Refined invariants for rational tropical curves in arbitrary dimension

Thomas Blomme

Online seminar, November 5th 2020

(1) Rational tropical curves and enumerative problems

(2) Refined Invariants in the ω-problem

(3) Refined Invariants General Case

4) Properties and Generalizations

Rational tropical curves

Let Γ be a finite metric graph without cycle with some infinite edges called ends.

Definition

A parametrized rational tropical curve in \mathbb{R}^{m} is a pair (Γ, h) where $h: \Gamma \rightarrow \mathbb{R}^{m}$ is such that

- h is affine with integer slope on the edges,
- at each vertex, one has the balancing condition:

$$
\sum_{E \ni V} \frac{\partial h}{\partial E}=0
$$

Definition

The collection $\left(n_{e}\right)$ of slopes of the unbounded ends is called the degree Δ.

Example of planar tropical curves

Example of spacial tropical curve

Example

Some 3 dimensional example.

Enumerative problems

The space of parametrized tropical curve of degree Δ in $N_{\mathbb{R}}=\mathbb{R}^{m}$ has dimension: $(|\Delta|$ unbounded ends and thus $|\Delta|-3$ bounded edges)

$$
\operatorname{dim} \mathcal{M}_{0}\left(\Delta, \mathbb{R}^{m}\right)=|\Delta|-3+m
$$

Enumerative problems

The space of parametrized tropical curve of degree Δ in $N_{\mathbb{R}}=\mathbb{R}^{m}$ has dimension: $(|\Delta|$ unbounded ends and thus $|\Delta|-3$ bounded edges)

$$
\operatorname{dim} \mathcal{M}_{0}\left(\Delta, \mathbb{R}^{m}\right)=|\Delta|-3+m
$$

For e unbounded end, let $L_{e} \ni n_{e}$ be a linear subspace of $N_{\mathbb{R}}$ of codim l_{e}, with rational slope. $\mathcal{L}_{e} \subset N_{\mathbb{R}}$ affine subspace of slope L_{e}.

$$
\sum_{e \in \Delta} I_{e}=|\Delta|-3+m
$$

Enumerative problems

The space of parametrized tropical curve of degree Δ in $N_{\mathbb{R}}=\mathbb{R}^{m}$ has dimension: $(|\Delta|$ unbounded ends and thus $|\Delta|-3$ bounded edges)

$$
\operatorname{dim} \mathcal{M}_{0}\left(\Delta, \mathbb{R}^{m}\right)=|\Delta|-3+m
$$

For e unbounded end, let $L_{e} \ni n_{e}$ be a linear subspace of $N_{\mathbb{R}}$ of codim l_{e}, with rational slope. $\mathcal{L}_{e} \subset N_{\mathbb{R}}$ affine subspace of slope L_{e}.

$$
\sum_{e \in \Delta} l_{e}=|\Delta|-3+m .
$$

Problem

How many paramatrized rational tropical curves satisfy $h(e) \subset \mathcal{L}_{e}$.
If $\left(\mathcal{L}_{e}\right)$ is chosen generically, solutions are trivalent curves.

theoretical resolution

- The space of curves $\mathcal{M}_{0}\left(\Delta, N_{\mathbb{R}}\right)$ is a union of cones of the form $\mathbb{R}_{+}^{|\Delta|-3} \times N_{\mathbb{R}}$ over the possible shapes of trivalent graphs.
- Each cone is endowed with a linear evaluation map

$$
\mathrm{ev}: \mathbb{R}_{+}^{|\Delta|-3} \times N_{\mathbb{R}} \longrightarrow \prod_{e} N_{\mathbb{R}} / L_{e}
$$

which sends a curve to the position of its unbounded ends e up to a translate by L_{e}.

theoretical resolution

- The space of curves $\mathcal{M}_{0}\left(\Delta, N_{\mathbb{R}}\right)$ is a union of cones of the form $\mathbb{R}_{+}^{|\Delta|-3} \times N_{\mathbb{R}}$ over the possible shapes of trivalent graphs.
- Each cone is endowed with a linear evaluation map

$$
\mathrm{ev}: \mathbb{R}_{+}^{|\Delta|-3} \times N_{\mathbb{R}} \longrightarrow \prod_{e} N_{\mathbb{R}} / L_{e}
$$

which sends a curve to the position of its unbounded ends e up to a translate by L_{e}.

