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@ The Kontsevich—-Witten theorem for the intersection numbers

on Mgp.

Relation with the Gromov—Witten invariants of CP!.

@ Idea of the proof: a formula for the KdV Hamiltonians using the
double ramification cycle and the degeneration formula for the
Gromov-Witten invariants of CP*.

Quantization of the KdV hierarchy and quantum intersection numbers.
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Stable algebraic curves

Smooth ~ compact  marked  alge-
braic  curves  (Riemann  surfaces)

(Ciz1,. 005 Tn), T # X5

Marked nodal curves: all the singularities ‘
are nodes (locally, {zy = 0} ¢ C?), and a
the marked points are smooth.

A stable curve is a marked nodal curve (C;z1,...,x,) such that

| Aut(Csx1, ..., 2p)| < o0.
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Moduli space of curves

M the isomorphism classes of stable algebraic
gme curves of genus g with n marked points
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Moduli space of curves

M the isomorphism classes of stable algebraic
gme curves of genus g with n marked points
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X M, ,, is a compact complex orbifold

dimc My, =3g—3+n
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Intersection numbers
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Cotangent line bundles:

Li = Mg, i=1,...,n
i =e(l;) = e1(IL;) € HQ(Mg,n)

Intersection numbers:

d
(T4 ...Tdn>g = fﬂg,n G e

The generating series of intersection numbers:

tg tg, ...t

2 dilds d

F(to,t1,ta, ... €)= Z g9 Z (TayTdy - - - Tdn )y - =
gn>0  di,....dn>0 '
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Witten's conjecture

Witten's conjecture (1991, proved by Kontsevich in 1992)

o u= %275 is a solution of the Korteweg—de Vries (KdV) equation (we
0
identify = = tg)
2
oty = Uy + Eux:m:
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[e]e]e] )

Witten's conjecture

Witten's conjecture (1991, proved by Kontsevich in 1992)

o u= %275 is a solution of the Korteweg—de Vries (KdV) equation (we
0

identify = = tg)
&2
@ Moreover, u is a solution of the whole hierarchy of infinitesimal
symmetries of the KdV equation

2
ou U Uy n 2 (’LL’Lsz;p Umumm) i 4 Ugzrrr

Oto 2 12 6 240
ou  u"uy

— = e > 3.

Oty n! e n2

Together with the stri ion 2F — tho1 O 4 8 thi
ogether with the string equation Zi- = ;- tk+15;, + 3, this
determines all the intersection numbers.
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Relation with the Gromov=Witten invariants of CP' |

For = (p1,.-.,px) EZgand v=(v1,...,Um) € ZZy, kym > 1, with
> i =Y vj, denote by M, ,(CP!, 11, v) the moduli space of
stable relative maps to (CP!,0, 00).
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Relation with the Gromov=Witten invariants of CP' |

For = (p1,.-.,px) EZgiland v=(v1,...,Um) € ZZy, kym > 1, with
> i =Y vj, denote by M, ,(CP!, 11, v) the moduli space of
stable relative maps to (CP!,0, 00).

Let ev;: My, (CP', u,v) — CP' be the evaluation maps.

w € H?(CP') is the class dual to a point.

Note that deg [M,,,(CP', u, V)}Vir =2(29 — 2+ 1(p) +1(v) +n).

Rank g vector

The space of holomorphic differentials bundle E over
. . . ~y 1

on any nodal curve is g-dimensional. Mg n(CP, u,v) called

the Hodge bundle.
The Hodge classes \; := ¢;(E) € H* (M, ,(CP', u,v)).
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Relation with the Gromov—=Witten invariants of CP' 1l

Ford = (di,...,d,) € Z%,, consider the integral

Pgﬁ(al, coyag) = /[

Mgan(CP17A7(a1r“7ak))

n 4.
]vir Ag H w]]ev.] (w),
j=1

where A := > a;.
The integral is nonzero only if Y d; =g —1+k.
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Relation with the Gromov—=Witten invariants of CP' 1l

Ford = (di,...,d,) € Z%,, consider the integral

~(a,...,ax) ::/ A ¥l evi(w)
9.d [My.n (CPY,A, (a1, )] ng1 T

where 4 := " a;.
The integral is nonzero only if Y d; =g —1+k.

