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Introduction

@ Talk based on arXiv:2109.13323, joint work with Hilya Argliz, Rahul
Pandharipande, Dimitri Zvonkine.

@ Main result: an inductive algorithm computing Gromov-Witten
invariants in all genera with arbitrary insertions of all smooth
complete intersections of hypersurfaces in projective space.

@ Application: all Gromov-Witten classes of complete intersections in

projective space are tautological elements in the cohomology of the
moduli space of stable curves.

@ Main technical tool: nodal Gromov—Witten theory, working with
domain curves with prescribed nodes.
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Gromov—Witten invariants and Gromov—Witten classes.
Complete intersections in projective space.
The main issue: degeneration versus vanishing cycles.

The main idea: trading vanishing cycles against nodes.

Foundational results in nodal Gromov=Witten theory
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Gromov—=Witten invariants

Part of complex enumerative geometry: counts of complex algebraic
curves in complex algebraic varieties.

@ How many lines on a cubic surface? 27
@ How many lines on a general quintic 3-fold hypersurface? 2875
@ How many lines in P2 meeting 4 given lines in general position? 2

@ How many rational cubic curves in P? passing through 8 points in
general position? 12
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Gromov—=Witten invariants

@ Gromov-Witten invariants of a smooth projective variety X: numbers
defined by intersection theory on the moduli space of stable maps to
X.

@ In nice cases, agree with counts of curves passing through general
constraints. But not always: “virtual counts" in general.

@ Key property: invariant under deformation of the complex structure
on X and of the constraints.
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Gromov—=Witten invariants

Fix X a smooth projective variety over C

Definition (Kontsevich, 1994)

An n-pointed genus g stable map to X of class 5 is a morphism

f.(C,x1,...,%n) — X,

where

@ C: nodal projective curve of arithmetic genus g.

® X1,...,Xn: n (ordered) smooth marked points on C.
o fi[C] =5 € Ha(X,Z).
@ (stability) there are finitely automorphisms of (C, x1, ..., xp)

commuting with f.

o M, ,3(X): moduli space of n-pointed genus g stable maps to X of

class 3. Proper Deligne-Mumford stack.
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Gromov—=Witten invariants

o M, ,5(X): moduli space of n-pointed genus g stable maps to X of
class 5. Proper Deligne-Mumford stack.

@ Virtual dimension:
vdg ng = (1—g)(dimX —=3)+ 3 ci(X)+n

@ Virtual fundamental class

[Mg,n,ﬁ (X)]Virt € H vdg n,3 (Mg,n,ﬂ(x)a Q)

o ev;: Mg ,3(X) — X evaluation at the i-th marked point.

o L;: line bundle on M, , 3(X), cotangent line bundle at the i-th
marked point,

i = ai(Li) € H*(Mgn3(X), Q).

@ For X = Spec C (and so 8 = 0), get the Deligne-Mumford moduli
space ﬂg,n of n-pointed genus g stable curves.
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Gromov—=Witten invariants

@ Fix
g,nEZZO, 5€H2(X,Z), al,...,OanH*(X,Q)
and kl;---aknEZZO

@ Gromov—Witten invariants of X:

<H Tk,-(oz,-)> — deg (H w,{"' evi(a;) N [Mg,n,g(X)]Virt) c0.

g,n,3 i=1

@ For k; = 0, virtual count of genus g curves in X of class S with n marked
points constrained to land on fixed submanifolds of X Poincaré duals to the
class a;.

@ Forgetful morphism m: Mg , 5(X) — M, ,.

@ Gromov—-Witten classes

{H m(m)} = (H o evi(an) N Wg,n,ﬁ(xnm) e H' (Mg, Q).

g,n,B3 i=1
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Gromov—=Witten invariants

Problem

Given a smooth projective variety X, “compute” all Gromov-Witten
invariants of X.

