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Motivation: Severi varieties

Let X be a complex algebraic variety.

It is often interesting to study the the topology of Md(P1,X ), the
space of degree-d holomorphic maps P1 → X .

Say X = Pn. Then Mn
d = Md(P1,X ) ⊂ G(n, d), because every

map ϕ : P1 → Pn of degree d is given by an inclusion
V n+1 ↪→ H0(P1,O(d)).

More interesting: Inside of Mn
d , consider

Mn
d ,g := {maps ϕ with images of arithmetic genus g}. By analogy

with the n = 2 case, we’ll call Mn
d ,g a Severi variety.
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Topology of Severi varieties

Basic Q: Is Mn
d ,g irreducible?

Some answers:

I When n = 2, the answer is “yes”. From Joe Harris’ work on
the Severi problem we know that M2

d ,g is the closure of the
g -nodal locus of maps with g simple double points in their
images.

I We will see that when n ≥ 6, the answer is “no”.

I Not clear for intermediate values 3 ≤ n ≤ 5 (though we
suspect “no”).

Basic tool: Dimension counts for subloci Mn
d ,S ⊂ Mn

d ,g

parameterizing maps with cusps of value semigroup S in their
images.
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Value semigroups of cusps

Let’s examine the local geometry of a map
ϕ : (P1,P)→ (Pn, ϕ(P) = cusp), C = Im(ϕ).

The normalization of the cusp is given by
ψ : t 7→ (ψ1(t), . . . , ψn(t)), i.e., by a ring map
φ : C[[x1, . . . , xn]]→ C[[t]].

Let v : C[[t]]→ N, t 7→ 1 be the usual t-adic valuation. Then
S := Im(v ◦ φ) ⊂ N is the value semigroup of the pair (ϕ,P).

Philosophy: The topology of Mn
d ,S is controlled by the value

semigroup S.
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A dimension-counting heuristic

S ⊂ N is a numerical semigroup: #(N \ S) is the δ-invariant of the
cusp ϕ(P). In particular, when C = ϕ(P1) is a rational curve
whose unique singularity is ϕ(P), g = #(N \ S) is the arithmetic
genus of C .

Requiring the images of maps ϕ to contain cusps of a particular
type S imposes conditions on the coefficients of ϕ.

The g -nodal sublocus of Mn
d ,g has codimension (n − 2)g inside

Mn
d . (To see this: each node imposes 2n-n-2=n-2 conditions, and

it’s easy to check that these are additive.)

So: Naively we might expect that cod(Mn
d ,g ) ≥ (n − 2)g , as would

be required if Mn
d ,g were contained in the closure of the g -nodal

locus.

However this turns out not to be true in general!
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Realizability and hyperellipticity

Every numerical semigroup S ⊂ N is the value semigroup of a cusp.
(Say that S = 〈e1, . . . , em〉 is a minimal presentation; then
t 7→ (te1 , . . . , tem) realizes S.)

Numerical semigroups are stratified according to their
hyperellipticity degree: we say S is γ-hyperelliptic if

1) S contains exactly γ even numbers in [1, 4γ]; and

2) 4γ, 4γ + 2 ∈ S.

The terminology is explained by the γ = 0 case, in which S is
hyperelliptic, meaning that 2 ∈ S.
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Weight

The weight of a numerical semigroup S with
N \ S = {`1 < · · · < `g} is

∑g
i=1(`i − i).

Fact: When g � γ,

S1γ : = 〈2γ + 2, 2γ + 4, . . . , 2g〉+ 〈2g + 1− 2γ, . . . , 2g − 1, 2g + 1〉 and

S2γ : = 〈4, 4γ + 2, 2g − 4γ + 1〉

are the unique γ-hyperelliptic semigroups of genus g with minimal
(resp., maximal) weight.

Goal: Compute cod(Mn
d ,S) ⊂ Mn

d , with a particular focus on the

cases S = Siγ , i = 1, 2.
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Ramification and beyond

In other words: We’d like to count the number of conditions on
morphisms ϕ : P1 → Pn imposed by cusps with value semigroup S.

In doing so, it’s useful to distinguish between

1) Conditions arising from the ramification of the morphism ϕ in
P: this is

∑n
i=0(ai − i), where a0 < · · · < an are the vanishing

orders of sections of ϕ in P.
So ramification measures the deviation of (a0, . . . , an) from
the generic sequence (0, 1, . . . , n).

2) Conditions “beyond ramification” arising from the additive
structure of S, i.e., from the multiplicative structure of the
local algebra of the cusp.

We will give a combinatorial model that conjecturally accounts for
all of these conditions.
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Dyck paths and semigroups

Any numerical semigroup S of genus g is determined by S ∩ [2g ],
which may be encoded as a Dyck path of length 2g in a lattice
starting from (0, 0) and ending in (g , g).

