Rational curves with $(\gamma$ -)hyperelliptic singularities

Joint with R. Vidal Martins and V. Lara Lima (UFMG)

11 May 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation: Severi varieties

Let X be a complex algebraic variety.

It is often interesting to study the the topology of $M_d(\mathbb{P}^1, X)$, the space of degree-*d* holomorphic maps $\mathbb{P}^1 \to X$.

Motivation: Severi varieties

Let X be a complex algebraic variety.

It is often interesting to study the the topology of $M_d(\mathbb{P}^1, X)$, the space of degree-*d* holomorphic maps $\mathbb{P}^1 \to X$.

Say $X = \mathbb{P}^n$. Then $M_d^n = M_d(\mathbb{P}^1, X) \subset \mathbb{G}(n, d)$, because every map $\varphi : \mathbb{P}^1 \to \mathbb{P}^n$ of degree d is given by an inclusion $V^{n+1} \hookrightarrow H^0(\mathbb{P}^1, \mathcal{O}(d))$.

Motivation: Severi varieties

Let X be a complex algebraic variety.

It is often interesting to study the the topology of $M_d(\mathbb{P}^1, X)$, the space of degree-*d* holomorphic maps $\mathbb{P}^1 \to X$.

Say $X = \mathbb{P}^n$. Then $M_d^n = M_d(\mathbb{P}^1, X) \subset \mathbb{G}(n, d)$, because every map $\varphi : \mathbb{P}^1 \to \mathbb{P}^n$ of degree d is given by an inclusion $V^{n+1} \hookrightarrow H^0(\mathbb{P}^1, \mathcal{O}(d))$.

More interesting: Inside of M_d^n , consider $M_{d,g}^n := \{ \text{maps } \varphi \text{ with images of arithmetic genus } g \}$. By analogy with the n = 2 case, we'll call $M_{d,g}^n$ a *Severi variety*.

Basic Q: Is $M_{d,g}^n$ irreducible?

Basic Q: Is $M_{d,g}^n$ irreducible?

Some answers:

When n = 2, the answer is "yes". From Joe Harris' work on the Severi problem we know that M²_{d,g} is the closure of the g-nodal locus of maps with g simple double points in their images.

Basic Q: Is $M_{d,g}^n$ irreducible?

Some answers:

When n = 2, the answer is "yes". From Joe Harris' work on the Severi problem we know that M²_{d,g} is the closure of the g-nodal locus of maps with g simple double points in their images.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• We will see that when $n \ge 6$, the answer is "no".

Basic Q: Is $M_{d,g}^n$ irreducible?

Some answers:

- When n = 2, the answer is "yes". From Joe Harris' work on the Severi problem we know that M²_{d,g} is the closure of the g-nodal locus of maps with g simple double points in their images.
- We will see that when $n \ge 6$, the answer is "no".
- Not clear for intermediate values 3 ≤ n ≤ 5 (though we suspect "no").

Basic Q: Is $M_{d,g}^n$ irreducible?

Some answers:

- When n = 2, the answer is "yes". From Joe Harris' work on the Severi problem we know that M²_{d,g} is the closure of the g-nodal locus of maps with g simple double points in their images.
- We will see that when $n \ge 6$, the answer is "no".
- Not clear for intermediate values 3 ≤ n ≤ 5 (though we suspect "no").

Basic tool: Dimension counts for subloci $M_{d,S}^n \subset M_{d,g}^n$ parameterizing maps with *cusps* of value semigroup S in their images.

Let's examine the local geometry of a map $\varphi : (\mathbb{P}^1, P) \to (\mathbb{P}^n, \varphi(P) = \operatorname{cusp}), \ C = \operatorname{Im}(\varphi).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let's examine the local geometry of a map $\varphi : (\mathbb{P}^1, P) \to (\mathbb{P}^n, \varphi(P) = \operatorname{cusp}), \ C = \operatorname{Im}(\varphi).$

The normalization of the cusp is given by $\psi : t \mapsto (\psi_1(t), \dots, \psi_n(t))$, i.e., by a ring map $\phi : \mathbb{C}[[x_1, \dots, x_n]] \to \mathbb{C}[[t]].$

Let's examine the local geometry of a map $\varphi : (\mathbb{P}^1, P) \to (\mathbb{P}^n, \varphi(P) = \operatorname{cusp}), \ C = \operatorname{Im}(\varphi).$

The normalization of the cusp is given by $\psi : t \mapsto (\psi_1(t), \dots, \psi_n(t))$, i.e., by a ring map $\phi : \mathbb{C}[[x_1, \dots, x_n]] \to \mathbb{C}[[t]].$

Let $v : \mathbb{C}[[t]] \to \mathbb{N}$, $t \mapsto 1$ be the usual *t*-adic valuation. Then $S := Im(v \circ \phi) \subset \mathbb{N}$ is the *value semigroup* of the pair (φ, P) .

