Rational curves with ($\gamma-$)hyperelliptic singularities

Joint with R. Vidal Martins and V. Lara Lima (UFMG)

11 May 2020

Motivation: Severi varieties

Let X be a complex algebraic variety.
It is often interesting to study the the topology of $M_{d}\left(\mathbb{P}^{1}, X\right)$, the space of degree-d holomorphic maps $\mathbb{P}^{1} \rightarrow X$.

Motivation: Severi varieties

Let X be a complex algebraic variety.
It is often interesting to study the the topology of $M_{d}\left(\mathbb{P}^{1}, X\right)$, the space of degree-d holomorphic maps $\mathbb{P}^{1} \rightarrow X$.

Say $X=\mathbb{P}^{n}$. Then $M_{d}^{n}=M_{d}\left(\mathbb{P}^{1}, X\right) \subset \mathbb{G}(n, d)$, because every $\operatorname{map} \varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ of degree d is given by an inclusion $V^{n+1} \hookrightarrow H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(d)\right)$.

Motivation: Severi varieties

Let X be a complex algebraic variety.
It is often interesting to study the the topology of $M_{d}\left(\mathbb{P}^{1}, X\right)$, the space of degree- d holomorphic maps $\mathbb{P}^{1} \rightarrow X$.

Say $X=\mathbb{P}^{n}$. Then $M_{d}^{n}=M_{d}\left(\mathbb{P}^{1}, X\right) \subset \mathbb{G}(n, d)$, because every $\operatorname{map} \varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ of degree d is given by an inclusion $V^{n+1} \hookrightarrow H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(d)\right)$.

More interesting: Inside of M_{d}^{n}, consider $M_{d, g}^{n}:=\{$ maps φ with images of arithmetic genus $g\}$. By analogy with the $n=2$ case, we'll call $M_{d, g}^{n}$ a Severi variety.

Topology of Severi varieties

Basic Q: Is $M_{d, g}^{n}$ irreducible?

Topology of Severi varieties

Basic Q: Is $M_{d, g}^{n}$ irreducible?
Some answers:

- When $n=2$, the answer is "yes". From Joe Harris' work on the Severi problem we know that $M_{d, g}^{2}$ is the closure of the g-nodal locus of maps with g simple double points in their images.

Topology of Severi varieties

Basic Q: Is $M_{d, g}^{n}$ irreducible?
Some answers:

- When $n=2$, the answer is "yes". From Joe Harris' work on the Severi problem we know that $M_{d, g}^{2}$ is the closure of the g-nodal locus of maps with g simple double points in their images.
- We will see that when $n \geq 6$, the answer is "no".

Topology of Severi varieties

Basic Q: Is $M_{d, g}^{n}$ irreducible?
Some answers:

- When $n=2$, the answer is "yes". From Joe Harris' work on the Severi problem we know that $M_{d, g}^{2}$ is the closure of the g-nodal locus of maps with g simple double points in their images.
- We will see that when $n \geq 6$, the answer is "no".
- Not clear for intermediate values $3 \leq n \leq 5$ (though we suspect "no").

Topology of Severi varieties

Basic Q: Is $M_{d, g}^{n}$ irreducible?
Some answers:

- When $n=2$, the answer is "yes". From Joe Harris' work on the Severi problem we know that $M_{d, g}^{2}$ is the closure of the g-nodal locus of maps with g simple double points in their images.
- We will see that when $n \geq 6$, the answer is "no".
- Not clear for intermediate values $3 \leq n \leq 5$ (though we suspect "no").

Basic tool: Dimension counts for subloci $M_{d, S}^{n} \subset M_{d, g}^{n}$ parameterizing maps with cusps of value semigroup S in their images.

Value semigroups of cusps

Let's examine the local geometry of a map
$\varphi:\left(\mathbb{P}^{1}, P\right) \rightarrow\left(\mathbb{P}^{n}, \varphi(P)=\right.$ cusp $), C=\operatorname{Im}(\varphi)$.

Value semigroups of cusps

Let's examine the local geometry of a map
$\varphi:\left(\mathbb{P}^{1}, P\right) \rightarrow\left(\mathbb{P}^{n}, \varphi(P)=\right.$ cusp $), C=\operatorname{Im}(\varphi)$.
The normalization of the cusp is given by $\psi: t \mapsto\left(\psi_{1}(t), \ldots, \psi_{n}(t)\right)$, i.e., by a ring map
$\phi: \mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right] \rightarrow \mathbb{C}[[t]]$.

Value semigroups of cusps

Let's examine the local geometry of a map
$\varphi:\left(\mathbb{P}^{1}, P\right) \rightarrow\left(\mathbb{P}^{n}, \varphi(P)=\right.$ cusp $), C=\operatorname{Im}(\varphi)$.
The normalization of the cusp is given by $\psi: t \mapsto\left(\psi_{1}(t), \ldots, \psi_{n}(t)\right)$, i.e., by a ring map
$\phi: \mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right] \rightarrow \mathbb{C}[[t]]$.
Let $v: \mathbb{C}[[t]] \rightarrow \mathbb{N}, t \mapsto 1$ be the usual t-adic valuation. Then $\mathrm{S}:=\operatorname{Im}(v \circ \phi) \subset \mathbb{N}$ is the value semigroup of the pair (φ, P).