Known cases:
e X the point (Kontsevich, Witten's conjecture, 1992)

@ X a projective space, or more generally an homogeneous variety
(localization, Graber-Pandharipande, 1999)

e X a curve (Okounkov-Pandharipande, 2003)
@ X a quintic 3-fold hypersurface in P* (Maulik-Pandharipande, 2006)

Main result (Argliz-B-Pandharipande-Zvonkine, 2021)

An algorithm computing all Gromov—Witten invariants of all complete
Intersections in projective space.
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Gromov—=Witten invariants

Tautological ring RH*(Mg ) € H*(Mg ,, Q). Smallest system of
subrings containing 1 and preserved by pullback-pushforward along the
natural maps ./\/lg il — /\/lg n /\/lg 142 — ./\/lg,n,

Mg1,n1+1 X Mgz,n2+1 — Mg1+g2,n1+n2-

For every smooth projective variety X, the Gromov-Witten classes of X
are tautological.

Known cases:

@ X a projective space, or more generally an homogeneous variety
(localization, Graber-Pandharipande, 1999)

e X a curve (Janda, 2013)

Theorem (Argliz-B-Pandharipande-Zvonkine, 2021)

All Gromov—-Witten classes of all complete intersections in projective space
are tautological.
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Degeneration of complete intersections

@ X: m-dimensional smooth complete intersection of r hypersurfaces of
degrees (dy,...,d,) in P™*T,

= =f=0.

@ Gromov—Witten invariants only depend on the dimension m and the
degrees (di, ..., d,) by deformation invariance.

@ Main idea to study Gromov-Witten invariants of X: degeneration.

@ Decompose d, = d, 1 + d, 2 and pick general polynomials f, 1 and f, >
of degree d, 1 and d, ».

@ Deform f, to the product f, 1f, 5, one-parameter family:
tfr + fr,lfr,2 = 0.

e Family over Al  with general fiber (deformation equivalent) to X, and
fiber over t = 0: X7 Up X>.
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Degeneration of complete intersections
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Degeneration of complete intersections

@ Xi: m-dimensional smooth complete intersection of degree

(dl, oo, de_q, dr,1)1 of equations 1 = --- = f,_1 = fr,l = 0.
@ X5: m-dimensional smooth complete intersection of degree
(di,...,dr—1,d,2), of equations f; =--- =f,_1 =f,2=0.

@ D: (m — 1)-dimensional smooth complete intersection of degree
(d1,...,dr_1,dr1,d,2), of equations
h=-=fa=Hhi1="1,2=0.

@ The total space of the family is singular. Resolve the singularities:
new degeneration of X to X; Up )72

o )N(z: blow-up of X, along Z.

@ Z: (m — 2)-dimensional smooth complete intersection of degree
(di,...,dr—1,dr,dr1,dr2), of equations
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Degeneration of complete intersections

Theorem (Argiiz-B-Pandharipande-Zvonkine, 2021)

Let X be an m-dimensional smooth complete intersection in P™*" of
degrees (di,...,d;). Then, for every decomposition

d, = dr71 -+ dr’g with dr,l, dr,g = Z21 :

then GW/(X) can be effectively reconstructed from:

(i) GW(X1), where X; C P™*" is an m-dimensional smooth complete

intersection X; C P™*" of degrees (di,...,dr—1,d,1).

(i) GW(X3), where X, C P™*" is an m-dimensional smooth complete
intersection of degrees (di,...,d,—1,d,2).

(iii) GW(D), where D C P™*" is an (m — 1)-dimensional smooth
complete intersection of degrees (di,...,dr—1,dr1,d,2).

(iv) GW(Z), where Z C P™*" is an (m — 2)-dimensional smooth
complete intersection of degrees (di,...,d,_1,dr,dr1,d,2).
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Degeneration of complete intersections

o Naive idea: apply a "degeneration formula® to the degeneration
W — Al with general fiber X and central fiber X; Up Xo.
@ Problem: Jun Li's degeneration formula computes the

Gromov—=Witten invariants
X

<H Tk; (ai)>
i=1 g.n,3

of X in terms of relative Gromov-Witten invariants of (X1, D) and
(X2, D) only if the insertions «; are in the image of the restriction map

H (W) — H*(X).

