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Rational tropical curves

Let Γ be a finite metric graph without cycle with some infinite edges called
ends.

Definition

A parametrized rational tropical curve in Rm is a pair (Γ, h) where
h : Γ→ Rm is such that

h is affine with integer slope on the edges,

at each vertex, one has the balancing condition:∑
E3V

∂h

∂E
= 0.

Definition

The collection (ne) of slopes of the unbounded ends is called the degree ∆.
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Example of planar tropical curves

2

2
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Example of spacial tropical curve

Example

Some 3 dimensional example.

Thomas Blomme Refined invariants for rational tropical curves in arbitrary dimensionOnline seminar, November 5th 2020 5 / 43



Enumerative problems

The space of parametrized tropical curve of degree ∆ in NR = Rm has
dimension: (|∆| unbounded ends and thus |∆| − 3 bounded edges)

dimM0(∆,Rm) = |∆| − 3 + m.

For e unbounded end, let Le 3 ne be a linear subspace of NR of codim le ,
with rational slope. Le ⊂ NR affine subspace of slope Le .∑

e∈∆

le = |∆| − 3 + m.

Problem

How many paramatrized rational tropical curves satisfy h(e) ⊂ Le .

If (Le) is chosen generically, solutions are trivalent curves.
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theoretical resolution

The space of curves M0(∆,NR) is a union of cones of the form

R|∆|−3
+ × NR over the possible shapes of trivalent graphs.

Each cone is endowed with a linear evaluation map

ev : R|∆|−3
+ × NR −→

∏
e

NR/Le ,

which sends a curve to the position of its unbounded ends e up to a
translate by Le .

Solving the enumerative problem amounts to find the preimages of a
point λ ∈

∏
e NR/Le . (space of choices of (Le) )

This can be done as follows: for each cone, find the formal solution in
R|∆|−3 × NR and check that the first coordinates are positive. If the
map is non invertible, there is no solution.
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Example

In the planar case, m = 2, the dimension is |∆| − 1.

We look for rational curves which have all but one unbounded ends
belonging to fixed lines.

Example

Take ∆ = {(−1, 0)d , (0,−1)d , (1, 1)d}.
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Example

Degree 1 curves with boundary constraints.

?
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Example

Degree 1 curves with boundary constraints.
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Example

Degree 2 curves with boundary constraints.
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Example

Degree 2 curves with boundary constraints.
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Example

Degree 3 curves with boundary constraints.
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Example

Degree 3 curves with boundary constraints.
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Example

Degree 3 curves with boundary constraints.
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Example

Degree 3 curves with boundary constraints.
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Example

Some 3-dimensional example.
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Invariance Statements

The enumerative problem is related to a complex enumerative problem
through a correspondence theorem (Mikhalkin, Shustin, Nishinou-Siebert,
Tyomkin), providing a complex curve multiplicity mC

Γ .

N∆(Le) =
∑

Γ:h(e)⊂Le

mC
Γ .

Proposition

The count N∆(Le) does not depend on the choice of (Le) as long as it is
generic. It only depends on the choice of (Le).
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In the planar case, the complex multiplicity
(Mikhalkin) is given by

mC
Γ =

∏
V

mV , where mV = | det(aV ∧ bV )|.

V

aV

bV

−aV − bV

Now, consider the refined multiplicity (Block-Göttsche):

BΓ =
∏
V

(qmV − q−mV ) ∈ Z[q±1].

B∆(Le) =
∑

Γ:h(e)⊂Le

Bq
Γ .

Theorem (Itenberg-Mikhalkin, Göttsche-Schroeter)

The count B∆(Le) does not depend on the choice of (Le) as long as it is
generic. It only depends on the choice of (Le).

Thomas Blomme Refined invariants for rational tropical curves in arbitrary dimensionOnline seminar, November 5th 2020 22 / 43



In the planar case, the complex multiplicity
(Mikhalkin) is given by

mC
Γ =

∏
V

mV , where mV = | det(aV ∧ bV )|.

V

aV

bV

−aV − bV

Now, consider the refined multiplicity (Block-Göttsche):
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Back to the general case, the complex multiplicity mC
Γ is not a product

over the vertices anymore. (determinant of the evaluation matrix)

Problem

Can we also find a refined multiplicity that leads to an invariant ?