Value semigroups of cusps

Let's examine the local geometry of a map
$\varphi:\left(\mathbb{P}^{1}, P\right) \rightarrow\left(\mathbb{P}^{n}, \varphi(P)=\right.$ cusp $), C=\operatorname{Im}(\varphi)$.
The normalization of the cusp is given by $\psi: t \mapsto\left(\psi_{1}(t), \ldots, \psi_{n}(t)\right)$, i.e., by a ring map
$\phi: \mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right] \rightarrow \mathbb{C}[[t]]$.
Let $v: \mathbb{C}[[t]] \rightarrow \mathbb{N}, t \mapsto 1$ be the usual t-adic valuation. Then $\mathrm{S}:=\operatorname{Im}(v \circ \phi) \subset \mathbb{N}$ is the value semigroup of the pair (φ, P).

Philosophy: The topology of $M_{d, S}^{n}$ is controlled by the value semigroup S.

A dimension-counting heuristic

$\mathrm{S} \subset \mathbb{N}$ is a numerical semigroup: $\#(\mathbb{N} \backslash \mathrm{~S})$ is the δ-invariant of the cusp $\varphi(P)$. In particular, when $C=\varphi\left(\mathbb{P}^{1}\right)$ is a rational curve whose unique singularity is $\varphi(P), g=\#(\mathbb{N} \backslash S)$ is the arithmetic genus of C.

A dimension-counting heuristic

$\mathrm{S} \subset \mathbb{N}$ is a numerical semigroup: $\#(\mathbb{N} \backslash \mathrm{~S})$ is the δ-invariant of the cusp $\varphi(P)$. In particular, when $C=\varphi\left(\mathbb{P}^{1}\right)$ is a rational curve whose unique singularity is $\varphi(P), g=\#(\mathbb{N} \backslash S)$ is the arithmetic genus of C.
Requiring the images of maps φ to contain cusps of a particular type S imposes conditions on the coefficients of φ.

A dimension-counting heuristic

$\mathrm{S} \subset \mathbb{N}$ is a numerical semigroup: $\#(\mathbb{N} \backslash \mathrm{~S})$ is the δ-invariant of the cusp $\varphi(P)$. In particular, when $C=\varphi\left(\mathbb{P}^{1}\right)$ is a rational curve whose unique singularity is $\varphi(P), g=\#(\mathbb{N} \backslash S)$ is the arithmetic genus of C.
Requiring the images of maps φ to contain cusps of a particular type S imposes conditions on the coefficients of φ.
The g-nodal sublocus of $M_{d, g}^{n}$ has codimension $(n-2) g$ inside M_{d}^{n}. (To see this: each node imposes $2 \mathrm{n}-\mathrm{n}-2=\mathrm{n}-2$ conditions, and it's easy to check that these are additive.)

A dimension-counting heuristic

$S \subset \mathbb{N}$ is a numerical semigroup: $\#(\mathbb{N} \backslash S)$ is the δ-invariant of the cusp $\varphi(P)$. In particular, when $C=\varphi\left(\mathbb{P}^{1}\right)$ is a rational curve whose unique singularity is $\varphi(P), g=\#(\mathbb{N} \backslash S)$ is the arithmetic genus of C.

Requiring the images of maps φ to contain cusps of a particular type S imposes conditions on the coefficients of φ.
The g-nodal sublocus of $M_{d, g}^{n}$ has codimension $(n-2) g$ inside M_{d}^{n}. (To see this: each node imposes $2 \mathrm{n}-\mathrm{n}-2=\mathrm{n}-2$ conditions, and it's easy to check that these are additive.)
So: Naively we might expect that $\operatorname{cod}\left(M_{d, g}^{n}\right) \geq(n-2) g$, as would be required if $M_{d, g}^{n}$ were contained in the closure of the g-nodal locus.

A dimension-counting heuristic

$\mathrm{S} \subset \mathbb{N}$ is a numerical semigroup: $\#(\mathbb{N} \backslash \mathrm{~S})$ is the δ-invariant of the cusp $\varphi(P)$. In particular, when $C=\varphi\left(\mathbb{P}^{1}\right)$ is a rational curve whose unique singularity is $\varphi(P), g=\#(\mathbb{N} \backslash S)$ is the arithmetic genus of C.

Requiring the images of maps φ to contain cusps of a particular type S imposes conditions on the coefficients of φ.
The g-nodal sublocus of $M_{d, g}^{n}$ has codimension $(n-2) g$ inside M_{d}^{n}. (To see this: each node imposes $2 \mathrm{n}-\mathrm{n}-2=\mathrm{n}-2$ conditions, and it's easy to check that these are additive.)
So: Naively we might expect that $\operatorname{cod}\left(M_{d, g}^{n}\right) \geq(n-2) g$, as would be required if $M_{d, g}^{n}$ were contained in the closure of the g-nodal locus.

However this turns out not to be true in general!

Realizability and hyperellipticity

Every numerical semigroup $S \subset \mathbb{N}$ is the value semigroup of a cusp. (Say that $\mathrm{S}=\left\langle e_{1}, \ldots, e_{m}\right\rangle$ is a minimal presentation; then $t \mapsto\left(t^{e_{1}}, \ldots, t^{e_{m}}\right)$ realizes S . $)$

Realizability and hyperellipticity

Every numerical semigroup $S \subset \mathbb{N}$ is the value semigroup of a cusp. (Say that $\mathrm{S}=\left\langle e_{1}, \ldots, e_{m}\right\rangle$ is a minimal presentation; then $t \mapsto\left(t^{e_{1}}, \ldots, t^{e_{m}}\right)$ realizes S . $)$

Numerical semigroups are stratified according to their hyperellipticity degree: we say S is γ-hyperelliptic if

1) S contains exactly γ even numbers in $[1,4 \gamma]$; and
2) $4 \gamma, 4 \gamma+2 \in S$.

