Enumeration of tropical curves in abelian surfaces

Thomas Blomme

Online seminar, January 27th 2020

Thomas Blomme

Enumeration of tropical curves in abelian surfOnline seminar, January 27th 2020 1/30

E 6 4 E 6

- Goal : solve enumerative problems and compute Gromov-Witten invariants.
- Tools: tropical geometry and correspondence theorem
- Upshot: Refined invariants.

The case of toric surfaces

Definition

Let Γ be a metric graph of genus g. A tropical curve in \mathbb{R}^2 is a map $h: \Gamma \to \mathbb{R}^2$ that is affine with integer slope on the edges and satisfies the balancing condition.

Problem

How many degree d genus g curves passing through 3d+g-1 points inside $\mathbb{C}P^2$

イロト 不得下 イヨト イヨト 二日

Problem

How many degree d genus g curves passing through 3d+g-1 points inside $\mathbb{C}P^2$

Let $\mathcal{P}_t = \{(t^{x_i}, t^{y_i})\}$ be a collection of points tropicalizing to \mathcal{P} .

Theorem (Mikhalkin, Nishinou-Siebert, Shustin, Tyomkin)

Let $h: \Gamma \to \mathbb{R}^2$ passing through \mathcal{P} . The number of complex curves passing through \mathcal{P}_t and tropicalizing to Γ is equal to $m_{\Gamma}^{\mathbb{C}} = \prod m_V$. In particular, the number of curves $N_{d,g}^{\mathbb{T}}(\mathcal{P})$ passing through \mathcal{P} does not depend on \mathcal{P} and is equal to $N_{d,g}^{\mathbb{C}}$.

Problem

How many degree d genus g curves passing through 3d+g-1 points inside $\mathbb{C}P^2$

Let $\mathcal{P}_t = \{(t^{x_i}, t^{y_i})\}$ be a collection of points tropicalizing to \mathcal{P} .

Theorem (Mikhalkin, Nishinou-Siebert, Shustin, Tyomkin)

Let $h: \Gamma \to \mathbb{R}^2$ passing through \mathcal{P} . The number of complex curves passing through \mathcal{P}_t and tropicalizing to Γ is equal to $m_{\Gamma}^{\mathbb{C}} = \prod m_V$. In particular, the number of curves $N_{d,g}^{\mathbb{T}}(\mathcal{P})$ passing through \mathcal{P} does not depend on \mathcal{P} and is equal to $N_{d,g}^{\mathbb{C}}$.

Theorem (Itenberg-Mikhalkin)

Replacing $m_{\Gamma}^{\mathbb{C}}$ by $m_{\Gamma}^{q} = \prod \frac{q^{m_{V}/2} - q^{-m_{V}/2}}{q^{1/2} - q^{-1/2}}$ yields an invariant count, called refined.

Presentation of the manifolds

How about varieties that are not \mathbb{R}^2 but not far from it ?

3. 3

Presentation of the manifolds

How about varieties that are not \mathbb{R}^2 but not far from it ?

• Cylinder(s)

Presentation of the manifolds

How about varieties that are not \mathbb{R}^2 but not far from it ?

Cylinder(s) Real tori 2

Enumeration of tropical curves in abelian surfOnline seminar, January 27th 2020 5/30

- **1** Tropical curves, degree and dimension of the moduli space.
- 2 Enumerative problem
- Orrespondence theorem and multiplicity
- Refined invariance
- (Computation ?)

4 E b

2 Curves in abelian surfaces

3 Curves in linear system in abelian surfaces

Thomas Blomme

Enumeration of tropical curves in abelian surfOnline seminar, January 27th 2020 7 / 30

- 4 回 ト 4 ヨ ト 4 ヨ ト

Tropical curves in cylinder

- A cylinder is obtained by quotient of \mathbb{R}^2 by a map of the form $(x, y) \mapsto (x + l, y(+\delta x) + a)$.
- Concretely, you identify both sides of the strip $[0; I] \times \mathbb{R}$.

Figure: Examples of tropical curves inside $\mathbb{T}F_1$ ((a) and (b)) and in $\mathbb{T}F_2$ (c).

Tropical curves in cylinder

- A cylinder is obtained by quotient of \mathbb{R}^2 by a map of the form $(x, y) \mapsto (x + l, y(+\delta x) + a)$.
- Concretely, you identify both sides of the strip $[0; I] \times \mathbb{R}$.