- Solving the enumerative problem amounts to find the preimages of a point $\lambda \in \prod_{e} N_{\mathbb{R}} / L_{e}$. (space of choices of $\left(\mathcal{L}_{e}\right)$)
- This can be done as follows: for each cone, find the formal solution in $\mathbb{R}^{|\Delta|-3} \times N_{\mathbb{R}}$ and check that the first coordinates are positive. If the map is non invertible, there is no solution.

Example

In the planar case, $m=2$, the dimension is $|\Delta|-1$.
We look for rational curves which have all but one unbounded ends belonging to fixed lines.

Example
Take $\Delta=\left\{(-1,0)^{d},(0,-1)^{d},(1,1)^{d}\right\}$.

Example

Degree 1 curves with boundary constraints.

Example

Degree 1 curves with boundary constraints.

Example

Degree 2 curves with boundary constraints.

Example

Degree 2 curves with boundary constraints.

Example

Degree 3 curves with boundary constraints.

Example

Degree 3 curves with boundary constraints.

Example

Degree 3 curves with boundary constraints.

Example

Degree 3 curves with boundary constraints.

Example

Degree 3 curves with boundary constraints.

Example

Degree 3 curves with boundary constraints.

Example

Degree 3 curves with boundary constraints.

Example

Some 3-dimensional example.

Invariance Statements

The enumerative problem is related to a complex enumerative problem through a correspondence theorem (Mikhalkin, Shustin, Nishinou-Siebert, Tyomkin), providing a complex curve multiplicity $m_{\Gamma}^{\mathbb{C}}$.

$$
N_{\Delta}\left(\mathcal{L}_{e}\right)=\sum_{\Gamma: h(e) \subset \mathcal{L}_{e}} m_{\Gamma}^{\mathbb{C}}
$$

Invariance Statements

The enumerative problem is related to a complex enumerative problem through a correspondence theorem (Mikhalkin, Shustin, Nishinou-Siebert, Tyomkin), providing a complex curve multiplicity $m_{\Gamma}^{\mathbb{C}}$.

$$
N_{\Delta}\left(\mathcal{L}_{e}\right)=\sum_{\Gamma: h(e) \subset \mathcal{L}_{e}} m_{\Gamma}^{\mathbb{C}}
$$

Proposition

The count $N_{\Delta}\left(\mathcal{L}_{e}\right)$ does not depend on the choice of $\left(\mathcal{L}_{e}\right)$ as long as it is generic. It only depends on the choice of $\left(L_{e}\right)$.

In the planar case, the complex multiplicity (Mikhalkin) is given by

$$
m_{\Gamma}^{\mathbb{C}}=\prod_{V} m_{V}, \text { where } m_{V}=\left|\operatorname{det}\left(a_{V} \wedge b_{V}\right)\right|
$$

Now, consider the refined multiplicity (Block-Göttsche):

$$
B_{\Gamma}=\prod_{V}\left(q^{m_{V}}-q^{-m_{V}}\right) \in \mathbb{Z}\left[q^{ \pm 1}\right] .
$$

$$
\mathcal{B}_{\Delta}\left(\mathcal{L}_{e}\right)=\sum_{\Gamma: h(e) \subset \mathcal{L}_{e}} B_{\Gamma}^{q}
$$

In the planar case, the complex multiplicity (Mikhalkin) is given by

$$
m_{\Gamma}^{\mathbb{C}}=\prod_{V} m_{V}, \text { where } m_{V}=\left|\operatorname{det}\left(a_{V} \wedge b_{V}\right)\right|
$$

Now, consider the refined multiplicity (Block-Göttsche):

$$
B_{\Gamma}=\prod_{V}\left(q^{m_{V}}-q^{-m_{V}}\right) \in \mathbb{Z}\left[q^{ \pm 1}\right] .
$$

$$
\mathcal{B}_{\Delta}\left(\mathcal{L}_{e}\right)=\sum_{\Gamma: h(e) \subset \mathcal{L}_{e}} B_{\Gamma}^{q} .
$$

Theorem (Itenberg-Mikhalkin, Göttsche-Schroeter)

The count $\mathcal{B}_{\Delta}\left(\mathcal{L}_{e}\right)$ does not depend on the choice of $\left(\mathcal{L}_{e}\right)$ as long as it is generic. It only depends on the choice of $\left(L_{e}\right)$.