Realizability and hyperellipticity

Every numerical semigroup $S \subset \mathbb{N}$ is the value semigroup of a cusp. (Say that $S=\left\langle e_{1}, \ldots, e_{m}\right\rangle$ is a minimal presentation; then $t \mapsto\left(t^{e_{1}}, \ldots, t^{e_{m}}\right)$ realizes S .)

Numerical semigroups are stratified according to their hyperellipticity degree: we say S is γ-hyperelliptic if

1) S contains exactly γ even numbers in $[1,4 \gamma]$; and
2) $4 \gamma, 4 \gamma+2 \in S$.

The terminology is explained by the $\gamma=0$ case, in which S is hyperelliptic, meaning that $2 \in \mathrm{~S}$.

Weight

The weight of a numerical semigroup S with $\mathbb{N} \backslash \mathrm{S}=\left\{\ell_{1}<\cdots<\ell_{g}\right\}$ is $\sum_{i=1}^{g}\left(\ell_{i}-i\right)$.

Weight

The weight of a numerical semigroup S with
$\mathbb{N} \backslash \mathrm{S}=\left\{\ell_{1}<\cdots<\ell_{g}\right\}$ is $\sum_{i=1}^{g}\left(\ell_{i}-i\right)$.
Fact: When $g \gg \gamma$,
$\mathrm{S}_{\gamma}^{1}:=\langle 2 \gamma+2,2 \gamma+4, \ldots, 2 g\rangle+\langle 2 g+1-2 \gamma, \ldots, 2 g-1,2 g+1\rangle$ and
$\mathrm{S}_{\gamma}^{2}:=\langle 4,4 \gamma+2,2 g-4 \gamma+1\rangle$
are the unique γ-hyperelliptic semigroups of genus g with minimal (resp., maximal) weight.

Weight

The weight of a numerical semigroup S with
$\mathbb{N} \backslash \mathrm{S}=\left\{\ell_{1}<\cdots<\ell_{g}\right\}$ is $\sum_{i=1}^{g}\left(\ell_{i}-i\right)$.
Fact: When $g \gg \gamma$,
$\mathrm{S}_{\gamma}^{1}:=\langle 2 \gamma+2,2 \gamma+4, \ldots, 2 g\rangle+\langle 2 g+1-2 \gamma, \ldots, 2 g-1,2 g+1\rangle$ and
$\mathrm{S}_{\gamma}^{2}:=\langle 4,4 \gamma+2,2 g-4 \gamma+1\rangle$
are the unique γ-hyperelliptic semigroups of genus g with minimal (resp., maximal) weight.
Goal: Compute $\operatorname{cod}\left(M_{d, S}^{n}\right) \subset M_{d}^{n}$, with a particular focus on the cases $\mathrm{S}=\mathrm{S}_{\gamma}^{i}, i=1,2$.

Ramification and beyond

In other words: We'd like to count the number of conditions on morphisms $\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ imposed by cusps with value semigroup S .

Ramification and beyond

In other words: We'd like to count the number of conditions on morphisms $\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ imposed by cusps with value semigroup S . In doing so, it's useful to distinguish between

1) Conditions arising from the ramification of the morphism φ in P : this is $\sum_{i=0}^{n}\left(a_{i}-i\right)$, where $a_{0}<\cdots<a_{n}$ are the vanishing orders of sections of φ in P.

Ramification and beyond

In other words: We'd like to count the number of conditions on morphisms $\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ imposed by cusps with value semigroup S . In doing so, it's useful to distinguish between

1) Conditions arising from the ramification of the morphism φ in P : this is $\sum_{i=0}^{n}\left(a_{i}-i\right)$, where $a_{0}<\cdots<a_{n}$ are the vanishing orders of sections of φ in P. So ramification measures the deviation of $\left(a_{0}, \ldots, a_{n}\right)$ from the generic sequence $(0,1, \ldots, n)$.

Ramification and beyond

In other words: We'd like to count the number of conditions on morphisms $\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ imposed by cusps with value semigroup S . In doing so, it's useful to distinguish between

1) Conditions arising from the ramification of the morphism φ in P : this is $\sum_{i=0}^{n}\left(a_{i}-i\right)$, where $a_{0}<\cdots<a_{n}$ are the vanishing orders of sections of φ in P. So ramification measures the deviation of $\left(a_{0}, \ldots, a_{n}\right)$ from the generic sequence $(0,1, \ldots, n)$.
2) Conditions "beyond ramification" arising from the additive structure of S, i.e., from the multiplicative structure of the local algebra of the cusp.