Not surjective in general!

@ Monodromy action on H*(X). The image of H*(W) — H*(X) is
exactly the monodromy invariant part of H*(X) (local cycle invariant
theorem).

@ Dually, H,(X) — H,(W) not injective in general, kernel: vanishing
cycles.
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Degeneration of complete intersections

@ Example: degeneration of a smooth elliptic curve E to a nodal elliptic

curve Eg. Vanishing cycle.
o dim HY(E) = 2, whereas dim H}(Ey) = 1.
@ The restriction map H(Ey) — H(E) is not surjective.
e Monodromy action on H(E):

1 2
0 1/
£ &

G

f y

k o
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Cohomology of complete intersections

@ X C P™" m-dimensional smooth complete intersection of degrees
(dl’ e o o ’ dr)-
@ Lefschetz hyperplane theorem:

Hi(IP)m_H, Q) N Hi(X, Q)

is an isomorphism for 0 </ <2m and i # m.
@ Middle degree cohomology:

Hm(Xa Q) — Hm(Pm_l_ra Q) D Hm(Xa Q)prim

Simple cohomology. Primitive cohomology.

@ Monodromy action on the part of the simple cohomology is always
trivial. Monodromy action possibly non-trivial on the primitive
cohomology.

@ Problem: the degeneration formula cannot be applied in general to
compute Gromov—Witten invariants with insertions of primitive
cohomology classes.
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Cohomology of complete intersections

e Example: E C P2 smooth cubic (elliptic curve).
o H(P?) =0, but dim H(E) = 2.

HY(E) prim = H*(E).
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Main idea: trading primitive insertions against nod

@ Starting point: Kiinneth decomposition of the class of the diagonal
A CXxXin H (X x X) = H*(X) ® H*(X): for any basis (~;); of

H*(X),
[A] =2 i@

where (,") is the Poincaré dual basis ([ vi U7 = dj).
@ Splitting formula in Gromov—Witten theory:

— Z < <H Th (i) ) Tkn, (%)Tkhz (ny )>

g_17n+276

where [ is the graph with one vertex and one loop imposing a
self-intersecting node.
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Main idea: trading primitive insertions against nodes

s (Y s OO
b E— A G Y-S W 2n legs N b I v R n loops
— o — A e ‘

@ [: X-valued stable graph.
@ Nodal Gromov—-Witten invariants of X of type I are

<H7'k () H Tkh> — deg Hw evi(a;) H @b N [Mp(X)]7e

he Hr\Lr heHr\ Ly
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Main idea: trading primitive insertions against nods

@ Example: E elliptic curve.
e Basis a, b € HY(E) of primitive cohomology.

@ GW invariants with two primitive insertions:
< X, a, b >§,n,[3: — < X, b, d >§,n,ﬁ )

@ Diagonal A C E x E:
Al=1p+pR®1+ax®b—>bR®a

@ [: graph with one loop imposing a non-separating node,

X
< X >rag+17n_276
—<x1.p>F . +<xp1>F . +<xab> .—<x ba>t
— » LyP Zg.n,8 ' P g,n,3 » g,n,p3 » & g,n,pB

=< X, 17 P >§,n,5 + < X, p, 1 >§,n,ﬁ +2 < X, d, b >§a”76
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Main idea: trading primitive insertions against

Theorem (Argliz-B-Pandharipande-Zvonkine, 2021)

Let X be a complete intersection in projective space which is not a cubic
surface or an even dimensional complete intersection of two quadrics.
Then, the Gromov—Witten invariants of X can be effectively reconstructed
from the nodal Gromov-Witten invariants of X with only insertions of

simple cohomology classes.

soo soo

b — > g 2n legs . b — O g
— « — OO

n loops
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Main idea: trading primitive insertions against n

ldea of proof:

V = H™(X, C)prim
Deformation of X in the universal family of smooth complete

intersections: monodromy action on V.