Back to the general case, the complex multiplicity $m_{\Gamma}^{\mathbb{C}}$ is not a product over the vertices anymore. (determinant of the evaluation matrix)

Back to the general case, the complex multiplicity $m_{\Gamma}^{\mathbb{C}}$ is not a product over the vertices anymore. (determinant of the evaluation matrix)

Problem

Can we also find a refined multiplicity that leads to an invariant ?

Back to the general case, the complex multiplicity $m_{\Gamma}^{\mathbb{C}}$ is not a product over the vertices anymore. (determinant of the evaluation matrix)

Problem

Can we also find a refined multiplicity that leads to an invariant ?

$$
\begin{gathered}
B_{\Gamma}^{q}= \pm \prod_{V}\left(q^{a_{V} \wedge b_{V}}-q^{-a_{V} \wedge b_{V}}\right) \in \mathbb{Z}\left[\Lambda^{2} N\right] \\
\mathcal{B}_{\Delta}\left(\mathcal{L}_{e}\right)=\sum_{\Gamma: h(e) \subset \mathcal{L}_{e}} B_{\Gamma}^{q}
\end{gathered}
$$

Back to the general case, the complex multiplicity $m_{\Gamma}^{\mathbb{C}}$ is not a product over the vertices anymore. (determinant of the evaluation matrix)

Problem

Can we also find a refined multiplicity that leads to an invariant ?

$$
\begin{gathered}
B_{\Gamma}^{q}= \pm \prod_{V}\left(q^{a_{V} \wedge b_{V}}-q^{-a_{V} \wedge b_{V}}\right) \in \mathbb{Z}\left[\Lambda^{2} N\right] . \\
\mathcal{B}_{\Delta}\left(\mathcal{L}_{e}\right)=\sum_{\Gamma: h(e) \subset \mathcal{L}_{e}} B_{\Gamma}^{q} .
\end{gathered}
$$

Theorem (B.)

The count $\mathcal{B}_{\Delta}\left(\mathcal{L}_{e}\right)$ does not depend on the choice of $\left(\mathcal{L}_{e}\right)$ as long as it is generic. It only depends on the choice of $\left(L_{e}\right)$.

(1) Rational tropical curves and enumerative problems

(2) Refined Invariants in the ω-problem

(3) Refined Invariants General Case

4) Properties and Generalizations

ω-problem

Inside $N_{\mathbb{R}}$, where $N=\mathbb{Z}^{m}$. Let Δ be a degree, e_{0} directed by $n_{e_{0}} \in \Delta$ some end, $\omega \in \operatorname{Hom}\left(\Lambda^{2} N, \mathbb{Z}\right)$ be a generic 2 -form, and $L_{e_{0}}=P \ni n_{e_{0}}$ be a plane.
For $e \neq e_{0}$, let

$$
L_{e}=\left\langle n_{e}\right\rangle^{\perp_{\omega}} \ni n_{e},
$$

so that

$$
\sum_{e} l_{e}=|\Delta|-1+m-2 .
$$

Problem

This particular enumerative problem is called the ω-problem.

For the ω-problem, up to a global scalar depending on ω and P, the complex multiplicity given by the correspondence theorem has the form

$$
m_{\Gamma}^{\mathbb{C}}=\prod_{V} m_{V}, \text { where } m_{V}=\omega\left(a_{V} \wedge b_{V}\right)>0
$$

For the ω-problem, up to a global scalar depending on ω and P, the complex multiplicity given by the correspondence theorem has the form

$$
m_{\Gamma}^{\mathbb{C}}=\prod_{V} m_{V}, \text { where } m_{V}=\omega\left(a_{V} \wedge b_{V}\right)>0
$$

$$
m_{\Gamma}^{q}=\prod_{V}\left(q^{\omega\left(a_{V} \wedge b_{V}\right)}-q^{-\omega\left(a_{V} \wedge b_{V}\right)}\right) \in \mathbb{Z}\left[q^{ \pm 1}\right]
$$