Figure: Examples of tropical curves inside $\mathbb{T}F_1$ ((a) and (b)) and in $\mathbb{T}F_2$ (c).

• You might change slope when crossing the boundary.

Tropical curves in cylinder

- A cylinder is obtained by quotient of \mathbb{R}^2 by a map of the form $(x, y) \mapsto (x + l, y(+\delta x) + a)$.
- Concretely, you identify both sides of the strip $[0; I] \times \mathbb{R}$.

Figure: Examples of tropical curves inside $\mathbb{T}F_1$ ((a) and (b)) and in $\mathbb{T}F_2$ (c).

- You might change slope when crossing the boundary.
- It corresponds to line bundle of degree δ over an elliptic curve

Definition

A curve is of bidegree (d_1, d_2) if it has d_2 upper unbounded ends and intersects a fiber d_1 times. (counted with weights and multiplicities.)

By balancing condition, d_1 does not depend on the choice of the fiber.

< 同 > < 三 > < 三 >

Moduli

A genus g trivalent curve $h: \Gamma \to \mathbb{T}F_{\delta}$ has

- *d*₂ upper ends
- $\delta d_1 + d_2$ lower ends
- $3g 3 + \delta d_1 + 2d_2$ bounded edges

Dimension of its deformation space should be

$$(3g - 3 + \delta d_1 + 2d_2) - 2g + 2.$$

< 同 > < 三 > < 三 >

Moduli

A genus g trivalent curve $h: \Gamma \to \mathbb{T}F_{\delta}$ has

- *d*₂ upper ends
- $\delta d_1 + d_2$ lower ends
- $3g 3 + \delta d_1 + 2d_2$ bounded edges

Dimension of its deformation space should be

$$(3g - 3 + \delta d_1 + 2d_2) - 2g + 2.$$

Proposition

The moduli space of genus g bidegree (d_1, d_2) curves is of dimension $\delta d_1 + 2d_2 + g - 1$.

Problem

How many genus g bidegree (d_1, d_2) curves pass through $\delta d_1 + 2d_2 + g - 1$ points in general position ?

Definition

The multiplicity of a simple tropical curve is

$$m_{\Gamma}^{\mathbb{C}}=\prod m_{V}.$$

Let $\mathbb{C}F_t$ a family of line bundles over $\mathbb{C}E_t$ that tropicalizes to $\mathbb{T}F$ over $\mathbb{T}E$. Let \mathcal{P} be a complex/tropical configuration of points and $N_{g,(d_1,d_2)}^{\mathbb{C}/\mathbb{T}}(\mathcal{P})$ the number of complex/tropical curves passing through \mathcal{P} .

Definition

The multiplicity of a simple tropical curve is

$$m_{\Gamma}^{\mathbb{C}}=\prod m_{V}.$$

Let $\mathbb{C}F_t$ a family of line bundles over $\mathbb{C}E_t$ that tropicalizes to $\mathbb{T}F$ over $\mathbb{T}E$. Let \mathcal{P} be a complex/tropical configuration of points and $N_{g,(d_1,d_2)}^{\mathbb{C}/\mathbb{T}}(\mathcal{P})$ the number of complex/tropical curves passing through \mathcal{P} .

Theorem (B.)

Given a family of points $\mathcal{P}_t \subset \mathbb{C}F_t$ that tropicalizes to $\mathcal{P} \subset \mathbb{T}F$, and $h: \Gamma \to \mathbb{T}F_\delta$ there are $m_{\Gamma}^{\mathbb{C}}$ complex curves passing through \mathcal{P}_t that tropicalize to Γ . In particular,

$$N_{g,(d_1,d_2)}^{\mathbb{C}} = N_{g,(d_1,d_2)}^{\mathbb{T}},$$

and $N_{g,(d_1,d_2)}^{\mathbb{T}}(\mathcal{P})$ does not depend on \mathcal{P} .

Refined invariants

Replace the complex multiplicity by the *refined multiplicity*:

$$m_{\Gamma}^{q} = \prod_{V} rac{q^{m_{V}/2} - q^{-m_{V}/2}}{q^{1/2} - q^{-1/2}} \in \mathbb{Z}[q^{\pm 1/2}].$$

Let $BG_{g,(d_1,d_2)}(\mathcal{P})$ be the refined count of tropical curves passing through \mathcal{P} .