G: (algebraic) monodromy group, Zariski closure of the monodromy
group in GL(V).

G C O(V) if meven, G C Sp(V) if V odd.

Deformation invariance: Gromov—=\Witten invariants are invariant
under the action of G on V.

If X is not a cubic surface, or an even dimensional complete
intersection of two quadrics, G is as large as possible: G = O(V) or

Sp(V).
Use the invariant theory of O(V) and Sp(V') to constrain the form of
Gromov-Witten invariants.
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Main idea: trading primitive insertions against nod

|dea of proof:

@ Invariant theory: Gromov—Witten invariants are zero for a odd
number of primitive insertions.

@ Even number 2n of primitive insertions.
e Equations indexed by n-pairings (ways to produce n nodes).

@ Unknowns indexed by n-pairing (invariant tensors).
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Main idea: trading primitive insertions against nod

|dea of proof:
@ Loop matrix: (2n — 1)1 x (2n — 1)!! matrix

M(n,x)p,pr = xHPF)

@ L(P,P’): loop number of the n-pairings P and P’.

@ x =dim V when m even, x = —dim V when m odd.
x2 x x
M2,x)=| x x* x|,
X X X2

@ Result follows from the study of eigenvalues and eigenvectors of
M(n, x).
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Main idea: trading primitive insertions agains

Theorem (Argliz-B-Pandharipande-Zvonkine, 2021)

Let X be a complete intersection in projective space which is not a cubic
surface or an even dimensional complete intersection of two quadrics.
Then, the Gromov—Witten invariants of X can be effectively reconstructed
from the nodal Gromov-Witten invariants of X with only insertions of
simple cohomology classes.

Clear progress:

@ General Gromov—Witten invariants of X, with primitive insertions,
cannot be computed by the degeneration of X to X7 Up X>.

@ Nodal Gromov—-Witten invariants of X with only simple insertions can
be computed by the degeneration of X to X7 Up X5.
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Nodal Gromov-Witten theory

@ Jun Li's degeneration formula applied to the degeneration of X to
X1 Up Xz involves relative Gromov—Witten invariants of (X1, D) and

(Xg, D).

@ Nodal version: one needs a notion of nodal relative Gromov—=Witten
Invariant.

k() () ur(t) ()
~">
~">
2\ g(v) =3 — Oe
€1 €
%1 g(V1)=2
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Nodal Gromov-Witten theory

@ We prove a nodal degeneration formula.

@ Nodal Gromov—Witten invariants of X can be computed in terms of
nodal relative Gromov-Witten invariants of (X1, D) and (Xz, D).

@ How to compute these nodal relative Gromov—Witten invariants?

o We prove a splitting formula computing them in terms of ordinary
relative Gromov—Witten invariants of (X1, D) and (X3, D).

o Relative Gromov—Witten invariants of (X1, D) and (Xo, D) can be

computed in terms of Gromov—Witten invariants of X;, X5, D, and Z
by Maulik-Pandharipande (2006).
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Summary of the algorithm

e Goal:
GW(X) + GW(X1), GW(X3), GW(D), GW(Z),

where X1, X5, D, Z are complete intersections of either smaller
degree or smaller dimension.

@ Step 1: trade primitive insertions for nodes, reduce
GW(X) < sNGW(X)
@ Step 2: apply the nodal degeneration formula
sNG(X) < NGX(Xq, D), NGW (X», D)

@ Step 3: apply the splitting formula for nodal relative invariants

NGX(X1, D), NGW (Xo, D) + GW(Xy, D), GW(X>, D)
@ Step 4: apply previous results of Maulik-Pandharipande

GW(Xi, D), GW(}V(Q, D) + GW(Xy), GW(X3), GW(D), GW(Z)

Pierrick Bousseau Gromov—Witten theory of complete intersections 29 /30



Thank you for your attention!
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