Theorem (Blot-B., 2023)

1. ngg(aly ...,ak) is a polynomial in ai, ..., ax, homogeneous of degree
2g+n — 1.

2. For) di=3g—2+nandk=2g+n—1, we have

/ : ¢nn = —Coefal Gk gd
Mg,n+1
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Conserved quantities of the KdV equation

. 2
KdV equation u; = iy + $5Uzzz-

Suppose € € R, u = u(z,t) is a smooth function, and u together with
sufficient number of x-derivatives go to zero when x — +o0.
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Conserved quantities of the KdV equation

. 2
KdV equation u; = iy + $5Uzzz-

Suppose € € R, u = u(z,t) is a smooth function, and u together with
sufficient number of x-derivatives go to zero when x — +o0.

u? 52
udr | = / Ox [ + um] dr =20
</R >t R 2 12
82 52 5
(/Ru?dm)t:/ﬁ [3 +6uum—12ux]dac:0,
</ (u3+§uum ) / —u um—&-;; (uumm—i-um umxum)]datzo.
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Conserved quantities of the KdV equation

. 2
KdV equation u; = iy + $5Uzzz-

Suppose € € R, u = u(z,t) is a smooth function, and u together with
sufficient number of x-derivatives go to zero when x — +o0.

u? g2
</Rud:z:>t = /Rax [2 + 12um] dr =0,
s €2 g2
(/R qux)t = /R&B [3 + 5 Ulaw — mug] dz =0,
</ (u3+fuum)dw) = / 8;C[#4—%1@1@3—&—%(uumm—i-uim—umxum)]da::O.
R t R

For each n > 0, there is a conserved quantity h,, of the form

hn = /R <(:T;' + 0(52)> dz.
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Algebra of differential polynomials A= Clu, g, Uz, - - -, €], u; := Ou.
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Space of local functionals, Poisson structure

Algebra of differential polynomials A= Clu, g, Uz, - - -, €], u; := Ou.

€T
- , - -
0 = Vs tnt1g2: A = A.
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Space of local functionals, Poisson structure

Algebra of differential polynomials A= Clu, g, Uz, - - -, €], u; := Ou.

- 9 .71 1
833 = ano un+1% A — A
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Variational derivative 2 := Y nso(—0z)" o %: A— A



Idea of the proof
0@000000

Space of local functionals, Poisson structure

Algebra of differential polynomials A= Clu, g, Uz, - - -, €], u; := Ou.
03 =) 50 unH%: A— A

Space of local functionals A := A/Im(8).

Projection A — A, f — [ fdz.

Conserved quantities of the KdV equation h,, € A.
Variational derivative % =D uso(=0z)" 0 %: A— A

Im(dy) € Ker(L) = 2 A — Ais well defined.



Idea of the proof
0@000000

Space of local functionals, Poisson structure

Algebra of differential polynomials A= Clu, tg, Uz, - - - €], u; == Olu
Oz 7= 50 Unt15q- au c A — A

Space of local functionals A := A/Im(8).
Projection A — A, f [ fdz.

Conserved quantities of the KdV equation h,, € A.

~ ~

Variational derivative % =D uso(=0z)" 0 %: A— A
Im(dy) € Ker(L) = 2 A — Ais well defined.

Poisson bracket on A: {f,g} := [ ngZgZda:
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The Hamiltonian structure of the KdV hierarchy

The KdV hierarchy is Hamiltonian:

ou

o = (whn} = 0,2

5

The first few Hamiltonians are

o 3 52
- u4 82 84

The Hamiltonian h; gives the KdV equation
- 7 2
{u,h1} = 61% = Uty + 5Uzza-
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More on the intersection numbers

uw= %QTJ%T is a solution of the KdV hierarchy 2% = {u, h,,}, with the initial

condition ul;.,—o = z (recall that we identify ¢o = z).
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More on the intersection numbers

uw= %QTJ%T is a solution of the KdV hierarchy 2% = {u, h,,}, with the initial

condition ul;.,—o = z (recall that we identify ¢o = z).