Bq
Γ = ±

∏
V

(qaV∧bV − q−aV∧bV ) ∈ Z[Λ2N].

B∆(Le) =
∑

Γ:h(e)⊂Le

Bq
Γ .

Theorem (B.)

The count B∆(Le) does not depend on the choice of (Le) as long as it is
generic. It only depends on the choice of (Le).
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ω-problem

Inside NR, where N = Zm. Let ∆ be a degree, e0 directed by ne0 ∈ ∆
some end, ω ∈ Hom(Λ2N,Z) be a generic 2-form, and Le0 = P 3 ne0 be a
plane.
For e 6= e0, let

Le = 〈ne〉⊥ω 3 ne ,

so that ∑
e

le = |∆| − 1 + m − 2.

Problem

This particular enumerative problem is called the ω-problem.
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For the ω-problem, up to a global scalar depending on ω and P, the
complex multiplicity given by the correspondence theorem has the form

mC
Γ =

∏
V

mV , where mV = ω(aV ∧ bV ) > 0.

mq
Γ =

∏
V

(qω(aV∧bV ) − q−ω(aV∧bV )) ∈ Z[q±1] ,

BΓ =
∏
V

(qaV∧bV − q−aV∧bV ) ∈ Z[Λ2N] .

Proposition

The count of solutions to the ω-problem using previous multiplicities does
not depend on the choice of (Le) as long as it is generic. It only depends
on the choice of ω and e0.
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Proof.

Proof is entirely similar to the planar case: a + b + c + d = 0.
m3

m2

m1

m3

m2

m1

m1 = m2 + m3

ω(a, b)ω(c , d) + ω(a, c)ω(b, d) = ω(a, d)ω(b, c)
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Proof.

ω(a, b)ω(c , d) + ω(a, c)ω(b, d) = ω(a, d)ω(b, c)

(qω(a,b) − q−ω(a,b))(qω(c,d) − q−ω(c,d))

+(qω(a,c) − q−ω(a,c))(qω(b,d) − q−ω(b,d))

= (qω(a,d) − q−ω(a,d))(qω(b,c) − q−ω(b,c))

(qa∧b − q−a∧b)(qc∧d − q−c∧d)
+(qa∧c − q−a∧c)(qb∧d − q−b∧d)

= (qa∧d − q−a∧d)(qb∧c − q−b∧c)
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If ω is not generic, some combinatorial type might have complex
multiplicity 0: it never provides a solution.

m3

m2

m1

One needs to have m1 = m2, which can be done as before by quotienting
the exponents by Kω: space spanned by the aV ∧ bV for some vertex of
some curve, with ω(aV ∧ bV ) = 0.
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ω(a, b)ω(c , d) +(((((((
ω(a, c)ω(b, d) = ω(a, d)ω(b, c)

(qω(a,b) − q−ω(a,b))(qω(c,d) − q−ω(c,d))

+((((((((((
(qω(a,c) − q−ω(a,c))((((((((((

(qω(b,d) − q−ω(b,d))

= (qω(a,d) − q−ω(a,d))(qω(b,c) − q−ω(b,c))

(qa∧b − q−a∧b)(qc∧d − q−c∧d)
+((((((((

(qa∧c − q−a∧c)((((((((
(qb∧d − q−b∧d)

= (qa∧d − q−a∧d)(qb∧c − q−b∧c)
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Idea

Back to the general case where (Le) are not defined by a 2-form.

No magic recipe for the complex multiplicity. (i.e. as a product over
the vertices)

No simple way to deform the multiplicity into an interesting
polynomial.

The plan is to recycle and use the same multiplicity.

BΓ =
∏
V

(qaV∧bV − q−aV∧bV ) ∈ Z[Λ2N] .

However, the invariance might fail.
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Wall

m3

m2

m1

Invariance for BΓ

m3

m2

m1

m1 = m2 + m3

(ω-problem)

Invariance for mC,(Le)

m3

m2

m1

((((((((
m1 + m2 = m3

m1 −m2 = m3
Nevertheless, adding some signs might just work.
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Statement of the main result

Assume no combinatorial type has zero complex multiplicity. Let ω be a
generic 2-form.

BΓ =
∏
V

(qaV∧bV − q−aV∧bV ) ∈ Z[Λ2N] ,

where ω(aV , bV ) > 0.

Theorem (B.)