Let's examine the local geometry of a map $\varphi : (\mathbb{P}^1, P) \to (\mathbb{P}^n, \varphi(P) = \operatorname{cusp}), \ C = \operatorname{Im}(\varphi).$

The normalization of the cusp is given by $\psi : t \mapsto (\psi_1(t), \dots, \psi_n(t))$, i.e., by a ring map $\phi : \mathbb{C}[[x_1, \dots, x_n]] \to \mathbb{C}[[t]].$

Let $v : \mathbb{C}[[t]] \to \mathbb{N}$, $t \mapsto 1$ be the usual *t*-adic valuation. Then $S := Im(v \circ \phi) \subset \mathbb{N}$ is the *value semigroup* of the pair (φ, P) .

Philosophy: The topology of $M_{d,S}^n$ is controlled by the value semigroup S.

 $S \subset \mathbb{N}$ is a *numerical* semigroup: $\#(\mathbb{N} \setminus S)$ is the δ -invariant of the cusp $\varphi(P)$. In particular, when $C = \varphi(\mathbb{P}^1)$ is a rational curve whose unique singularity is $\varphi(P)$, $g = \#(\mathbb{N} \setminus S)$ is the arithmetic genus of C.

 $S \subset \mathbb{N}$ is a *numerical* semigroup: $\#(\mathbb{N} \setminus S)$ is the δ -invariant of the cusp $\varphi(P)$. In particular, when $C = \varphi(\mathbb{P}^1)$ is a rational curve whose unique singularity is $\varphi(P)$, $g = \#(\mathbb{N} \setminus S)$ is the arithmetic genus of C.

Requiring the images of maps φ to contain cusps of a particular type S imposes conditions on the coefficients of φ .

 $S \subset \mathbb{N}$ is a *numerical* semigroup: $\#(\mathbb{N} \setminus S)$ is the δ -invariant of the cusp $\varphi(P)$. In particular, when $C = \varphi(\mathbb{P}^1)$ is a rational curve whose unique singularity is $\varphi(P)$, $g = \#(\mathbb{N} \setminus S)$ is the arithmetic genus of C.

Requiring the images of maps φ to contain cusps of a particular type S imposes conditions on the coefficients of φ .

The g-nodal sublocus of $M_{d,g}^n$ has codimension (n-2)g inside M_d^n . (To see this: each node imposes 2n-n-2=n-2 conditions, and it's easy to check that these are additive.)

 $S \subset \mathbb{N}$ is a *numerical* semigroup: $\#(\mathbb{N} \setminus S)$ is the δ -invariant of the cusp $\varphi(P)$. In particular, when $C = \varphi(\mathbb{P}^1)$ is a rational curve whose unique singularity is $\varphi(P)$, $g = \#(\mathbb{N} \setminus S)$ is the arithmetic genus of C.

Requiring the images of maps φ to contain cusps of a particular type S imposes conditions on the coefficients of φ .

The g-nodal sublocus of $M_{d,g}^n$ has codimension (n-2)g inside M_d^n . (To see this: each node imposes 2n-n-2=n-2 conditions, and it's easy to check that these are additive.)

So: Naively we might expect that $cod(M_{d,g}^n) \ge (n-2)g$, as would be required if $M_{d,g}^n$ were contained in the closure of the *g*-nodal locus.

 $S \subset \mathbb{N}$ is a *numerical* semigroup: $\#(\mathbb{N} \setminus S)$ is the δ -invariant of the cusp $\varphi(P)$. In particular, when $C = \varphi(\mathbb{P}^1)$ is a rational curve whose unique singularity is $\varphi(P)$, $g = \#(\mathbb{N} \setminus S)$ is the arithmetic genus of C.

Requiring the images of maps φ to contain cusps of a particular type S imposes conditions on the coefficients of φ .

The g-nodal sublocus of $M_{d,g}^n$ has codimension (n-2)g inside M_d^n . (To see this: each node imposes 2n-n-2=n-2 conditions, and it's easy to check that these are additive.)