For the ω-problem, up to a global scalar depending on ω and P, the complex multiplicity given by the correspondence theorem has the form

$$
m_{\Gamma}^{\mathbb{C}}=\prod_{V} m_{V}, \text { where } m_{V}=\omega\left(a_{V} \wedge b_{V}\right)>0
$$

$$
m_{\Gamma}^{q}=\prod_{V}\left(q^{\omega\left(a_{V} \wedge b_{V}\right)}-q^{-\omega\left(a_{V} \wedge b_{V}\right)}\right) \in \mathbb{Z}\left[q^{ \pm 1}\right]
$$

$$
B_{\Gamma}=\prod_{V}\left(q^{a_{V} \wedge b_{V}}-q^{-a_{V} \wedge b_{V}}\right) \in \mathbb{Z}\left[\wedge^{2} N\right]
$$

Proposition

The count of solutions to the ω-problem using previous multiplicities does not depend on the choice of $\left(\mathcal{L}_{e}\right)$ as long as it is generic. It only depends on the choice of ω and e_{0}.

Proof.

Proof is entirely similar to the planar case: $a+b+c+d=0$.

$$
m_{1}=m_{2}+m_{3}
$$

$$
\omega(a, b) \omega(c, d)+\omega(a, c) \omega(b, d)=\omega(a, d) \omega(b, c)
$$

Proof.

$$
\omega(a, b) \omega(c, d)+\omega(a, c) \omega(b, d)=\omega(a, d) \omega(b, c)
$$

Proof.

$$
\begin{gathered}
\omega(a, b) \omega(c, d)+\omega(a, c) \omega(b, d)=\omega(a, d) \omega(b, c) \\
\left(q^{\omega(a, b)}-q^{-\omega(a, b)}\right)\left(q^{\omega(c, d)}-q^{-\omega(c, d)}\right) \\
+\left(q^{\omega(a, c)}-q^{-\omega(a, c)}\right)\left(q^{\omega(b, d)}-q^{-\omega(b, d)}\right) \\
=\left(q^{\omega(a, d)}-q^{-\omega(a, d)}\right)\left(q^{\omega(b, c)}-q^{-\omega(b, c)}\right)
\end{gathered}
$$

Proof.

$$
\begin{aligned}
& \omega(a, b) \omega(c, d)+\omega(a, c) \omega(b, d)=\omega(a, d) \omega(b, c) \\
& \left(q^{\omega(a, b)}-q^{-\omega(a, b)}\right)\left(q^{\omega(c, d)}-q^{-\omega(c, d)}\right) \\
& +\left(q^{\omega(a, c)}-q^{-\omega(a, c)}\right)\left(q^{\omega(b, d)}-q^{-\omega(b, d)}\right) \\
& =\left(q^{\omega(a, d)}-q^{-\omega(a, d)}\right)\left(q^{\omega(b, c)}-q^{-\omega(b, c)}\right) \\
& \left(q^{a \wedge b}-q^{-a \wedge b}\right)\left(q^{c \wedge d}-q^{-c \wedge d}\right) \\
& +\left(q^{a \wedge c}-q^{-a \wedge c}\right)\left(q^{b \wedge d}-q^{-b \wedge d}\right) \\
& =\left(q^{a \wedge d}-q^{-a \wedge d}\right)\left(q^{b \wedge c}-q^{-b \wedge c}\right)
\end{aligned}
$$

If ω is not generic, some combinatorial type might have complex multiplicity 0 : it never provides a solution.

One needs to have $m_{1}=m_{2}$, which can be done as before by quotienting the exponents by K_{ω} : space spanned by the $a_{V} \wedge b_{V}$ for some vertex of some curve, with $\omega\left(a_{V} \wedge b_{V}\right)=0$.

$$
\begin{gathered}
\omega(a, b) \omega(c, d)+\omega(a, c) \omega(b, d)=\omega(a, d) \omega(b, c) \\
\left(q^{\omega(a, b)}-q^{-\omega(a, b)}\right)\left(q^{\omega(c, d)}-q^{-\omega(c, d)}\right) \\
=\left(q^{\omega(a, d)}-q^{-\omega(a, d)}\right)\left(q^{\omega(b, c)}-q^{-\omega(b, c)}\right) \\
\left(q^{a \wedge b}-q^{-a \wedge b}\right)\left(q^{c \wedge d}-q^{-c \wedge d}\right) \\
= \\
+\left(q^{a \wedge(b, c}-q^{-a \wedge d}\right)\left(q^{b \wedge d} q^{-b \wedge d}\right) \\
\left.q^{b \wedge c}-q^{-b \wedge c}\right)
\end{gathered}
$$

(1) Rational tropical curves and enumerative problems

(2) Refined Invariants in the ω-problem
(3) Refined Invariants General Case

4) Properties and Generalizations

Idea

Back to the general case where $\left(L_{e}\right)$ are not defined by a 2-form.