Ramification and beyond

In other words: We'd like to count the number of conditions on morphisms $\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ imposed by cusps with value semigroup S . In doing so, it's useful to distinguish between

1) Conditions arising from the ramification of the morphism φ in P : this is $\sum_{i=0}^{n}\left(a_{i}-i\right)$, where $a_{0}<\cdots<a_{n}$ are the vanishing orders of sections of φ in P. So ramification measures the deviation of $\left(a_{0}, \ldots, a_{n}\right)$ from the generic sequence $(0,1, \ldots, n)$.
2) Conditions "beyond ramification" arising from the additive structure of S, i.e., from the multiplicative structure of the local algebra of the cusp.
We will give a combinatorial model that conjecturally accounts for all of these conditions.

Dyck paths and semigroups

Any numerical semigroup S of genus g is determined by $\mathrm{S} \cap[2 g]$, which may be encoded as a Dyck path of length $2 g$ in a lattice starting from (0,0) and ending in (g, g).

Dyck paths and semigroups

Any numerical semigroup S of genus g is determined by $\mathrm{S} \cap[2 g]$, which may be encoded as a Dyck path of length $2 g$ in a lattice starting from (0,0) and ending in (g, g).

In this representation, elements of S (resp., of $\mathbb{N} \backslash S$) are encoded as horizontal (resp., vertical) segments of unit length.

Dyck paths and semigroups

Any numerical semigroup S of genus g is determined by $\mathrm{S} \cap[2 g]$, which may be encoded as a Dyck path of length $2 g$ in a lattice starting from (0,0) and ending in (g, g).

In this representation, elements of S (resp., of $\mathbb{N} \backslash S$) are encoded as horizontal (resp., vertical) segments of unit length.

Ramification conditions are encoded as Young tableaux under the path, while conditions beyond ramification are encoded as collections of boxes above the path.

Dyck paths and semigroups

Any numerical semigroup S of genus g is determined by $\mathrm{S} \cap[2 g]$, which may be encoded as a Dyck path of length $2 g$ in a lattice starting from $(0,0)$ and ending in (g, g).

In this representation, elements of S (resp., of $\mathbb{N} \backslash S$) are encoded as horizontal (resp., vertical) segments of unit length.

Ramification conditions are encoded as Young tableaux under the path, while conditions beyond ramification are encoded as collections of boxes above the path.

Example: $\gamma=0, n=4, g=7$ (and $d>g$). Here $S=\langle 2,15\rangle$ is hyperelliptic.

Dyck paths and semigroups

Any numerical semigroup S of genus g is determined by $\mathrm{S} \cap[2 g]$, which may be encoded as a Dyck path of length $2 g$ in a lattice starting from $(0,0)$ and ending in (g, g).

In this representation, elements of S (resp., of $\mathbb{N} \backslash S$) are encoded as horizontal (resp., vertical) segments of unit length.

Ramification conditions are encoded as Young tableaux under the path, while conditions beyond ramification are encoded as collections of boxes above the path.

Example: $\gamma=0, n=4, g=7$ (and $d>g$). Here $S=\langle 2,15\rangle$ is hyperelliptic.
$M_{d, S}^{4}$ will contain maps $\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{4}$ with various possible local ramification profiles near the cusp.

Typical example of rational curves with hyperelliptic cusps

A dimension-theoretically generic possibility is $t \mapsto\left(f_{1}=\right.$ $\left.t^{2}+O\left(t^{3}\right), f_{2}=t^{4}+O\left(t^{5}\right), f_{3}=t^{6}+O\left(t^{7}\right), f_{4}=t^{8}+O\left(t^{9}\right)\right)$, i.e. the t-adic valuation of φ in the preimage of the cusp is $(2,4,6,8)$.

Typical example of rational curves with hyperelliptic cusps

A dimension-theoretically generic possibility is $t \mapsto\left(f_{1}=\right.$
$\left.t^{2}+O\left(t^{3}\right), f_{2}=t^{4}+O\left(t^{5}\right), f_{3}=t^{6}+O\left(t^{7}\right), f_{4}=t^{8}+O\left(t^{9}\right)\right)$, i.e. the t-adic valuation of φ in the preimage of the cusp is $(2,4,6,8)$.
Graphically we have:

Figure: Ramification conditions r_{P} are in grey; the conditions contributed by f_{i} are in the i th column. Conditions b_{P} "beyond ramification" in red. We have $r_{P}+b_{P}-1=(n-1) g$.

Typical example of rational curves with hyperelliptic cusps

A dimension-theoretically generic possibility is $t \mapsto\left(f_{1}=\right.$
$\left.t^{2}+O\left(t^{3}\right), f_{2}=t^{4}+O\left(t^{5}\right), f_{3}=t^{6}+O\left(t^{7}\right), f_{4}=t^{8}+O\left(t^{9}\right)\right)$, i.e. the t-adic valuation of φ in the preimage of the cusp is $(2,4,6,8)$.
Graphically we have:

Figure: Ramification conditions r_{P} are in grey; the conditions contributed by f_{i} are in the i th column. Conditions b_{P} "beyond ramification" in red. We have $r_{P}+b_{P}-1=(n-1) g$.

A typical condition beyond ramification is that $\operatorname{lc}\left(f_{j}-f_{1}^{j}\right)=0$, $j=2, \ldots, n$.

Dimension count for rational curves with hyperelliptic

 singularitiesNow set $F_{j}:=f_{j}-f_{1}^{2}$. We can think of the condition $\operatorname{lc}\left(F_{j}\right)=0$ imposed by F_{j} as encoded by the lowest red square in column j.