So: Naively we might expect that $cod(M_{d,g}^n) \ge (n-2)g$, as would be required if $M_{d,g}^n$ were contained in the closure of the *g*-nodal locus.

However this turns out not to be true in general!

Realizability and hyperellipticity

Every numerical semigroup $S \subset \mathbb{N}$ is the value semigroup of a cusp. (Say that $S = \langle e_1, \ldots, e_m \rangle$ is a minimal presentation; then $t \mapsto (t^{e_1}, \ldots, t^{e_m})$ realizes S.)

Realizability and hyperellipticity

Every numerical semigroup $S \subset \mathbb{N}$ is the value semigroup of a cusp. (Say that $S = \langle e_1, \ldots, e_m \rangle$ is a minimal presentation; then $t \mapsto (t^{e_1}, \ldots, t^{e_m})$ realizes S.)

Numerical semigroups are stratified according to their *hyperellipticity* degree: we say S is γ -*hyperelliptic* if 1) S contains exactly γ even numbers in $[1, 4\gamma]$; and 2) 4γ , $4\gamma + 2 \in S$.

・ロト・日本・モト・モート ヨー シタウ

Realizability and hyperellipticity

Every numerical semigroup $S \subset \mathbb{N}$ is the value semigroup of a cusp. (Say that $S = \langle e_1, \ldots, e_m \rangle$ is a minimal presentation; then $t \mapsto (t^{e_1}, \ldots, t^{e_m})$ realizes S.)

Numerical semigroups are stratified according to their hyperellipticity degree: we say S is γ -hyperelliptic if

1) S contains exactly γ even numbers in [1,4 γ]; and 2) 4 γ , 4 γ + 2 \in S.

The terminology is explained by the $\gamma = 0$ case, in which S is *hyperelliptic*, meaning that $2 \in S$.

Weight

The *weight* of a numerical semigroup S with $\mathbb{N} \setminus S = \{\ell_1 < \cdots < \ell_g\}$ is $\sum_{i=1}^g (\ell_i - i)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Weight

The *weight* of a numerical semigroup S with $\mathbb{N} \setminus S = \{\ell_1 < \cdots < \ell_g\}$ is $\sum_{i=1}^g (\ell_i - i)$.

Fact: When $g \gg \gamma$,

$$\begin{split} \mathrm{S}^1_\gamma &:= \langle 2\gamma+2, 2\gamma+4, \dots, 2g
angle + \langle 2g+1-2\gamma, \dots, 2g-1, 2g+1
angle \ \mathrm{and} \ \mathrm{S}^2_\gamma &:= \langle 4, 4\gamma+2, 2g-4\gamma+1
angle \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

are the unique γ -hyperelliptic semigroups of genus g with minimal (resp., maximal) weight.

Weight

The *weight* of a numerical semigroup S with $\mathbb{N} \setminus S = \{\ell_1 < \cdots < \ell_g\}$ is $\sum_{i=1}^g (\ell_i - i)$.

Fact: When $g \gg \gamma$,

$$egin{aligned} &\mathrm{S}^1_\gamma := \langle 2\gamma+2, 2\gamma+4, \dots, 2g
angle + \langle 2g+1-2\gamma, \dots, 2g-1, 2g+1
angle \ &\mathrm{and} \ &\mathrm{S}^2_\gamma := \langle 4, 4\gamma+2, 2g-4\gamma+1
angle \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

are the unique γ -hyperelliptic semigroups of genus g with minimal (resp., maximal) weight.

Goal: Compute $cod(M_{d,S}^n) \subset M_d^n$, with a particular focus on the cases $S = S_{\gamma}^i$, i = 1, 2.

In other words: We'd like to count the number of conditions on morphisms $\varphi : \mathbb{P}^1 \to \mathbb{P}^n$ imposed by cusps with value semigroup S.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In other words: We'd like to count the number of conditions on morphisms $\varphi : \mathbb{P}^1 \to \mathbb{P}^n$ imposed by cusps with value semigroup S. In doing so, it's useful to distinguish between

Conditions arising from the *ramification* of the morphism φ in P: this is ∑_{i=0}ⁿ (a_i − i), where a₀ < ··· < a_n are the vanishing orders of sections of φ in P.

In other words: We'd like to count the number of conditions on morphisms $\varphi : \mathbb{P}^1 \to \mathbb{P}^n$ imposed by cusps with value semigroup S. In doing so, it's useful to distinguish between

Conditions arising from the *ramification* of the morphism φ in P: this is ∑_{i=0}ⁿ (a_i - i), where a₀ < ··· < a_n are the vanishing orders of sections of φ in P. So ramification measures the deviation of (a₀,..., a_n) from

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

the generic sequence $(0, 1, \ldots, n)$.