In this representation, elements of S (resp., of N \ S) are encoded
as horizontal (resp., vertical) segments of unit length.

Ramification conditions are encoded as Young tableaux under the
path, while conditions beyond ramification are encoded as
collections of boxes above the path.

Example: γ = 0, n = 4, g = 7 (and d � g). Here S = 〈2, 15〉 is
hyperelliptic.

M4
d ,S will contain maps ϕ : P1 → P4 with various possible local

ramification profiles near the cusp.
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Typical example of rational curves with hyperelliptic cusps
A dimension-theoretically generic possibility is t 7→ (f1 =
t2 + O(t3), f2 = t4 + O(t5), f3 = t6 + O(t7), f4 = t8 + O(t9)), i.e.
the t-adic valuation of ϕ in the preimage of the cusp is (2, 4, 6, 8).

Graphically we have:

Figure: Ramification conditions rP are in grey; the conditions contributed
by fi are in the ith column. Conditions bP “beyond ramification” in red.
We have rP + bP − 1 = (n − 1)g .

A typical condition beyond ramification is that lc(fj − f j1 ) = 0,
j = 2, . . . , n.
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Dimension count for rational curves with hyperelliptic
singularities

Now set Fj := fj − f 21 . We can think of the condition lc(Fj) = 0
imposed by Fj as encoded by the lowest red square in column j .

Inductively, we may “walk” up column j , inducing a single new
independent condition at every step. The condition encoded by the
second-lowest red square is imposed by F ∗j := Fj − [t2j+2]Fj · f j1 .
To continue walking up the column, replace Fj by F ∗j and perturb
by (a multiple of) a power of f1.

Iterate this procedure until all elements of N \ S have been
exhausted.

Thm (C., Lara Lima, Vidal Martins): Assume that
d ≥ max(2g − 2, n); then cod(Mn

d ,S0
⊂ Mn

d ) ≥ (n − 1)g , and
conjecturally “=” holds. Moreover, Mn

d ,S0
is the union of

irreducible unirational varieties Mn
d ,S0;k

of fixed ramification profile
k. Here S0 = 〈2, 2g + 1〉 is the unique hyperelliptic semigroup of
genus g .
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Dimension count for rational curves with hyperelliptic
singularities
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The γ > 0 case
We focus on γ-hyperelliptic cusps of maximal weight, i.e.,
S = S2γ = 〈4, 4γ + 2, 2g − 4γ + 1〉.

Figure: Conditions contributing to bP and rP for Sγ when g = 11, γ = 2,
and n = 4. The dark red boxes do not contribute, i.e., they correspond to
a correction to account for the fact that 2g − 4γ + 1 /∈ Span(k).



Dimension count for Mn
d ,S2γ

when γ > 0

Thm (C., Lara Lima, Vidal Martins): Let
VSg,γ := Mn

d ,g ;Sγ
⊂ Mn

d ,g denote the subvariety consisting of

rational curves with a single singularity P that is a γ-hyperelliptic
cusp with value semigroup Sγ , γ > 0. Assume as before that
n ≤ 2g , d ≥ max(2g − 2, n) and, moreover, that g ≥ 4γ + 2. Then

cod(VSγ
,Mn

d ) ≥ (n − 1)g − δn≤γ(2γ + n + j∗∗ − 4)

− δγ+1≤n≤3γ+1(3γ + j∗∗ − 3)

− δn≥3γ+2;g≥4γ+j∗∗+5(6γ + j∗∗ − 2)

+ δn≥3γ+2;g≤4γ+j∗∗+4(g − 10γ − 2j∗∗ − 3)

where δ is Dirac’s delta and j∗∗ is either the unique nonnegative
integer for which g ∈ (6γ − 2j∗∗, 6γ − 2j∗∗ + 2] or else j∗∗ = 0.

Upshot: The codimension of this locus is always at least (n− 2)g .
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Excess Severi components, and γ-hyperelliptic semigroups
of minimal weight

Consider a cusp in Cγ parameterized by t 7→ (f0, . . . , fγ−1), where

fi (t) := t2(γ+i) + O(t2(γ+i)+1)

with generic higher-order coefficients.

Thm (C., Feital, Vidal Martins): The value semigroup of this
cusp is S∗ = S∗1 + S∗2, where

S∗1 := 〈2γ, 2γ+2, . . . , 4γ−2〉 and S∗2 := 〈4γ+5, 4γ+7, . . . , 6γ+3〉.

It is not hard to check that g(S∗) = 3γ + 1.