0"u
Otq, ...0tg,

o2 F
o Ot30tq ...0ta,|, _o

= {{{{u,ﬁdl} ,Edz}?"'} ’Ed"}’wcﬂsk,l7

RECRRED

or equivalently

8n+1 F
8t08td1 - 8tdn

up=0k,1
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More on the Poisson structure on A

The Poisson structure on A can be described in more familiar terms.
Bi=Clp1,pa.- Jllpo. 01,02 €]].

Poisson bracket on : {P,Q} =3 ez ik%az?k,P, Qe B.
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we consider the expansion of w in the Fourier series
() = Xaez Pa™ ).



Idea of the proof
0000e000

More on the Poisson structure on A

The Poisson structure on A can be described in more familiar terms.

B = Clp1,pa, - Jl[pos p—1, P2, - €]

Poisson bracket on : {P,Q} =3 ez ik%az?k,P, Qe B.

Linear map ¢: A — B, f ~— Coef 0 (f]ukzzaez(m)kpaem) (informally,
we consider the expansion of w in the Fourier series

“u(z) = Zaezpaemx”)-

Im(dy) C Ker(¢) = ¢: A — B is well defined.

o: A — Bis an injection.

o({f.9}) ={o().¢@)}, Tgeh

We will denote ¢(hy,) € B by hy,.



Idea of the proof
0000e000

-~

More on the Poisson structure on A

The Poisson structure on A can be described in more familiar terms.

g (C[plapZa" H[Po,p 1,P— 27"'38}]-

Poisson bracket on B: {P,Q} =3 ez zk:g;: 82Qk P.QeB.

Linear map ¢: A — B, f ~— Coef 0 (f]ukzzaez(m)kpaem) (informally,
we consider the expansion of w in the Fourier series

“u(z) = Zaezpaemx”)-

Im(dy) C Ker(¢) = ¢: A — B is well defined.

o: A — Bis an injection.

o({f.9}) ={o().¢@)}, Tgeh

We will denote ¢(hy,) € B by hy,.

We will give an explicit formula for the KdV Hamiltonians h,,, as
elements of B, using the moduli space M, .
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The double ramifiction cycles on Mgm

(a1,...,an) €Z", Y a; =0.

The partition p is formed by the positive numbers among the a;-s. The
partition v is formed by the negatives of the negative numbers among the

a;-s. ng is the number of zeroes among the a;-s.
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rubber CP! (stable relative maps that differ by an automorphism of the
target are considered as isomorphic).
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The double ramifiction cycles on Mgm

(at,...,ap) €Z" > a; =0.
The partition p is formed by the positive numbers among the a;-s. The

partition v is formed by the negatives of the negative numbers among the
a;-s. ng is the number of zeroes among the a;-s.

—_r

The space M, (11, v) is the moduli space of stable relative maps to
rubber CP! (stable relative maps that differ by an automorphism of the
target are considered as isomorphic).

The map st: ﬂ;no (p,v) = M, assigns to a stable relative map the
source curve.

The class DRy(a1,. .., an) := st ([M,, (1, v)]"") € H*(My,,) is called
the double ramification (DR) cycle.
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The KdV Hamiltonians and the double ramification cycles

Here is an explicit geometric formula for the KdV Hamiltonians, as
elements of B.

Theorem (B., 2015)

n

)
hqg = Z (;')g Z (/M +11/;f)\gDRg(O,a1,...,an)> Hpai-

g>0,n>2 " a1,..,an€Z i=1
a;=0
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The KdV Hamiltonians and the double ramification cycles

Here is an explicit geometric formula for the KdV Hamiltonians, as
elements of B.

Theorem (B., 2015)

_ —e2)9 n
hg = Z ( n') Z (/M I DR, (0, ay, . .. ,an)> Hpai.
> ’ g+l i=1

Example: consider

3 2
e u- - — PayPagPaz 2 2PaP—a
hi = [( & + 55UUee)dr = Za1+a2+a3:0 6 €% aez 0755
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The KdV Hamiltonians and the double ramification cycles

Here is an explicit geometric formula for the KdV Hamiltonians, as
elements of B.

Theorem (B., 2015)

_ —e2)9 n
hg = Z ( n') Z (/M I DR, (0, ay, . .. ,an)> Hpai.
> ’ g+l i=1

Example: consider
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Then
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The KdV Hamiltonians and the double ramification cycles

Here is an explicit geometric formula for the KdV Hamiltonians, as
elements of B.