- No magic recipe for the complex multiplicity. (i.e. as a product over the vertices)
- No simple way to deform the multiplicity into an interesting polynomial.

Idea

Back to the general case where $\left(L_{e}\right)$ are not defined by a 2-form.

- No magic recipe for the complex multiplicity. (i.e. as a product over the vertices)
- No simple way to deform the multiplicity into an interesting polynomial.
- The plan is to recycle and use the same multiplicity.

$$
B_{\Gamma}=\prod_{V}\left(q^{a_{V} \wedge b_{V}}-q^{-a_{V} \wedge b_{V}}\right) \in \mathbb{Z}\left[\wedge^{2} N\right]
$$

Idea

Back to the general case where $\left(L_{e}\right)$ are not defined by a 2-form.

- No magic recipe for the complex multiplicity. (i.e. as a product over the vertices)
- No simple way to deform the multiplicity into an interesting polynomial.
- The plan is to recycle and use the same multiplicity.

$$
B_{\Gamma}=\prod_{V}\left(q^{a_{V} \wedge b_{V}}-q^{-a_{V} \wedge b_{V}}\right) \in \mathbb{Z}\left[\wedge^{2} N\right]
$$

However, the invariance might fail.

Wall

Invariance for B_{Γ}

$$
m_{1}=m_{2}+m_{3}
$$

(ω-problem)

Invariance for $m^{\mathbb{C},\left(L_{e}\right)}$

$$
m_{1}+m_{2}=\overline{m_{3}}
$$

$$
m_{1}-m_{2}=m_{3}
$$

Nevertheless, adding some signs might just work.

Statement of the main result

Assume no combinatorial type has zero complex multiplicity. Let ω be a generic 2-form.

$$
B_{\Gamma}=\prod_{V}\left(q^{a_{V} \wedge b_{V}}-q^{-a_{V} \wedge b_{V}}\right) \in \mathbb{Z}\left[\wedge^{2} N\right]
$$

where $\omega\left(a_{V}, b_{V}\right)>0$.

Statement of the main result

Assume no combinatorial type has zero complex multiplicity. Let ω be a generic 2-form.

$$
B_{\Gamma}=\prod_{V}\left(q^{a_{V} \wedge b_{V}}-q^{-a_{V} \wedge b_{V}}\right) \in \mathbb{Z}\left[\wedge^{2} N\right]
$$

where $\omega\left(a_{V}, b_{V}\right)>0$.

Theorem (B.)

There exists some signs $\varepsilon_{\Gamma}= \pm 1$ such that the count of solutions using multiplicity $\varepsilon_{\Gamma} B_{\Gamma}$ leads to an invariant.

First Proof.

(1) Use the rule presented before the proof to propagate the definition of the signs.

First Proof.

(1) Use the rule presented before the proof to propagate the definition of the signs.

(2) Check that these are well-defined, i.e. the sign does not depend on the path from a combinatorial type to another.

First Proof.

(1) Use the rule presented before the proof to propagate the definition of the signs.

(2) Check that these are well-defined, i.e. the sign does not depend on the path from a combinatorial type to another.
(3) The obtained condition does not depend on the problem, so it works because $B_{\Gamma}^{K_{\omega}}$ leads to an invariant in the ω-problem.

Second Proof.

The space $\mathcal{M}_{0}\left(\Delta, N_{\mathbb{R}}\right)$ is a fan, endowed with an evaluation map whose fibers are the solutions for a choice of $\left(\mathcal{L}_{e}\right)$:

$$
\mathrm{ev}: \mathcal{M}_{0}\left(\Delta, N_{\mathbb{R}}\right) \rightarrow \prod_{e} \mathbb{R}^{m} / L_{e} \simeq \mathbb{R}^{|\Delta|+m-3}
$$

Second Proof.