In other words: We'd like to count the number of conditions on morphisms $\varphi : \mathbb{P}^1 \to \mathbb{P}^n$ imposed by cusps with value semigroup S. In doing so, it's useful to distinguish between

- Conditions arising from the *ramification* of the morphism φ in P: this is ∑_{i=0}ⁿ (a_i − i), where a₀ < ··· < a_n are the vanishing orders of sections of φ in P. So ramification measures the deviation of (a₀,..., a_n) from the generic sequence (0, 1,..., n).
- 2) Conditions "beyond ramification" arising from the *additive* structure of S, i.e., from the multiplicative structure of the local algebra of the cusp.

In other words: We'd like to count the number of conditions on morphisms $\varphi : \mathbb{P}^1 \to \mathbb{P}^n$ imposed by cusps with value semigroup S. In doing so, it's useful to distinguish between

- Conditions arising from the *ramification* of the morphism φ in P: this is ∑_{i=0}ⁿ (a_i − i), where a₀ < ··· < a_n are the vanishing orders of sections of φ in P. So ramification measures the deviation of (a₀,..., a_n) from the generic sequence (0, 1,..., n).
- 2) Conditions "beyond ramification" arising from the *additive* structure of S, i.e., from the multiplicative structure of the local algebra of the cusp.

We will give a combinatorial model that conjecturally accounts for all of these conditions.

Any numerical semigroup S of genus g is determined by $S \cap [2g]$, which may be encoded as a Dyck path of length 2g in a lattice starting from (0,0) and ending in (g,g).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Any numerical semigroup S of genus g is determined by $S \cap [2g]$, which may be encoded as a Dyck path of length 2g in a lattice starting from (0,0) and ending in (g,g).

In this representation, elements of S (resp., of $\mathbb{N}\setminus S$) are encoded as horizontal (resp., vertical) segments of unit length.

Any numerical semigroup S of genus g is determined by $S \cap [2g]$, which may be encoded as a Dyck path of length 2g in a lattice starting from (0,0) and ending in (g,g).

In this representation, elements of S (resp., of $\mathbb{N}\setminus S)$ are encoded as horizontal (resp., vertical) segments of unit length.

Ramification conditions are encoded as Young tableaux *under* the path, while conditions beyond ramification are encoded as collections of boxes *above* the path.

Any numerical semigroup S of genus g is determined by $S \cap [2g]$, which may be encoded as a Dyck path of length 2g in a lattice starting from (0,0) and ending in (g,g).

In this representation, elements of S (resp., of $\mathbb{N}\setminus S)$ are encoded as horizontal (resp., vertical) segments of unit length.

Ramification conditions are encoded as Young tableaux *under* the path, while conditions beyond ramification are encoded as collections of boxes *above* the path.

Example: $\gamma = 0, n = 4, g = 7$ (and $d \gg g$). Here $S = \langle 2, 15 \rangle$ is hyperelliptic.

Any numerical semigroup S of genus g is determined by $S \cap [2g]$, which may be encoded as a Dyck path of length 2g in a lattice starting from (0,0) and ending in (g,g).

In this representation, elements of S (resp., of $\mathbb{N}\setminus S)$ are encoded as horizontal (resp., vertical) segments of unit length.

Ramification conditions are encoded as Young tableaux *under* the path, while conditions beyond ramification are encoded as collections of boxes *above* the path.

Example: $\gamma = 0, n = 4, g = 7$ (and $d \gg g$). Here $S = \langle 2, 15 \rangle$ is hyperelliptic.

 $M^4_{d,S}$ will contain maps $\varphi : \mathbb{P}^1 \to \mathbb{P}^4$ with various possible local ramification profiles near the cusp.

Typical example of rational curves with hyperelliptic cusps

A dimension-theoretically generic possibility is $t \mapsto (f_1 = t^2 + O(t^3), f_2 = t^4 + O(t^5), f_3 = t^6 + O(t^7), f_4 = t^8 + O(t^9))$, i.e. the *t*-adic valuation of φ in the preimage of the cusp is (2, 4, 6, 8).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Typical example of rational curves with hyperelliptic cusps

A dimension-theoretically generic possibility is $t \mapsto (f_1 = t^2 + O(t^3), f_2 = t^4 + O(t^5), f_3 = t^6 + O(t^7), f_4 = t^8 + O(t^9))$, i.e. the *t*-adic valuation of φ in the preimage of the cusp is (2,4,6,8).