Dimension count for rational curves with hyperelliptic

 singularitiesNow set $F_{j}:=f_{j}-f_{1}^{2}$. We can think of the condition $\operatorname{lc}\left(F_{j}\right)=0$ imposed by F_{j} as encoded by the lowest red square in column j. Inductively, we may "walk" up column j, inducing a single new independent condition at every step. The condition encoded by the second-lowest red square is imposed by $F_{j}^{*}:=F_{j}-\left[t^{2 j+2}\right] F_{j} \cdot f_{1}^{j}$. To continue walking up the column, replace F_{j} by F_{j}^{*} and perturb by (a multiple of) a power of f_{1}.

Dimension count for rational curves with hyperelliptic

 singularitiesNow set $F_{j}:=f_{j}-f_{1}^{2}$. We can think of the condition $\operatorname{lc}\left(F_{j}\right)=0$ imposed by F_{j} as encoded by the lowest red square in column j. Inductively, we may "walk" up column j, inducing a single new independent condition at every step. The condition encoded by the second-lowest red square is imposed by $F_{j}^{*}:=F_{j}-\left[t^{2 j+2}\right] F_{j} \cdot f_{1}^{j}$. To continue walking up the column, replace F_{j} by F_{j}^{*} and perturb by (a multiple of) a power of f_{1}.

Iterate this procedure until all elements of $\mathbb{N} \backslash S$ have been exhausted.

Dimension count for rational curves with hyperelliptic

 singularitiesNow set $F_{j}:=f_{j}-f_{1}^{2}$. We can think of the condition $\operatorname{lc}\left(F_{j}\right)=0$ imposed by F_{j} as encoded by the lowest red square in column j. Inductively, we may "walk" up column j, inducing a single new independent condition at every step. The condition encoded by the second-lowest red square is imposed by $F_{j}^{*}:=F_{j}-\left[t^{2 j+2}\right] F_{j} \cdot f_{1}^{j}$. To continue walking up the column, replace F_{j} by F_{j}^{*} and perturb by (a multiple of) a power of f_{1}.

Iterate this procedure until all elements of $\mathbb{N} \backslash S$ have been exhausted.

Thm (C., Lara Lima, Vidal Martins): Assume that

 $d \geq \max (2 g-2, n)$; then $\operatorname{cod}\left(M_{d, S_{0}}^{n} \subset M_{d}^{n}\right) \geq(n-1) g$, and conjecturally " $=$ " holds. Moreover, $M_{d, S_{0}}^{n}$ is the union of irreducible unirational varieties $M_{d, \mathrm{~S}_{0} ; k}^{n}$ of fixed ramification profile k. Here $S_{0}=\langle 2,2 g+1\rangle$ is the unique hyperelliptic semigroup of genus g.
The $\gamma>0$ case

We focus on γ-hyperelliptic cusps of maximal weight, i.e., $\mathrm{S}=\mathrm{S}_{\gamma}^{2}=\langle 4,4 \gamma+2,2 g-4 \gamma+1\rangle$.

Figure: Conditions contributing to b_{P} and r_{P} for S_{γ} when $g=11, \gamma=2$, and $n=4$. The dark red boxes do not contribute, i.e., they correspond to a correction to account for the fact that $2 g-4 \gamma+1 \notin \operatorname{Span}(\mathbf{k})$.

Dimension count for $M_{d, \mathrm{~S}_{\gamma}^{2}}^{n}$ when $\gamma>0$

Thm (C., Lara Lima, Vidal Martins): Let $\mathcal{V}_{\mathrm{S}_{g, \gamma}}:=M_{d, g ; \mathrm{S}_{\gamma}}^{n} \subset M_{d, g}^{n}$ denote the subvariety consisting of rational curves with a single singularity P that is a γ-hyperelliptic cusp with value semigroup $\mathrm{S}_{\gamma}, \gamma>0$. Assume as before that $n \leq 2 g, d \geq \max (2 g-2, n)$ and, moreover, that $g \geq 4 \gamma+2$. Then

$$
\begin{aligned}
\operatorname{cod}\left(\mathcal{V}_{\mathrm{S}_{\gamma}}, M_{d}^{n}\right) & \geq(n-1) g-\delta_{n \leq \gamma}\left(2 \gamma+n+j^{* *}-4\right) \\
& -\delta_{\gamma+1 \leq n \leq 3 \gamma+1}\left(3 \gamma+j^{* *}-3\right) \\
& -\delta_{n \geq 3 \gamma+2 ; g \geq 4 \gamma+j^{* *}+5}\left(6 \gamma+j^{* *}-2\right) \\
& +\delta_{n \geq 3 \gamma+2 ; g \leq 4 \gamma+j^{* *}+4}\left(g-10 \gamma-2 j^{* *}-3\right)
\end{aligned}
$$

where δ is Dirac's delta and $j^{* *}$ is either the unique nonnegative integer for which $g \in\left(6 \gamma-2 j^{* *}, 6 \gamma-2 j^{* *}+2\right]$ or else $j^{* *}=0$.