However, the only conditions imposed on rational curves in Pγ by
cusps of type S∗ arise from ramification, and there are (5γ−3)γ

2 − 1
of these. This is less than (γ − 2)g(S∗) whenever γ ≥ 8.
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Dimension-counting for Mn
d ,S in general

S∗ is a particular instance of the minimal-weight semigroup S1γ .

Q: Can we produce Severi varieties with excess components in
ambient projective spaces of dimensions 3 ≤ n ≤ 7 from other
minimal-weight semigroups S1γ?

A: Yes, we can! To construct explicit examples, we will use the
following device.

Definition. Given distinct natural numbers k1, . . . , kn, a
decomposition of s ∈ N with respect to k1, . . . , kn is an equation

s = m1k1 + . . .+ mnkn (1)

with non-negative integer coefficients mj , j = 1, . . . , n. Its
underlying partition is (km1

1 , . . . , kmn
n ). A decomposition as in (1) is

reducible whenever some proper sub-sum of the right-hand side of
(1) decomposes with respect to k1, . . . , kn; otherwise it is
irreducible.
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Dimension-counting for Mn
d ,S in general

Conjecture (C., Lara Lima, Vidal Martins). Given a vector
k := (k0, . . . , kn) ∈ Nn+1

≥0 , let Mn
d ;S,k ⊂ Mn

d ,g denote the subvariety

parameterizing rational curves f : P1 → Pn with a unique cusp P
with semigroup S and ramification profile k. Suppose that
S = 〈s∗1 , . . . , s∗` 〉 is a presentation by minimal generators,
d = deg(f ) ≥ max(n, 2g − 2), and set ϕ(s) := max{ψ(s)− 1, 0},
ρ(s) := #{r > s : r 6∈ S}. Then

cod(Mn
d ;S,k,M

n
d ) =

n∑
i=1

(ki−i)+
∑
s∈S

ϕ(s)ρ(s)−
∑
i :s∗i /∈k

ρ(s∗i )−D(k)−1

where ψ(s) denote the number of irreducible decompositions for s
with respect to (k1, . . . , kn), and D(k) is its syzygetic defect,
which corrects for overcounting due to linear dependencies among
the decompositions counted by ψ(s) as s varies.



The syzygetic defect

Let V = V (E ) be the vector matroid on

E := {vs1,2−vs1,1, . . . , vs1,ψ(s1)−vs1,1; . . . . . . ; vsp,2−vsp,1, . . . , vsp,ψ(sp)−vsp,1}

where sp ∈ S is the largest element strictly less than the conductor.

Let C1, . . . ,Cq be the circuits of V and for each i , let s(i) be the
largest integer for which vs(i),j − vs(i),1 ∈ Ci for some j . Then

D(k) :=

q∑
i=1

ρ(s(i)).

The syzygetic defect is 0 in the hyperelliptic case, in which all
irreducible partitions are multiples of 2. It is also zero (for slightly
less trivial reasons) in the γ > 0, maximal-weight case.
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New families of Severi-excessive varieties

Cor. (C., Lara Lima, Vidal Martins). Let V(2γ+2,2γ+4,...,2γ+2n)

denote the (generic stratum of a) Severi variety with underlying
value semigroup S∗γ as above.
Assume n = γ+ 1, d ≥ 2g −2, that g = 3γ+ 6 (resp., g = 3γ+ 8)
for some nonnegative integer γ ≥ 5 (resp., γ ≥ 6) and that the
Conjecture holds; then V(2γ+2,2γ+4,...,2γ+2n) is of codimension

5

2
γ2 +

7

2
γ + 3 (resp.,

5

2
γ2 +

7

2
γ + 10)

in Mn
d . In particular, V(2γ+2,2γ+4,...,2γ+2n) is of codimension strictly

less than (n − 2)g in Mn
d .

Upshot: We expect unexpectedly large Severi varieties to exist in
every genus g ≥ 21 and every projective target dimension n ≥ 6.
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Additional questions

1. Is there a more intrinsic (i.e. coordinate-free) description of
Mn

d ,g ;S as a degeneracy locus? This might allow for extensions
of Eisenbud–Harris’ dimensional transversality of Schubert
varieties associated with ramification in points of linear series.

2. What, explicitly, is the deformation theory of unicuspidal
rational curves? E.g., we’d like a description of the space of
(flat) infinitesimal deformations of maps f : P1 → Pn that
preserve a cusp of type S and its preimage, viewed as a subset
of global sections of f ∗TPn .

3. What is the homotopy type of the Berkovich analytification of
Severi varieties over Puiseux series?

4. What is the dimension theory of Severi varieties of unisingular
rational curves whose singularities have multiple branches?
Realizability and (geometric) reconstruction are wide open for
semigroups of rank greater than one.
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