▲■▶ ▲■▶ ▲■▶ = 差 = のへで

Refined invariants

Replace the complex multiplicity by the *refined multiplicity*:

$$m_{\Gamma}^{q} = \prod_{V} rac{q^{m_{V}/2} - q^{-m_{V}/2}}{q^{1/2} - q^{-1/2}} \in \mathbb{Z}[q^{\pm 1/2}].$$

Let $BG_{g,(d_1,d_2)}(\mathcal{P})$ be the refined count of tropical curves passing through \mathcal{P} .

Theorem (B.)

 $BG_{g,(d_1,d_2)}(\mathcal{P})$ does not depend on \mathcal{P} as long as the choice is generic.

Notice that one has to check tropically the invariance: it does not come from a complex invariance.

• It is possible to define relative invariants by prescribing intersection profile with zero and infinite-section (*i.e.* weights of the ends).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- It is possible to define relative invariants by prescribing intersection profile with zero and infinite-section (*i.e.* weights of the ends).
- We have a Caporaso-Harris type formula and floor diagrams to compute invariants.

- It is possible to define relative invariants by prescribing intersection profile with zero and infinite-section (*i.e.* weights of the ends).
- We have a Caporaso-Harris type formula and floor diagrams to compute invariants.
- You can prove regularity results: quasi-modularity of generating series, piecewise polynomiality of relative invariants.

く 伺 ト く ヨ ト く ヨ ト

- It is possible to define relative invariants by prescribing intersection profile with zero and infinite-section (*i.e.* weights of the ends).
- We have a Caporaso-Harris type formula and floor diagrams to compute invariants.
- You can prove regularity results: quasi-modularity of generating series, piecewise polynomiality of relative invariants.
- Interpretation of refined invariants remains open:
 - Generating series of GW invariants with λ -classes ? (Bousseau)
 - Refined counts for real curves ?
 - ▶ ?

3 Curves in linear system in abelian surfaces

Thomas Blomme

Enumeration of tropical curves in abelian surfOnline seminar, January 27th 2020 14/3

A D N A B N A B N A B N

Definition

Let $\mathbb{T}A = \mathbb{R}^2/\Lambda$. The degree of Γ is the matrix $C : \Lambda^* \to \mathbb{Z}^2$ obtained by adding the slopes intersecting the right side and the top side respectively.

Definition

Let $\mathbb{T}A = \mathbb{R}^2/\Lambda$. The degree of Γ is the matrix $C : \Lambda^* \to \mathbb{Z}^2$ obtained by adding the slopes intersecting the right side and the top side respectively.

Proposition

Let $S : \Lambda \to \mathbb{R}^2$ be the inclusion. The matrix C is the degree of a tropical curve if and only if CS^T is symmetric.

This is due to the *gluing condition*.

Proposition

Let $S : \Lambda \to \mathbb{Z}^2$ be the inclusion. The matrix C is the degree of a tropical curve if and only if CS^T is symmetric.

This is due to the *gluing condition*.

Dimension of moduli space

The expected dimension is

$$(3g-3)-2g+2=g-1.$$

Due to gluing conditions/Menelaus relation:

Dimension of moduli space

The expected dimension is

$$(3g-3)-2g+2=g-1.$$

Due to gluing conditions/Menelaus relation:

Proposition

The dimension of the deformation space of genus g curves in class C is g.

Curves are superabundant but it matches the complex dimensions.

Problem

How many genus g curves in the class C pass through g points in general position ?

Theorem (Nishinou)

Given a (Mumford) family of abelian surfaces $\mathbb{C}A_t$ with a point configuration \mathcal{P}_t tropicalizing to $\mathcal{P} \subset \mathbb{T}A$, and $h : \Gamma \to \mathbb{T}A$ passing through \mathcal{P} , there are $m_{\Gamma}^{\mathbb{C}} = \cdots$ curves passing through \mathcal{P}_t and tropicalizing to Γ . In particular, $N_{g,C}^{\mathbb{C}} = N_{g,C}^{\mathbb{T}}$, that does not depend on \mathcal{P} nor $\mathbb{T}A$.

Theorem (Nishinou)

Given a (Mumford) family of abelian surfaces $\mathbb{C}A_t$ with a point configuration \mathcal{P}_t tropicalizing to $\mathcal{P} \subset \mathbb{T}A$, and $h : \Gamma \to \mathbb{T}A$ passing through \mathcal{P} , there are $m_{\Gamma}^{\mathbb{C}} = \cdots$ curves passing through \mathcal{P}_t and tropicalizing to Γ . In particular, $N_{g,C}^{\mathbb{C}} = N_{g,C}^{\mathbb{T}}$, that does not depend on \mathcal{P} nor $\mathbb{T}A$.