Graphically we have:

Figure: Ramification conditions r_P are in grey; the conditions contributed by f_i are in the *i*th column. Conditions b_P "beyond ramification" in red. We have $r_P + b_P - 1 = (n - 1)g$. Typical example of rational curves with hyperelliptic cusps

A dimension-theoretically generic possibility is $t \mapsto (f_1 = t^2 + O(t^3), f_2 = t^4 + O(t^5), f_3 = t^6 + O(t^7), f_4 = t^8 + O(t^9))$, i.e. the *t*-adic valuation of φ in the preimage of the cusp is (2,4,6,8).

Graphically we have:

Figure: Ramification conditions r_P are in grey; the conditions contributed by f_i are in the *i*th column. Conditions b_P "beyond ramification" in red. We have $r_P + b_P - 1 = (n - 1)g$.

A typical condition beyond ramification is that $lc(f_j - f_1^J) = 0$, j = 2, ..., n.

Now set $F_j := f_j - f_1^2$. We can think of the condition $lc(F_j) = 0$ imposed by F_j as encoded by the lowest red square in column *j*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Now set $F_j := f_j - f_1^2$. We can think of the condition $lc(F_j) = 0$ imposed by F_j as encoded by the lowest red square in column *j*.

Inductively, we may "walk" up column j, inducing a single new independent condition at every step. The condition encoded by the second-lowest red square is imposed by $F_j^* := F_j - [t^{2j+2}]F_j \cdot f_1^j$. To continue walking up the column, replace F_j by F_j^* and perturb by (a multiple of) a power of f_1 .

Now set $F_j := f_j - f_1^2$. We can think of the condition $lc(F_j) = 0$ imposed by F_j as encoded by the lowest red square in column *j*.

Inductively, we may "walk" up column j, inducing a single new independent condition at every step. The condition encoded by the second-lowest red square is imposed by $F_j^* := F_j - [t^{2j+2}]F_j \cdot f_1^j$. To continue walking up the column, replace F_j by F_j^* and perturb by (a multiple of) a power of f_1 .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Iterate this procedure until all elements of $\mathbb{N} \setminus S$ have been exhausted.

Now set $F_j := f_j - f_1^2$. We can think of the condition $lc(F_j) = 0$ imposed by F_j as encoded by the lowest red square in column *j*.

Inductively, we may "walk" up column j, inducing a single new independent condition at every step. The condition encoded by the second-lowest red square is imposed by $F_j^* := F_j - [t^{2j+2}]F_j \cdot f_1^j$. To continue walking up the column, replace F_j by F_j^* and perturb by (a multiple of) a power of f_1 .

Iterate this procedure until all elements of $\mathbb{N}\setminus S$ have been exhausted.

Thm (C., Lara Lima, Vidal Martins): Assume that $d \ge \max(2g - 2, n)$; then $\operatorname{cod}(M_{d,S_0}^n \subset M_d^n) \ge (n - 1)g$, and conjecturally "=" holds. Moreover, M_{d,S_0}^n is the union of irreducible unirational varieties $M_{d,S_0;\mathbf{k}}^n$ of fixed ramification profile \mathbf{k} . Here $S_0 = \langle 2, 2g + 1 \rangle$ is the unique hyperelliptic semigroup of genus g.

The $\gamma > 0$ case

We focus on γ -hyperelliptic cusps of maximal weight, i.e., $S=S_{\gamma}^2=\langle 4,4\gamma+2,2g-4\gamma+1\rangle.$

Figure: Conditions contributing to b_P and r_P for S_γ when g = 11, $\gamma = 2$, and n = 4. The dark red boxes do not contribute, i.e., they correspond to a correction to account for the fact that $2g - 4\gamma + 1 \notin \text{Span}(\mathbf{k})$.