Dimension count for $M_{d, \mathrm{~S}_{\gamma}^{2}}^{n}$ when $\gamma>0$

Thm (C., Lara Lima, Vidal Martins): Let $\mathcal{V}_{\mathrm{S}_{g, \gamma}}:=M_{d, g ; \mathrm{S}_{\gamma}}^{n} \subset M_{d, g}^{n}$ denote the subvariety consisting of rational curves with a single singularity P that is a γ-hyperelliptic cusp with value semigroup $\mathrm{S}_{\gamma}, \gamma>0$. Assume as before that $n \leq 2 g, d \geq \max (2 g-2, n)$ and, moreover, that $g \geq 4 \gamma+2$. Then

$$
\begin{aligned}
\operatorname{cod}\left(\mathcal{V}_{\mathrm{S}_{\gamma}}, M_{d}^{n}\right) & \geq(n-1) g-\delta_{n \leq \gamma}\left(2 \gamma+n+j^{* *}-4\right) \\
& -\delta_{\gamma+1 \leq n \leq 3 \gamma+1}\left(3 \gamma+j^{* *}-3\right) \\
& -\delta_{n \geq 3 \gamma+2 ; g \geq 4 \gamma+j^{* *}+5}\left(6 \gamma+j^{* *}-2\right) \\
& +\delta_{n \geq 3 \gamma+2 ; g \leq 4 \gamma+j^{* *}+4}\left(g-10 \gamma-2 j^{* *}-3\right)
\end{aligned}
$$

where δ is Dirac's delta and $j^{* *}$ is either the unique nonnegative integer for which $g \in\left(6 \gamma-2 j^{* *}, 6 \gamma-2 j^{* *}+2\right]$ or else $j^{* *}=0$.

Upshot: The codimension of this locus is always at least $(n-2) g$.

Excess Severi components, and γ-hyperelliptic semigroups of minimal weight

Consider a cusp in \mathbb{C}^{γ} parameterized by $t \mapsto\left(f_{0}, \ldots, f_{\gamma-1}\right)$, where

$$
f_{i}(t):=t^{2(\gamma+i)}+O\left(t^{2(\gamma+i)+1}\right)
$$

with generic higher-order coefficients.

Excess Severi components, and γ-hyperelliptic semigroups of minimal weight

Consider a cusp in \mathbb{C}^{γ} parameterized by $t \mapsto\left(f_{0}, \ldots, f_{\gamma-1}\right)$, where

$$
f_{i}(t):=t^{2(\gamma+i)}+O\left(t^{2(\gamma+i)+1}\right)
$$

with generic higher-order coefficients.
Thm (C., Feital, Vidal Martins): The value semigroup of this cusp is $S^{*}=S_{1}^{*}+S_{2}^{*}$, where
$\mathrm{S}_{1}^{*}:=\langle 2 \gamma, 2 \gamma+2, \ldots, 4 \gamma-2\rangle$ and $\mathrm{S}_{2}^{*}:=\langle 4 \gamma+5,4 \gamma+7, \ldots, 6 \gamma+3\rangle$.

Excess Severi components, and γ-hyperelliptic semigroups of minimal weight

Consider a cusp in \mathbb{C}^{γ} parameterized by $t \mapsto\left(f_{0}, \ldots, f_{\gamma-1}\right)$, where

$$
f_{i}(t):=t^{2(\gamma+i)}+O\left(t^{2(\gamma+i)+1}\right)
$$

with generic higher-order coefficients.
Thm (C., Feital, Vidal Martins): The value semigroup of this cusp is $S^{*}=S_{1}^{*}+S_{2}^{*}$, where
$\mathrm{S}_{1}^{*}:=\langle 2 \gamma, 2 \gamma+2, \ldots, 4 \gamma-2\rangle$ and $\mathrm{S}_{2}^{*}:=\langle 4 \gamma+5,4 \gamma+7, \ldots, 6 \gamma+3\rangle$.

It is not hard to check that $g\left(\mathrm{~S}^{*}\right)=3 \gamma+1$.

Excess Severi components, and γ-hyperelliptic semigroups

 of minimal weightConsider a cusp in \mathbb{C}^{γ} parameterized by $t \mapsto\left(f_{0}, \ldots, f_{\gamma-1}\right)$, where

$$
f_{i}(t):=t^{2(\gamma+i)}+O\left(t^{2(\gamma+i)+1}\right)
$$

with generic higher-order coefficients.
Thm (C., Feital, Vidal Martins): The value semigroup of this cusp is $\mathrm{S}^{*}=\mathrm{S}_{1}^{*}+\mathrm{S}_{2}^{*}$, where
$\mathrm{S}_{1}^{*}:=\langle 2 \gamma, 2 \gamma+2, \ldots, 4 \gamma-2\rangle$ and $\mathrm{S}_{2}^{*}:=\langle 4 \gamma+5,4 \gamma+7, \ldots, 6 \gamma+3\rangle$.

It is not hard to check that $g\left(\mathrm{~S}^{*}\right)=3 \gamma+1$.
However, the only conditions imposed on rational curves in \mathbb{P}^{γ} by cusps of type S^{*} arise from ramification, and there are $\frac{(5 \gamma-3) \gamma}{2}-1$ of these. This is less than $(\gamma-2) g\left(\mathrm{~S}^{*}\right)$ whenever $\gamma \geq 8$.

Dimension-counting for $M_{d, S}^{n}$ in general

S^{*} is a particular instance of the minimal-weight semigroup S_{γ}^{1}.

Dimension-counting for $M_{d, S}^{n}$ in general

S^{*} is a particular instance of the minimal-weight semigroup S_{γ}^{1}.
Q: Can we produce Severi varieties with excess components in ambient projective spaces of dimensions $3 \leq n \leq 7$ from other minimal-weight semigroups S_{γ}^{1} ?