Theorem (B., 2015)

_ —e2)9 n
hg = Z ( n') Z (/M I DR, (0, ay, . .. ,an)> Hpai.
> ’ g+l i=1

Example: consider

T w3 &2 o PaqPagPag 2 2PaP—a
hi = f(? + Sy UUzs)dT = Za1+a2+a3:0 6 — €% 4ez 07
Then

Pay PagP
S o tapragoo LmPE s fﬂm Y1 A0DRo(0, a1, az,a3) =1

2
ez P e [ i MDRi(0,0,—a) = 4
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Applying the degeneration formula

The theorem is proved using the formulas

hay | - _
= —1 h h .. h
R ERE AN A,

and

_ —e?)9 -
= X SF 2 ([ s Tl
n Mg,n+1 i=1

g>0,n>2 " a1,...,an€Z

> a;=0

8n+1 F
Otyotg, ...0tg,

Up=0p,1

together with the degeneration formula in the Gromov—Witten theory of
CP'.
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We want to describe a certain quantization of the KdV hierarchy. What do
we mean by this?

Baby example: Weyl algebra W = Clz, p, h {Z fi(z, h)p }

Viewing “p = hd,", noncommutative mu|t|p||cat|on * is given by the
composition of operators. For example, pxx = x xp + A.
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Towards quantum KdV |

We want to describe a certain quantization of the KdV hierarchy. What do
we mean by this?

Baby example: Weyl algebra W = Clz, p, h {Z fi(z, h)p }

Viewing “p = hd,", noncommutative mu|t|p||cat|on * is given by the
composition of operators. For example, pxx = x xp + A.

i
. k 9kt ok 2
Equivalently, f xg = Zkzo %WJ]:@T;{ =f (e op 3I> g, f,geW.

Commutator [f,g] = fxg—g=* f.

Poisson structure on C|z, p: {f,g} = —1];8—9 g£ gg
For f= fo 4+O(h),g= go —+O(h), we have
=~ =~

€Clz,p] €Clz,p]

[f7 g] = h{f0790} + O(h2) -

This gives a (deformation) quantization of the Poisson bracket on Cl[z, p].
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Towards quantum KdV I

Recall that B = Clp1,p2, - - J[[Pos P—1,P—2, - - . , €]] with bracket

Py =Y ikor 99

keZ
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Towards quantum KdV I

Recall that B = Clp1,p2, - - J[[pos -1, P— 2, ..., €]] with bracket
oQ
{P,Q} = sz——
= OprOp—i
Introduce

fxg:=f < Zk>0mk8pk 8p8k> g, f,g9¢€ B\[[h]]

For f = fo +O(h), 9= g0 +O(h), we have [f,g] = h{fo, go} + O(F").

eB eB
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Towards quantum KdV I

Recall that B = Clp1,p2, - - J[[Pos P—1,P—2, - - . , €]] with bracket

Py =Y il 0@

= Opy, Op_,

Introduce
a

hm;%zmﬂm“ﬁm(MEQW
For f = fo +O(h), g= go +O(h), we have [f, g] = h{fo, g0} + O(h?).
~— ~~
eB eB
By definition, a quantization of the KdV hierarchy is a collection of
elements H,, = h,, + O(h) € B[H)] such that [H,,, H,] = 0.

The moduli space M, ,, gives a beautiful construction!
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Quantum KdV hierarchy |

Recall

ha = Z Z szl;paz <//\/lg . ¢?<_52)9A9DR9(076L>>

920,n>2a=(a1,...,an)EL"
> ai=0
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Quantum KdV hierarchy |

Recall

ha= >, ) M(/MWw?<—e2>9AgDRg<o,a>>

n!
92>0,n>2a=(ay,...,an)EL™
> ai=0

Define .
B 9 Hd Z Z 7Hi:1‘pai X

92>0,n>1a=(as,...,an)EL™ s

> a;=0
/M PH((=)9Ng + ()9 ihAg_1 + ... + (ih)? )DR4(0, @)
g,n+1

=(~¢2)A,+O0(h)
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Quantum KdV hierarchy |

Recall

ha = Z Z szl;paz <//\/lg . ¢?<_52)9A9DR9(076L>>

920,n>2a=(a1,...,an)EL"