- The multiplicity is given by | ker Θ ⊗ C^{*} | ∏ w_e where Θ is a map between some lattices.
- In the toric case, the lattices have the same dimension. We compute with the determinant and get $\prod m_V$.
- Here, domain is rank one less than codomain.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (Nishinou)

Given a (Mumford) family of abelian surfaces $\mathbb{C}A_t$ with a point configuration \mathcal{P}_t tropicalizing to $\mathcal{P} \subset \mathbb{T}A$, and $h : \Gamma \to \mathbb{T}A$ passing through \mathcal{P} , there are $m_{\Gamma}^{\mathbb{C}} = \cdots$ curves passing through \mathcal{P}_t and tropicalizing to Γ . In particular, $N_{g,C}^{\mathbb{C}} = N_{g,C}^{\mathbb{T}}$, that does not depend on \mathcal{P} nor $\mathbb{T}A$.

- The multiplicity is given by | ker Θ ⊗ C^{*} | ∏ w_e where Θ is a map between some lattices.
- In the toric case, the lattices have the same dimension. We compute with the determinant and get $\prod m_V$.
- Here, domain is rank one less than codomain.

Theorem (B.)

The multiplicity expresses as $m_{\Gamma}^{\mathbb{C}} = \delta_{\Gamma} \prod m_V$, where $\delta_{\Gamma} = \operatorname{gcd} w_e$.

イロト 不得 トイヨト イヨト

The multiplicity is 1 on the left and $2 \cdot 4 \cdot 4 = 32$ on the right.

A D N A B N A B N A B N

Refined invariants

Replace the complex multiplicity by the *refined multiplicity*:

$$(\delta_{\Gamma})m_{\Gamma}^q = (\delta_{\Gamma})\prod_V rac{q^{m_V/2}-q^{-m_V/2}}{q^{1/2}-q^{-1/2}} \in \mathbb{Z}[q^{\pm 1/2}].$$

Let $BG_{g,C(,k)}(\mathbb{T}A, \mathcal{P})$ be the refined count of genus g, degree C (,gcd k) tropical curves passing through \mathcal{P} with multiplicity $(\delta_{\Gamma})m_{\Gamma}^{q}$.

Refined invariants

Replace the complex multiplicity by the *refined multiplicity*:

$$(\delta_{\Gamma})m_{\Gamma}^{q} = (\delta_{\Gamma})\prod_{V}rac{q^{m_{V}/2}-q^{-m_{V}/2}}{q^{1/2}-q^{-1/2}} \in \mathbb{Z}[q^{\pm 1/2}].$$

Let $BG_{g,C(,k)}(\mathbb{T}A, \mathcal{P})$ be the refined count of genus g, degree C (,gcd k) tropical curves passing through \mathcal{P} with multiplicity $(\delta_{\Gamma})m_{\Gamma}^{q}$.

Theorem (B.)

 $BG_{g,C(,k)}(\mathbb{T}A,\mathcal{P})$ does not depend on \mathcal{P} nor $\mathbb{T}A$ as long as the choice is generic.

Notice that one has to check tropically the invariance: it does not come from a complex invariance.

- We have circular floor diagrams to make computations.
- You can prove regularity statements such as the quasi-modularity of certain generating series.
- Interpretation of refined invariants remains open.

3 Curves in linear system in abelian surfaces

Thomas Blomme

Enumeration of tropical curves in abelian surfOnline seminar, January 27th 2020 22/3

< □ > < 同 > < 回 > < 回 > < 回 >

э

• Previously, curves of genus g through g points. Complement of marked points is without cycle.

- Now, fix g 2 points and the linear system. (\Rightarrow no translations anymore)
- In other words, you fix a curve Γ₀ of degree C, and ask for Γ Γ₀ to be the corner locus of an piecewise affine function.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

• You can assume that Γ_0 is of genus 2 and the boundary of a fundamental domain.

A B A A B A

э

Correspondence theorem

Theorem (B.)