Dimension count for $M^n_{d,\mathrm{S}^2_\gamma}$ when $\gamma > 0$

Thm (C., Lara Lima, Vidal Martins): Let

 $\mathcal{V}_{\mathrm{S}_{g,\gamma}} := M_{d,g;\mathrm{S}_{\gamma}}^n \subset M_{d,g}^n$ denote the subvariety consisting of rational curves with a single singularity P that is a γ -hyperelliptic cusp with value semigroup S_{γ} , $\gamma > 0$. Assume as before that $n \leq 2g$, $d \geq \max(2g-2, n)$ and, moreover, that $g \geq 4\gamma + 2$. Then

$$\begin{aligned} \operatorname{cod}(\mathcal{V}_{\mathrm{S}_{\gamma}}, M_{d}^{n}) &\geq (n-1)g - \delta_{n \leq \gamma}(2\gamma + n + j^{**} - 4) \\ &- \delta_{\gamma + 1 \leq n \leq 3\gamma + 1}(3\gamma + j^{**} - 3) \\ &- \delta_{n \geq 3\gamma + 2;g \geq 4\gamma + j^{**} + 5}(6\gamma + j^{**} - 2) \\ &+ \delta_{n \geq 3\gamma + 2;g \leq 4\gamma + j^{**} + 4}(g - 10\gamma - 2j^{**} - 3) \end{aligned}$$

where δ is Dirac's delta and j^{**} is either the unique nonnegative integer for which $g \in (6\gamma - 2j^{**}, 6\gamma - 2j^{**} + 2]$ or else $j^{**} = 0$.

Dimension count for $M^n_{d,\mathrm{S}^2_\gamma}$ when $\gamma>0$

Thm (C., Lara Lima, Vidal Martins): Let

 $\mathcal{V}_{\mathrm{S}_{g,\gamma}} := M_{d,g;\mathrm{S}_{\gamma}}^n \subset M_{d,g}^n$ denote the subvariety consisting of rational curves with a single singularity P that is a γ -hyperelliptic cusp with value semigroup S_{γ} , $\gamma > 0$. Assume as before that $n \leq 2g$, $d \geq \max(2g-2, n)$ and, moreover, that $g \geq 4\gamma + 2$. Then

$$\begin{aligned} \operatorname{cod}(\mathcal{V}_{\mathrm{S}_{\gamma}}, M_{d}^{n}) &\geq (n-1)g - \delta_{n \leq \gamma}(2\gamma + n + j^{**} - 4) \\ &- \delta_{\gamma + 1 \leq n \leq 3\gamma + 1}(3\gamma + j^{**} - 3) \\ &- \delta_{n \geq 3\gamma + 2;g \geq 4\gamma + j^{**} + 5}(6\gamma + j^{**} - 2) \\ &+ \delta_{n \geq 3\gamma + 2;g \leq 4\gamma + j^{**} + 4}(g - 10\gamma - 2j^{**} - 3) \end{aligned}$$

where δ is Dirac's delta and j^{**} is either the unique nonnegative integer for which $g \in (6\gamma - 2j^{**}, 6\gamma - 2j^{**} + 2]$ or else $j^{**} = 0$.

Upshot: The codimension of this locus is *always* at least (n-2)g.

Consider a cusp in \mathbb{C}^{γ} parameterized by $t \mapsto (f_0, \ldots, f_{\gamma-1})$, where

$$f_i(t) := t^{2(\gamma+i)} + O(t^{2(\gamma+i)+1})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

with generic higher-order coefficients.

Consider a cusp in \mathbb{C}^{γ} parameterized by $t\mapsto (f_0,\ldots,f_{\gamma-1})$, where

$$f_i(t) := t^{2(\gamma+i)} + O(t^{2(\gamma+i)+1})$$

with generic higher-order coefficients.

Thm (C., Feital, Vidal Martins): The value semigroup of this cusp is ${\rm S}^*={\rm S}_1^*+{\rm S}_2^*,$ where

$$\mathrm{S}_1^* := \langle 2\gamma, 2\gamma + 2, \dots, 4\gamma - 2 \rangle \text{ and } \mathrm{S}_2^* := \langle 4\gamma + 5, 4\gamma + 7, \dots, 6\gamma + 3 \rangle.$$

Consider a cusp in \mathbb{C}^{γ} parameterized by $t \mapsto (f_0, \ldots, f_{\gamma-1})$, where

$$f_i(t) := t^{2(\gamma+i)} + O(t^{2(\gamma+i)+1})$$

with generic higher-order coefficients.

Thm (C., Feital, Vidal Martins): The value semigroup of this cusp is $S^* = S_1^* + S_2^*$, where

$$\mathrm{S}_1^* := \langle 2\gamma, 2\gamma + 2, \dots, 4\gamma - 2 \rangle \text{ and } \mathrm{S}_2^* := \langle 4\gamma + 5, 4\gamma + 7, \dots, 6\gamma + 3 \rangle.$$

It is not hard to check that $g(S^*) = 3\gamma + 1$.