Dimension-counting for $M_{d, S}^{n}$ in general

S^{*} is a particular instance of the minimal-weight semigroup S_{γ}^{1}.
Q: Can we produce Severi varieties with excess components in ambient projective spaces of dimensions $3 \leq n \leq 7$ from other minimal-weight semigroups S_{γ}^{1} ?
A: Yes, we can! To construct explicit examples, we will use the following device.

Dimension-counting for $M_{d, S}^{n}$ in general

S^{*} is a particular instance of the minimal-weight semigroup S_{γ}^{1}.
Q: Can we produce Severi varieties with excess components in ambient projective spaces of dimensions $3 \leq n \leq 7$ from other minimal-weight semigroups S_{γ}^{1} ?
A: Yes, we can! To construct explicit examples, we will use the following device.

Definition. Given distinct natural numbers k_{1}, \ldots, k_{n}, a decomposition of $s \in \mathbb{N}$ with respect to k_{1}, \ldots, k_{n} is an equation

$$
\begin{equation*}
s=m_{1} k_{1}+\ldots+m_{n} k_{n} \tag{1}
\end{equation*}
$$

with non-negative integer coefficients $m_{j}, j=1, \ldots, n$. Its underlying partition is $\left(k_{1}^{m_{1}}, \ldots, k_{n}^{m_{n}}\right)$. A decomposition as in (1) is reducible whenever some proper sub-sum of the right-hand side of (1) decomposes with respect to k_{1}, \ldots, k_{n}; otherwise it is irreducible.

Dimension-counting for $M_{d, S}^{n}$ in general

Conjecture (C., Lara Lima, Vidal Martins). Given a vector $\mathbf{k}:=\left(k_{0}, \ldots, k_{n}\right) \in \mathbb{N}_{\geq 0}^{n+1}$, let $M_{d ; S, \mathbf{k}}^{n} \subset M_{d, g}^{n}$ denote the subvariety parameterizing rational curves $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ with a unique cusp P with semigroup S and ramification profile \mathbf{k}. Suppose that $\mathrm{S}=\left\langle s_{1}^{*}, \ldots, s_{\ell}^{*}\right\rangle$ is a presentation by minimal generators, $d=\operatorname{deg}(f) \geq \max (n, 2 g-2)$, and set $\varphi(s):=\max \{\psi(s)-1,0\}$, $\rho(s):=\#\{r>s: r \notin \mathrm{~S}\}$. Then
$\operatorname{cod}\left(M_{d ; \mathrm{S}, \mathbf{k}}^{n}, M_{d}^{n}\right)=\sum_{i=1}^{n}\left(k_{i}-i\right)+\sum_{s \in \mathrm{~S}} \varphi(s) \rho(s)-\sum_{i: s_{i}^{*} \notin \mathbf{k}} \rho\left(s_{i}^{*}\right)-D(\mathbf{k})-1$
where $\psi(s)$ denote the number of irreducible decompositions for s with respect to $\left(k_{1}, \ldots, k_{n}\right)$, and $D(\mathbf{k})$ is its syzygetic defect, which corrects for overcounting due to linear dependencies among the decompositions counted by $\psi(s)$ as s varies.

The syzygetic defect

Let $V=V(E)$ be the vector matroid on
$E:=\left\{v_{s_{1}, 2}-v_{s_{1}, 1}, \ldots, v_{s_{1}, \psi\left(s_{1}\right)}-v_{s_{1}, 1} ; \ldots \ldots ; v_{s_{p}, 2}-v_{s_{p}, 1}, \ldots, v_{s_{p}, \psi\left(s_{p}\right)}-v_{s_{p}, 1}\right\}$ where $s_{p} \in \mathrm{~S}$ is the largest element strictly less than the conductor.

The syzygetic defect

Let $V=V(E)$ be the vector matroid on

$$
E:=\left\{v_{s_{1}, 2}-v_{s_{1}, 1}, \ldots, v_{s_{1}, \psi\left(s_{1}\right)}-v_{s_{1}, 1} ; \ldots \ldots ; v_{s_{p}, 2}-v_{s_{p}, 1}, \ldots, v_{s_{p}, \psi\left(s_{p}\right)}-v_{s_{p}, 1}\right\}
$$

where $s_{p} \in \mathrm{~S}$ is the largest element strictly less than the conductor.
Let C_{1}, \ldots, C_{q} be the circuits of V and for each i, let $s(i)$ be the largest integer for which $v_{s(i), j}-v_{s(i), 1} \in C_{i}$ for some j. Then

$$
D(\mathbf{k}):=\sum_{i=1}^{q} \rho(s(i))
$$

The syzygetic defect

Let $V=V(E)$ be the vector matroid on

$$
E:=\left\{v_{s_{1}, 2}-v_{s_{1}, 1}, \ldots, v_{s_{1}, \psi\left(s_{1}\right)}-v_{s_{1}, 1} ; \ldots \ldots ; v_{s_{p}, 2}-v_{s_{p}, 1}, \ldots, v_{s_{p}, \psi\left(s_{p}\right)}-v_{s_{p}, 1}\right\}
$$

where $s_{p} \in \mathrm{~S}$ is the largest element strictly less than the conductor. Let C_{1}, \ldots, C_{q} be the circuits of V and for each i, let $s(i)$ be the largest integer for which $v_{s(i), j}-v_{s(i), 1} \in C_{i}$ for some j. Then

$$
D(\mathbf{k}):=\sum_{i=1}^{q} \rho(s(i))
$$

The syzygetic defect is 0 in the hyperelliptic case, in which all irreducible partitions are multiples of 2. It is also zero (for slightly less trivial reasons) in the $\gamma>0$, maximal-weight case.