The space $\mathcal{M}_{0}\left(\Delta, N_{\mathbb{R}}\right)$ is a fan, endowed with an evaluation map whose fibers are the solutions for a choice of $\left(\mathcal{L}_{e}\right)$:

$$
\mathrm{ev}: \mathcal{M}_{0}\left(\Delta, N_{\mathbb{R}}\right) \rightarrow \prod_{e} \mathbb{R}^{m} / L_{e} \simeq \mathbb{R}^{|\Delta|+m-3}
$$

For a cone $\Gamma \simeq \mathbb{R}_{+}^{|\Delta|-3} \times N_{\mathbb{R}}$, let $\mathfrak{o r}_{\text {ev }}(\Gamma)$ be the orientation induced by a fixed orientation of $\mathbb{R}^{|\Delta|+m-3}$. Then m_{Γ} leads to an invariant if and only if

$$
\equiv=\sum_{\Gamma} m_{\Gamma}\left(\Gamma, \mathfrak{o r}_{\mathrm{ev}}(\Gamma)\right) \in C_{|\Delta|+m-3}\left(\mathcal{M}_{0}\left(\Delta, N_{\mathbb{R}}\right)\right)
$$

is a cycle. (i.e. $\partial \equiv=0)$: at each wall " $m_{1}+m_{2}-m_{3}=0$ ".

Second Proof.

The space $\mathcal{M}_{0}\left(\Delta, N_{\mathbb{R}}\right)$ is a fan, endowed with an evaluation map whose fibers are the solutions for a choice of $\left(\mathcal{L}_{e}\right)$:

$$
\mathrm{ev}: \mathcal{M}_{0}\left(\Delta, N_{\mathbb{R}}\right) \rightarrow \prod_{e} \mathbb{R}^{m} / L_{e} \simeq \mathbb{R}^{|\Delta|+m-3}
$$

For a cone $\Gamma \simeq \mathbb{R}_{+}^{|\Delta|-3} \times N_{\mathbb{R}}$, let $\mathfrak{o r}_{\text {ev }}(\Gamma)$ be the orientation induced by a fixed orientation of $\mathbb{R}^{|\Delta|+m-3}$. Then m_{Γ} leads to an invariant if and only if

$$
\equiv=\sum_{\Gamma} m_{\Gamma}\left(\Gamma, \mathfrak{o r}_{\mathrm{ev}}(\Gamma)\right) \in C_{|\Delta|+m-3}\left(\mathcal{M}_{0}\left(\Delta, N_{\mathbb{R}}\right)\right)
$$

is a cycle. (i.e. $\partial \bar{\Xi}=0$): at each wall " $m_{1}+m_{2}-m_{3}=0$ ".

$$
\sum_{\Gamma} \frac{\mathfrak{o r}_{\omega}(\Gamma)}{\mathfrak{o r}_{\mathrm{ev}}(\Gamma)} B_{\Gamma}\left(\Gamma, \mathfrak{o r}_{\mathrm{ev}}(\Gamma)\right)=\sum_{\Gamma} B_{\Gamma}\left(\Gamma, \mathfrak{o r}_{\omega}(\Gamma)\right) \text { is a cycle. }
$$

One takes $\varepsilon_{\Gamma}=\frac{\mathfrak{o r}_{\omega}(\Gamma)}{\mathfrak{o r}_{\mathrm{ev}}(\Gamma)}$.

If some combinatorial type has complex multiplicity 0 , it never provides a solution.

Let ω be such that $m_{\Gamma}^{\mathbb{C},\left(L_{e}\right)}=0 \Rightarrow m_{\Gamma}^{\mathbb{C}, \omega}=0$.

$$
B_{\Gamma}^{K_{\omega}}=\prod_{V}\left(q^{a_{V} \wedge b_{V}}-q^{-a_{V} \wedge b_{V}}\right) \in \mathbb{Z}\left[\wedge^{2} N / K_{\omega}\right]
$$

(1) Rational tropical curves and enumerative problems
(2) Refined Invariants in the ω-problem
(3) Refined Invariants General Case
4) Properties and Generalizations

Continuity

Back to the ω-problem. What about $\omega \mapsto \mathcal{B}_{\Delta}^{\omega, e_{0}}$?