> ai=0
Define n
Bl[h)] > Hy = Z > WX
92>0,n>1a=(as,...,an)EL™ )
> a;=0
/ U (=) + (=) tikAg1 + ... + (h)? )DR (0, 7)
Mygna1

=(=e2)9Ag+0(h)
Obviously, Hy, = hy, + O(h).
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Quantum KdV hierarchy |

Recall

ha = Z Z szl;paz <//\/lg . ¢?<_52)9A9DR9(076L>>

920,n>2a=(a1,...,an)EL"

> ai=0
Define n
Bl[h)] > Hy = Z > WX
92>0,n>1a=(as,...,an)EL™ )
> a;=0
/ U (=) + (=) tikAg1 + ... + (h)? )DR (0, 7)
Mygna1

=(=e2)9Ag+0(h)
Obviously, Hy, = hy, + O(h).

Theorem (B.—Rossi, 2016)
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Quantum KdV hierarchy Il

The integral

/ PH(—e®)9Ng + (=27 HihAg_1 + ... + (ih)7)DRg(0, a1, . . ., a,)

gnt1
is a polynomial in a1,...,an,.
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Quantum KdV hierarchy Il

The integral

/ PH(—e®)9Ng + (=27 HihAg_1 + ... + (ih)7)DRg(0, a1, . . ., a,)
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Quantum KdV hierarchy Il

The integral
/ PH(—e®)9Ng + (=27 HihAg_1 + ... + (ih)7)DRg(0, a1, . . ., a,)
g,n+1

is a polynomial in a1,...,an,.
This implies that H,, = | Hydzx for some H,, € ./Zl\[h]

For example,

— ud  e? ih
Hl—/<6+24uum o >da:

FQ = / <U4 + 52 U2uxw + €4uuzmxw — 'Lh2uurr + U2 — Zh€22811é()> d$

24 48 480 48
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Recall
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3t08td1 ce 8tdn =
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Quantum intersection numbers

Recall
8n+1 F
6t08td1 ce 8tdn

IR(SCESENIEN

Define F(9 e C[[to, t1,...,e,}]] by the relations

741 7(q) . ST, — - B
et |, o= HH 651,Hd2},Hd3],...],Hdn]

Bl0dla, - Dlay
oF@  9Fl |t ih
ot = 2uizotiti g, t 3~ aq

U =0k, 1

)

Up=0k,1
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Quantum intersection numbers

Recall
8n+1 F
6t08td1 ce 8tdn

IRI(SCEAEARREN

U =0k, 1

Define F(9 e C[[to, t1,...,e,}]] by the relations

—n 6Hy, — _ L
t*zo:hl [[H: 6;17Hd2:|7Hd3:|7...:|,Hdn]

oF@  9Fl |t ih
ot = 2uizotiti g, t 3~ aq

Obviously, 79 = F 4 O(h).

ontl Fa)
Olo0tg, ...0tq,,

)
Up=0k,1
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Quantum intersection numbers

Recall
i A (R L& RO R S
_— = — hg, ¢ R, ¢y ,hdn}
6t08td1 e 8tdn ta=0 ou 2 3 =0k 1
Define F(9 e C[[to, t1,...,e,}]] by the relations
0n+1]:(q) ol 5ﬁd = = =
781?0(’%(11...815% . _0—h n |:|: |:|: 6u1’Hd2:| 7Hd3:| 7:| 7Hdn:| )
= ; up=0k,1
oF (@ oF(@ t, ih
55 = 2ui>oti+l o, T3 — 94
Obviously, 79 = F 4 O(h).
Introduce quantum intersection numbers:
. o F@
(Tdy -+ Tdp)j g g i= izd]_3g_n+3coef82lhg7l —_— € Q.
9 Otg, ...0tg, o
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Quantum intersection numbers

Recall
i A (R L& RO R S
_— = Jhay ¢ has 0y ,hdn}
6t08td1 e 8tdn ta=0 ou 2 3 =0k 1
Define F(9 e C[[to, t1,...,e,}]] by the relations
0n+1]:(q) ol 5ﬁd = = =
781?0(’%(11...815% . _0—h n |:|: |:|: 6u1’Hd2:| 7Hd3:| 7:| 7Hdn:| )
= ; up=0k,1
oF (@ oF(@ t, ih
55 = 2ui>oti+l o, T3 — 94
Obviously, 79 = F 4 O(h).
Introduce quantum intersection numbers:
. o F@
(Tdy -+ Tdp)j g g i= izd]_3g_n+3coef82lhg7l —_— € Q.
9 Otg, ...0tg, o

Relation with the classical intersection numbers:
(Tay - Tdn)go = (Tdy - - Tdn ) -
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Relation with stationary Gromov-Witten invariants of CP*!