Consider a cusp in \mathbb{C}^{γ} parameterized by $t\mapsto (f_0,\ldots,f_{\gamma-1})$, where

$$f_i(t) := t^{2(\gamma+i)} + O(t^{2(\gamma+i)+1})$$

with generic higher-order coefficients.

Thm (C., Feital, Vidal Martins): The value semigroup of this cusp is $S^* = S_1^* + S_2^*$, where

$$\mathrm{S}_1^* := \langle 2\gamma, 2\gamma + 2, \dots, 4\gamma - 2 \rangle \text{ and } \mathrm{S}_2^* := \langle 4\gamma + 5, 4\gamma + 7, \dots, 6\gamma + 3 \rangle.$$

It is not hard to check that $g(S^*) = 3\gamma + 1$.

However, the *only* conditions imposed on rational curves in \mathbb{P}^{γ} by cusps of type S^{*} arise from ramification, and there are $\frac{(5\gamma-3)\gamma}{2}-1$ of these. This is less than $(\gamma - 2)g(S^*)$ whenever $\gamma \geq 8$.

 S^* is a particular instance of the minimal-weight semigroup S^1_{γ} .

 S^* is a particular instance of the minimal-weight semigroup S^1_{γ} .

Q: Can we produce Severi varieties with excess components in ambient projective spaces of dimensions $3 \le n \le 7$ from other minimal-weight semigroups S^1_{γ} ?

 S^* is a particular instance of the minimal-weight semigroup S^1_{γ} .

Q: Can we produce Severi varieties with excess components in ambient projective spaces of dimensions $3 \le n \le 7$ from other minimal-weight semigroups S_{γ}^1 ?

A: Yes, we can! To construct explicit examples, we will use the following device.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 S^* is a particular instance of the minimal-weight semigroup S^1_{γ} .

Q: Can we produce Severi varieties with excess components in ambient projective spaces of dimensions $3 \le n \le 7$ from other minimal-weight semigroups S_{γ}^1 ?

A: Yes, we can! To construct explicit examples, we will use the following device.

Definition. Given distinct natural numbers k_1, \ldots, k_n , a *decomposition* of $s \in \mathbb{N}$ with respect to k_1, \ldots, k_n is an equation

$$s = m_1 k_1 + \ldots + m_n k_n \tag{1}$$

with non-negative integer coefficients $m_j, j = 1, ..., n$. Its *underlying partition* is $(k_1^{m_1}, ..., k_n^{m_n})$. A decomposition as in (1) is *reducible* whenever some proper sub-sum of the right-hand side of (1) decomposes with respect to $k_1, ..., k_n$; otherwise it is *irreducible*.

Conjecture (C., Lara Lima, Vidal Martins). Given a vector $\mathbf{k} := (k_0, \ldots, k_n) \in \mathbb{N}_{\geq 0}^{n+1}$, let $M_{d;S,\mathbf{k}}^n \subset M_{d,g}^n$ denote the subvariety parameterizing rational curves $f : \mathbb{P}^1 \to \mathbb{P}^n$ with a unique cusp P with semigroup S and ramification profile \mathbf{k} . Suppose that $S = \langle s_1^*, \ldots, s_\ell^* \rangle$ is a presentation by minimal generators, $d = \deg(f) \geq \max(n, 2g - 2)$, and set $\varphi(s) := \max\{\psi(s) - 1, 0\}$, $\rho(s) := \#\{r > s : r \notin S\}$. Then

$$\operatorname{cod}(M_{d;\mathrm{S},\mathbf{k}}^{n},M_{d}^{n}) = \sum_{i=1}^{n} (k_{i}-i) + \sum_{s\in\mathrm{S}} \varphi(s)\rho(s) - \sum_{i:s_{i}^{*}\notin\mathbf{k}} \rho(s_{i}^{*}) - D(\mathbf{k}) - 1$$

where $\psi(s)$ denote the number of irreducible decompositions for *s* with respect to (k_1, \ldots, k_n) , and $D(\mathbf{k})$ is its *syzygetic defect*, which corrects for overcounting due to linear dependencies among the decompositions counted by $\psi(s)$ as *s varies*.

The syzygetic defect

Let V = V(E) be the vector matroid on $E := \{v_{s_1,2} - v_{s_1,1}, \dots, v_{s_1,\psi(s_1)} - v_{s_1,1}; \dots, v_{s_p,2} - v_{s_p,1}, \dots, v_{s_p,\psi(s_p)} - v_{s_p,1}\}$

where $s_p \in S$ is the largest element strictly less than the conductor.