New families of Severi-excessive varieties

Cor. (C., Lara Lima, Vidal Martins). Let $\mathcal{V}_{(2 \gamma+2,2 \gamma+4, \ldots, 2 \gamma+2 n)}$ denote the (generic stratum of a) Severi variety with underlying value semigroup S_{γ}^{*} as above.
Assume $n=\gamma+1, d \geq 2 g-2$, that $g=3 \gamma+6$ (resp., $g=3 \gamma+8$) for some nonnegative integer $\gamma \geq 5$ (resp., $\gamma \geq 6$) and that the Conjecture holds; then $\mathcal{V}_{(2 \gamma+2,2 \gamma+4, \ldots, 2 \gamma+2 n)}$ is of codimension

$$
\left.\frac{5}{2} \gamma^{2}+\frac{7}{2} \gamma+3 \text { (resp., } \frac{5}{2} \gamma^{2}+\frac{7}{2} \gamma+10\right)
$$

in M_{d}^{n}. In particular, $\mathcal{V}_{(2 \gamma+2,2 \gamma+4, \ldots, 2 \gamma+2 n)}$ is of codimension strictly less than $(n-2) g$ in M_{d}^{n}.

New families of Severi-excessive varieties

Cor. (C., Lara Lima, Vidal Martins). Let $\mathcal{V}_{(2 \gamma+2,2 \gamma+4, \ldots, 2 \gamma+2 n)}$ denote the (generic stratum of a) Severi variety with underlying value semigroup S_{γ}^{*} as above.
Assume $n=\gamma+1, d \geq 2 g-2$, that $g=3 \gamma+6$ (resp., $g=3 \gamma+8$) for some nonnegative integer $\gamma \geq 5$ (resp., $\gamma \geq 6$) and that the Conjecture holds; then $\mathcal{V}_{(2 \gamma+2,2 \gamma+4, \ldots, 2 \gamma+2 n)}$ is of codimension

$$
\left.\frac{5}{2} \gamma^{2}+\frac{7}{2} \gamma+3 \text { (resp., } \frac{5}{2} \gamma^{2}+\frac{7}{2} \gamma+10\right)
$$

in M_{d}^{n}. In particular, $\mathcal{V}_{(2 \gamma+2,2 \gamma+4, \ldots, 2 \gamma+2 n)}$ is of codimension strictly less than $(n-2) g$ in M_{d}^{n}.
Upshot: We expect unexpectedly large Severi varieties to exist in every genus $g \geq 21$ and every projective target dimension $n \geq 6$.

Additional questions

1. Is there a more intrinsic (i.e. coordinate-free) description of $M_{d, g ; S}^{n}$ as a degeneracy locus? This might allow for extensions of Eisenbud-Harris' dimensional transversality of Schubert varieties associated with ramification in points of linear series.

Additional questions

1. Is there a more intrinsic (i.e. coordinate-free) description of $M_{d, g ; S}^{n}$ as a degeneracy locus? This might allow for extensions of Eisenbud-Harris' dimensional transversality of Schubert varieties associated with ramification in points of linear series.
2. What, explicitly, is the deformation theory of unicuspidal rational curves? E.g., we'd like a description of the space of (flat) infinitesimal deformations of maps $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ that preserve a cusp of type S and its preimage, viewed as a subset of global sections of $f^{*} \mathcal{T}_{\mathbb{P}^{n}}$.

Additional questions

1. Is there a more intrinsic (i.e. coordinate-free) description of $M_{d, g ; S}^{n}$ as a degeneracy locus? This might allow for extensions of Eisenbud-Harris' dimensional transversality of Schubert varieties associated with ramification in points of linear series.
2. What, explicitly, is the deformation theory of unicuspidal rational curves? E.g., we'd like a description of the space of (flat) infinitesimal deformations of maps $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ that preserve a cusp of type S and its preimage, viewed as a subset of global sections of $f^{*} \mathcal{T}_{\mathbb{P}^{n}}$.
3. What is the homotopy type of the Berkovich analytification of Severi varieties over Puiseux series?

Additional questions

1. Is there a more intrinsic (i.e. coordinate-free) description of $M_{d, g ; S}^{n}$ as a degeneracy locus? This might allow for extensions of Eisenbud-Harris' dimensional transversality of Schubert varieties associated with ramification in points of linear series.
2. What, explicitly, is the deformation theory of unicuspidal rational curves? E.g., we'd like a description of the space of (flat) infinitesimal deformations of maps $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ that preserve a cusp of type S and its preimage, viewed as a subset of global sections of $f^{*} \mathcal{T}_{\mathbb{P}^{n}}$.
3. What is the homotopy type of the Berkovich analytification of Severi varieties over Puiseux series?
4. What is the dimension theory of Severi varieties of unisingular rational curves whose singularities have multiple branches? Realizability and (geometric) reconstruction are wide open for semigroups of rank greater than one.