Theorem (Blot-B., 2023)
Let g,1>0,n>1,andd = (dy,...,dn) € Z%.
1. For any k > 1, the integral
P alay,. .. a) =
d; *
Jmt, nep Aoy M= %57 V5 (@), ar,-. g € 2o,
is a polynomial in ay,...,a,. Here A:=>" a;.
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Relation with stationary Gromov-Witten invariants of CP*!

Theorem (Blot-B., 2023)

Let g,1>0,n>1,andd = (dy,...,dn) € Z%.
1. For any k > 1, the integral

P alay,. .. a) =

d.
f[ﬂg n(cpl,A,(al,.“,ak))]Vir )\l H;Z:]_ 1/}jJeV;(O.)), al, 600 ,ak- € Zzl,
is a polynomial in ay,...,a,. Here A:=>" a;.

2 letk:=) dj—2g+1+1. Then

1
HCoefal...ak Pg,lﬂ L

(10T ~--7'dn>z,g—l = (-1)9 fmﬂ )\g)\lqp‘lil, ifk=0andn=1,

0, otherwise.

ifk>1,
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Theorem of X. Blot

Denote S(z) 1= €=

z

Theorem (X. Blot, 2022)

For g,n > 0 satisfying 2g — 2 +n > 0, we have
E : d dn _
<Td1 oo Tdn>07g :U’11 My =

d1,~--7dn20
B 2g—3+n IT;-1 S(u;2)
ES (Z /,1/‘]) CoefZZg (S’(z) o
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Relation with one-part double Hurwitz numbers

X. Blot interpreted the theorem in the following way.

For two tuples u = (1, ..., 1) € Zgl and v = (v1,...,vm) € 22,
k,m > 1, with 3" p; = > v;, denote by Hj, ,, the double Hurwitz number.
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Relation with one-part double Hurwitz numbers

X. Blot interpreted the theorem in the following way.

For two tuples u = (1, ..., 1) € Zgl and v = (v1,...,vm) € 22,
k,m > 1, with 3" p; = > v;, denote by Hj, ,, the double Hurwitz number.

Goulden—Jackson—Vakil (2005):

r—1 IT5=: S(usz)
g — . 2h=1=7N 7
HZM,(ul,...,un) = (Z MJ) Coet2 ( S(z) ’

where r :=2¢g — 1 + n.
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Relation with one-part double Hurwitz numbers

X. Blot interpreted the theorem in the following way.

For two tuples u = (1, ..., 1) € Zgl and v = (v1,...,vm) € 22,
k,m > 1, with 3" p; = > v;, denote by Hj, ,, the double Hurwitz number.
Goulden—Jackson—Vakil (2005):

r—1 [15=; S(uj2)
g _ . 1lj=1=\"9~7
B = () contn (BT,

where r :=2¢g — 1 + n.

Equivalent formulation of the theorem:

B 1)
_ Hg \[1s-- o5 hn
<7-d1 cee Tdn>0,g - Coef'uclll,..'uf’lln ( T’! Z /1/] ) .
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More on the theorem of X. Blot

In the case [ = 0, our theorem says that
(T0Tdy -+ Tdn)o,g =
1 I
= ECoefal.“ak o i H Q,Z)j]er (W),
! [Mg,n(CPY, A, (a1,....ax))] ot

where k =5 d;j —2g+1>1.
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More on the theorem of X. Blot

In the case [ = 0, our theorem says that
(T0Tdy -+ Tdp)o.g = )
1 i
—Coef / A Y.l evi(w)
TR I, et Ao ))]““]-H1 7
where k =5 d;j —2g+1>1.