Given a (Mumford) family of abelian surfaces $\mathbb{C}A_t$ with a point configuration \mathcal{P}_t tropicalizing to $\mathcal{P} \subset \mathbb{T}A$ and a linear system, and $h: \Gamma \to \mathbb{T}A$ tropical solution, there are $m_{\Gamma}^{\mathbb{C}} = \cdots$ curves in the linear system passing through \mathcal{P}_t and tropicalizing to Γ . In particular, $N_{g,C}^{FLS,\mathbb{C}} = N_{g,C}^{FLS,\mathbb{T}}$, that does not depend on \mathcal{P} nor $\mathbb{T}A$.

The multiplicity is given by $|\ker \Psi \otimes \mathbb{C}^*| \prod w_e$ where Ψ is a map between some lattices.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Correspondence theorem

Theorem (B.)

Given a (Mumford) family of abelian surfaces $\mathbb{C}A_t$ with a point configuration \mathcal{P}_t tropicalizing to $\mathcal{P} \subset \mathbb{T}A$ and a linear system, and $h: \Gamma \to \mathbb{T}A$ tropical solution, there are $m_{\Gamma}^{\mathbb{C}} = \cdots$ curves in the linear system passing through \mathcal{P}_t and tropicalizing to Γ . In particular, $N_{g,C}^{FLS,\mathbb{C}} = N_{g,C}^{FLS,\mathbb{T}}$, that does not depend on \mathcal{P} nor $\mathbb{T}A$.

The multiplicity is given by $|\ker \Psi \otimes \mathbb{C}^*| \prod w_e$ where Ψ is a map between some lattices.

Theorem (B.)

The multiplicity expresses as $m_{\Gamma}^{\mathbb{C}} = \delta_{\Gamma} \Lambda_{\Gamma}^{\Sigma} \prod m_{V}$, where $\delta_{\Gamma} = \operatorname{gcd} w_{e}$, and $\Lambda_{\Gamma}^{\Sigma}$ is the index of $H_{1}(\Sigma)$ inside $H_{1}(\mathbb{T}A) \simeq \Lambda$.

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

$$m_{\Gamma}^{\mathbb{C}} = 4$$

Deformation of the curve when moving a marked point.

Thomas Blomme

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Refined invariants

Replace the complex multiplicity by the *refined multiplicity*:

$$(\delta_\Gamma)\Lambda_\Gamma^\Sigma m_\Gamma^q = (\delta_\Gamma)\Lambda_\Gamma^\Sigma \prod_V rac{q^{m_V/2}-q^{-m_V/2}}{q^{1/2}-q^{-1/2}} \in \mathbb{Z}[q^{\pm 1/2}].$$

Let $BG_{g,C(,k)}^{FLS}(\mathbb{T}A, \mathcal{P})$ be the refined count of genus g, degree C (,gcd k) tropical curves passing through \mathcal{P} in a fixed linear system with multiplicity $(\delta_{\Gamma})\Lambda_{\Gamma}^{\Sigma}m_{\Gamma}^{q}$.

Refined invariants

Replace the complex multiplicity by the *refined multiplicity*:

$$(\delta_\Gamma) \Lambda_\Gamma^\Sigma m_\Gamma^q = (\delta_\Gamma) \Lambda_\Gamma^\Sigma \prod_V rac{q^{m_V/2}-q^{-m_V/2}}{q^{1/2}-q^{-1/2}} \in \mathbb{Z}[q^{\pm 1/2}].$$

Let $BG_{g,C(,k)}^{FLS}(\mathbb{T}A, \mathcal{P})$ be the refined count of genus g, degree C (,gcd k) tropical curves passing through \mathcal{P} in a fixed linear system with multiplicity $(\delta_{\Gamma})\Lambda_{\Gamma}^{\Sigma}m_{\Gamma}^{q}$.

Theorem (B.)

 $BG_{g,C(,k)}^{FLS}(\mathbb{T}A,\mathcal{P})$ does not depend on \mathcal{P} nor $\mathbb{T}A$ as long as the choice is generic.

Notice that one has to check tropically the invariance: it does not come from a complex invariance.

- We have circular floor diagrams to make computations.
- You can prove regularity statements such as the quasi-modularity of certain generating series.
- Interpretation of refined invariants remains open.
- It would be interesting if the new term $\Lambda_{\Gamma}^{\Sigma}$ also had a refinement.

Thanks !

Thomas Blomme

30/3 Enumeration of tropical curves in abelian surf<mark>Online seminar, January 27th 2020</mark>

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

3