g points. $\mathscr{C}(B)$ set of tropical curves of degree B passing through \mathcal{P} . $\mathscr{C}_k(B)$ the subset of gcd k.

• Let $\tau=0$ and pick z_{ij} accordingly. The associated β has same divisibility and square as B. Condition $e^{2i\pi\tau/\delta_\Gamma}=1$ is always satisfied.

Correspondence ensures
$$N_{g,\beta} = \sum_{\mathscr{C}(B)} m_{\Gamma}$$
.

Proof of the multiple cover formula

 $\mathbb{T}A$ tropical abelian surface with polarization B. Let $\mathcal{P} \subset \mathbb{T}A$ g points. $\mathscr{C}(B)$ set of tropical curves of degree B passing through \mathcal{P} . $\mathscr{C}_k(B)$ the subset of gcd k.

• Let $\tau=0$ and pick z_{ij} accordingly. The associated β has same divisibility and square as B. Condition $e^{2i\pi\tau/\delta_\Gamma}=1$ is always satisfied.

Correspondence ensures
$$N_{g,\beta} = \sum_{\mathscr{C}(B)} m_{\Gamma}$$
.

• Let $\tau=1$ and pick z_{ij} accordingly. The associated β has now divisibility 1 and same square as B. Condition $e^{2i\pi\tau/\delta_\Gamma}=1$ is satisfied when $\delta_\Gamma=1$.

Correspondence ensures
$$N_{g,\widetilde{\beta}} = \sum_{\mathscr{C}_1(B)} m_{\Gamma}$$
.

The formula comes from the silly computation:

$$N_{g,\beta} = \sum_{k|B} \sum_{\mathscr{C}_k(B)} m_{\Gamma} = \sum_{k|B} k^{4g-3} \sum_{\mathscr{C}_1(B/k)} m_{\Gamma'} = \sum_{k|\beta} k^{4g-3} N_{g,\widetilde{\beta/k}}.$$

Example

For degree (2,2), we have

$$N_{g,(2,2)} = \sum$$
 curves with gcd $1 + \sum$ curves with gcd 2.

The first term is actually $N_{g,(1,4)}$ by correspondence. By homogeneity, the second term is 2^{4g-3} times the sum over curves of degree (1,1), which is $N_{g,(1,1)}$ by correspondence.

$$N_{g,(2,2)} = N_{g,(1,4)} + 2^{4g-3}N_{g,(1,1)}.$$

Thanks!