The integral f L (CP A arma)] | zb;ljev}'f(w) is a stationary
1y--,Qk

relative Gromov—Wltten invariant of CP', for which Okounkov and
Pandharipande (in 2006) presented an explicit formula using the infinite
wedge technique.
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Infinite wedge formalism

V:@kem% Ck,
A%V:<ﬂ/\%/\...’ai:—i+%+cforsomecand 1 big enough>,
Ukt ATV = ATV () =k Av,

Yir ATV = ATV bt (aiAag /.. i= 000 (—1) 100, ga1 AL AGA. .,

. iy, if g >0,
Sachn {—w*?w- if j <0
7 (2] .7 Y



Quantum intersection numbers
00000000080

Infinite wedge formalism

V:@kem% Ck,
A%V:<ﬂ/\%/\...’ai:—i+%+cforsomecand 1 big enough>,
Ukt ATV = ATV () =k Av,

Yir ATV = ATV bt (aiAag /.. i= 000 (—1) 100, ga1 AL AGA. .,

:wwpz{ww’ ifj >0,

Er(z) = ZkEZJF% e F=3) oy —i—az’zo), where 1 € Z and

((e) =€ — 73,
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Infinite wedge formalism

V= @kem% Ck,
ATV = <ﬂ/\@/\...’ai = —i+%+cfor some ¢ and i big enough>,
Ukt ATV = ATV () =k Av,
Yir ATV = ATV bt (aiAag /.. i= 000 (—1) 100, ga1 AL AGA. .,
. iy, if g >0,
:wilbj = j o
_¢]¢z7 If] < 07
E(z) = ;kezté e F=3) oy —i—az’zo), where r € Z and
(o) =es —e73,

Commutation relation [£,(2), Ep(w)] = ((aw — bz)Epyp(z + w),
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Infinite wedge formalism

V= @kem% Ck,
ATV = <ﬂ/\@/\...’ai = —i+%+cfor some ¢ and i big enough>,
Ukt ATV = ATV () =k Av,
Yir ATV = ATV bt (aiAag /.. i= 000 (—1) 100, ga1 AL AGA. .,
i = {Wf =0
=i, if j <O,
Er(2) = Lrezsd e F=3) oy —i—az’zo), where r € Z and
((z) = — 7,
Commutation relation [£,(2), Ep(w)] = ((aw — bz)Epyp(z + w),
ar = &(0), k #0,
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Infinite wedge formalism

VZ@keZ—l-le

ATV = <a1/\a2/\ ’ =—i+ 3 +cforsomecandzb|genough>
U ATV 5 ATV, 4(v) == k Ao,

Yir ATV = ATV bt (aiAag /.. i= 000 (—1) 100, ga1 AL AGA. .,

:wwy={%@’ e

— Vi, Ifj <0,
&n(z) = ZkeZ-ﬂ,J ) g —i—g&o), where r € Z and
((z) = eF — 3,

Commutation relation [£,(2), Ep(w)] = ((aw — bz)Epyp(z + w),
Q. — 5k( ) k‘ 7é 0
vwp=—3AN—3A.
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Infinite wedge formalism

VZ@keZ—l-le

ATV = <a1/\a2/\ ’ =—i+ 3 +cforsomecandzb|genough>
U ATV 5 ATV, 4(v) == k Ao,

Yir ATV = ATV bt (aiAag /.. i= 000 (—1) 100, ga1 AL AGA. .,

:wwpz{%@’ ifj >0,

— Vi, ifj <0,
&n(z) = ZkeZ-ﬂ,J ) g —i—g&o), where r € Z and
((z) = eF — 3,

Commutation relation [£,(2), Ep(w)] = ((aw — bz)Epyp(z + w),
Q. — 5k( ) k‘ 7é 0
vwp=—3AN—3A.

For an operator A: A2V — AV denote by (A) the coefficient of vy in
Avy.
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Okounkov—Pandharipande formula

n dj |« _
J [M,n(CPY)e] "™ [[j= ¢y evj(w) =

1 U(p) n ATT®)
T i I vy Coefzflﬂ...zinﬂ <Hi=1 A Hj:l 50(23) H@':l a_y; ).
1= 7 ]:

In a joint work with X. Blot (will appear in arXiv soon), using the
Okounkov—Pandharipande formula, we give a short proof of the theorem of
X. Blot.
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