Continuity

Back to the ω-problem. What about $\omega \mapsto \mathcal{B}_{\Delta}^{\omega, e_{0}}$?

Theorem

There is a fan Ω_{Δ} in $\operatorname{Hom}\left(\Lambda^{2} N_{\mathbb{R}}, \mathbb{R}\right)$ such that:

- $\omega \mapsto K_{\omega}$ is constant on the cones.
- $\omega \mapsto \mathcal{B}_{\Delta}^{\omega, e_{0}} \in \mathbb{Z}\left[\Lambda^{2} N / K_{\omega}\right]$ is constant on the cones.
- If $\tau \prec \sigma$, then $K_{\tau} \supset K_{\sigma}$,
- If $\tau \prec \sigma$, then $\mathcal{B}_{\tau}=\pi_{\sigma \tau}\left(\mathcal{B}_{\sigma}\right)$.

Sketch of proof: Use the implicit function theorem for the evaluation map. There is a similar statement for $\mathcal{B}_{\Delta}\left(L_{e}\right)$.

Extension of the constraints

Problem

Can one replace \mathcal{L}_{e} with tropical cycles of the same dimension ? (for instance a line with a tropical curve)

Extension of the constraints

Problem

Can one replace \mathcal{L}_{e} with tropical cycles of the same dimension ? (for instance a line with a tropical curve)

Not really since there is new kind of "walls" that appear, and one does not have an evaluation map anymore. However,

Theorem (B.)

In the ω-problem, P can be replaced by $C \times\left\langle n_{e_{0}}\right\rangle$, where C is a tropical curve.

Constraints in the main strata

Problem

Can one impose constraints in the main strata instead of on the unbounded ends ?

Constraints in the main strata

Problem

Can one impose constraints in the main strata instead of on the unbounded ends?

Yes, by using the same proof and the following analog to the ω-problem:

$$
\omega \text { - problem } \oplus \text { meeting some hyperplanes. }
$$

However, multiplicities become more complicated and depend on the slope of the chosen hyperplanes.

Theorem (B.)

In the ω-problem, the P condition can be replaced by meeting some tropical curve C inside $N_{\mathbb{R}}$.

relation to classical invariants

- Using some correspondence theorem, the enumerative problem relates to a complex and a real classical enumerative problem:

Problem

Let Δ be a degree and $\mathbb{C} \Delta$ be some toric variety associated to a fan containing Δ. How many rational curves meet the toric divisors in some chosen suborbits under the actions of L_{e} ?

For instance $\Delta=\left\{-e_{1}^{d}, \ldots,-e_{n}^{d},\left(\sum e_{i}\right)^{d}\right\}$ for degree d curves in $\mathbb{C} \Delta=\mathbb{C} P^{n}$.

relation to classical invariants

- Using some correspondence theorem, the enumerative problem relates to a complex and a real classical enumerative problem:

Problem

Let Δ be a degree and $\mathbb{C} \Delta$ be some toric variety associated to a fan containing Δ. How many rational curves meet the toric divisors in some chosen suborbits under the actions of L_{e} ?

For instance $\Delta=\left\{-e_{1}^{d}, \ldots,-e_{n}^{d},\left(\sum e_{i}\right)^{d}\right\}$ for degree d curves in $\mathbb{C} \Delta=\mathbb{C} P^{n}$.

- In the planar case, the tropical invariant is equal to a refined classical invariant introduced by Mikhalkin. (refined according to the value of a "quantum index")

relation to classical invariants

- Using some correspondence theorem, the enumerative problem relates to a complex and a real classical enumerative problem:

Problem

Let Δ be a degree and $\mathbb{C} \Delta$ be some toric variety associated to a fan containing Δ. How many rational curves meet the toric divisors in some chosen suborbits under the actions of L_{e} ?

For instance $\Delta=\left\{-e_{1}^{d}, \ldots,-e_{n}^{d},\left(\sum e_{i}\right)^{d}\right\}$ for degree d curves in $\mathbb{C} \Delta=\mathbb{C} P^{n}$.

- In the planar case, the tropical invariant is equal to a refined classical invariant introduced by Mikhalkin. (refined according to the value of a "quantum index")
- Sadly, in higher dimension, such a refined classical invariant remains to be found. (Although there is already some quantum class generalizing the quantum index)

Thanks!