There exists some signs εΓ = ±1 such that the count of solutions using
multiplicity εΓBΓ leads to an invariant.
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First Proof.
1 Use the rule presented before the proof to propagate the definition of

the signs.
m3

m2

m1

m1 −m2 = m3,

If ε1 = +1, then one
takes

ε2 = −1 and ε3 = +1.

2 Check that these are well-defined, i.e. the sign does not depend on
the path from a combinatorial type to another.

3 The obtained condition does not depend on the problem, so it works
because BKω

Γ leads to an invariant in the ω-problem.
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Second Proof.

The space M0(∆,NR) is a fan, endowed with an evaluation map whose
fibers are the solutions for a choice of (Le):

ev :M0(∆,NR)→
∏
e

Rm/Le ' R|∆|+m−3.

For a cone Γ ' R|∆|−3
+ × NR, let orev(Γ) be the orientation induced by a

fixed orientation of R|∆|+m−3. Then mΓ leads to an invariant if and only if

Ξ =
∑

Γ

mΓ(Γ, orev(Γ)) ∈ C|∆|+m−3(M0(∆,NR))

is a cycle. (i.e. ∂Ξ = 0): at each wall ”m1 + m2 −m3 = 0”.∑
Γ

orω(Γ)

orev(Γ)
BΓ(Γ, orev(Γ)) =

∑
Γ

BΓ(Γ, orω(Γ)) is a cycle.

One takes εΓ = orω(Γ)
orev(Γ) .
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mΓ(Γ, orev(Γ)) ∈ C|∆|+m−3(M0(∆,NR))

is a cycle. (i.e. ∂Ξ = 0): at each wall ”m1 + m2 −m3 = 0”.∑
Γ

orω(Γ)

orev(Γ)
BΓ(Γ, orev(Γ)) =

∑
Γ

BΓ(Γ, orω(Γ)) is a cycle.

One takes εΓ = orω(Γ)
orev(Γ) .
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If some combinatorial type has complex multiplicity 0, it never provides a
solution.

m3

m2

m1

Let ω be such that m
C,(Le)
Γ = 0⇒ mC,ω

Γ = 0.

BKω
Γ =

∏
V

(qaV∧bV − q−aV∧bV ) ∈ Z[Λ2N/Kω] .
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Continuity

Back to the ω-problem. What about ω 7→ Bω,e0

∆ ?

Theorem

There is a fan Ω∆ in Hom(Λ2NR,R) such that:

ω 7→ Kω is constant on the cones.

ω 7→ Bω,e0

∆ ∈ Z[Λ2N/Kω] is constant on the cones.

If τ ≺ σ, then Kτ ⊃ Kσ,

If τ ≺ σ, then Bτ = πστ (Bσ).

Sketch of proof : Use the implicit function theorem for the evaluation map.

There is a similar statement for B∆(Le).
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Extension of the constraints

Problem

Can one replace Le with tropical cycles of the same dimension ? (for
instance a line with a tropical curve)

Not really since there is new kind of ”walls” that appear, and one does not
have an evaluation map anymore. However,

Theorem (B.)

In the ω-problem, P can be replaced by C × 〈ne0〉, where C is a tropical
curve.
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Constraints in the main strata

Problem

Can one impose constraints in the main strata instead of on the
unbounded ends ?

Yes, by using the same proof and the following analog to the ω-problem:

ω − problem ⊕ meeting some hyperplanes.

However, multiplicities become more complicated and depend on the slope
of the chosen hyperplanes.

Theorem (B.)

In the ω-problem, the P condition can be replaced by meeting some
tropical curve C inside NR.
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relation to classical invariants

Using some correspondence theorem, the enumerative problem relates
to a complex and a real classical enumerative problem:

Problem

Let ∆ be a degree and C∆ be some toric variety associated to a fan
containing ∆. How many rational curves meet the toric divisors in some
chosen suborbits under the actions of Le ?

For instance ∆ = {−ed1 , . . . ,−edn , (
∑

ei )
d} for degree d curves in

C∆ = CPn.

In the planar case, the tropical invariant is equal to a refined classical
invariant introduced by Mikhalkin. (refined according to the value of
a ”quantum index”)

Sadly, in higher dimension, such a refined classical invariant remains
to be found. (Although there is already some quantum class
generalizing the quantum index)
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Thanks !
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