The syzygetic defect

Let V = V(E) be the vector matroid on $E := \{v_{s_1,2} - v_{s_1,1}, \dots, v_{s_1,\psi(s_1)} - v_{s_1,1}; \dots, \dots; v_{s_p,2} - v_{s_p,1}, \dots, v_{s_p,\psi(s_p)} - v_{s_p,1}\}$ where $s_p \in S$ is the largest element strictly less than the conductor. Let C_1, \dots, C_q be the circuits of V and for each i, let s(i) be the largest integer for which $v_{s(i),j} - v_{s(i),1} \in C_i$ for some j. Then

$$D(\mathbf{k}) := \sum_{i=1}^{q} \rho(s(i)).$$

The syzygetic defect

Let V = V(E) be the vector matroid on $E := \{v_{s_1,2} - v_{s_1,1}, \dots, v_{s_1,\psi(s_1)} - v_{s_1,1}; \dots, \dots; v_{s_p,2} - v_{s_p,1}, \dots, v_{s_p,\psi(s_p)} - v_{s_p,1}\}$ where $s_p \in S$ is the largest element strictly less than the conductor. Let C_1, \dots, C_q be the circuits of V and for each i, let s(i) be the largest integer for which $v_{s(i),j} - v_{s(i),1} \in C_i$ for some j. Then

$$D(\mathbf{k}) := \sum_{i=1}^{q} \rho(s(i)).$$

The syzygetic defect is 0 in the hyperelliptic case, in which all irreducible partitions are multiples of 2. It is also zero (for slightly less trivial reasons) in the $\gamma > 0$, maximal-weight case.

New families of Severi-excessive varieties

Cor. (C., Lara Lima, Vidal Martins). Let $\mathcal{V}_{(2\gamma+2,2\gamma+4,...,2\gamma+2n)}$ denote the (generic stratum of a) Severi variety with underlying value semigroup S^*_{γ} as above.

Assume $n = \gamma + 1$, $d \ge 2g - 2$, that $g = 3\gamma + 6$ (resp., $g = 3\gamma + 8$) for some nonnegative integer $\gamma \ge 5$ (resp., $\gamma \ge 6$) and that the Conjecture holds; then $\mathcal{V}_{(2\gamma+2,2\gamma+4,\dots,2\gamma+2n)}$ is of codimension

$$\frac{5}{2}\gamma^2 + \frac{7}{2}\gamma + 3 \text{ (resp., } \frac{5}{2}\gamma^2 + \frac{7}{2}\gamma + 10 \text{)}$$

in M_d^n . In particular, $\mathcal{V}_{(2\gamma+2,2\gamma+4,\ldots,2\gamma+2n)}$ is of codimension strictly less than (n-2)g in M_d^n .

(日)((1))

New families of Severi-excessive varieties

Cor. (C., Lara Lima, Vidal Martins). Let $\mathcal{V}_{(2\gamma+2,2\gamma+4,...,2\gamma+2n)}$ denote the (generic stratum of a) Severi variety with underlying value semigroup S^*_{γ} as above.

Assume $n = \gamma + 1$, $d \ge 2g - 2$, that $g = 3\gamma + 6$ (resp., $g = 3\gamma + 8$) for some nonnegative integer $\gamma \ge 5$ (resp., $\gamma \ge 6$) and that the Conjecture holds; then $\mathcal{V}_{(2\gamma+2,2\gamma+4,\dots,2\gamma+2n)}$ is of codimension

$$\frac{5}{2}\gamma^2 + \frac{7}{2}\gamma + 3 \text{ (resp., } \frac{5}{2}\gamma^2 + \frac{7}{2}\gamma + 10 \text{)}$$

in M_d^n . In particular, $\mathcal{V}_{(2\gamma+2,2\gamma+4,\ldots,2\gamma+2n)}$ is of codimension strictly less than (n-2)g in M_d^n .

Upshot: We expect unexpectedly large Severi varieties to exist in every genus $g \ge 21$ and every projective target dimension $n \ge 6$.

1. Is there a more *intrinsic* (i.e. coordinate-free) description of $M_{d,g;S}^n$ as a degeneracy locus? This might allow for extensions of Eisenbud-Harris' dimensional transversality of Schubert varieties associated with ramification in points of linear series.

- 1. Is there a more *intrinsic* (i.e. coordinate-free) description of $M_{d,g;S}^n$ as a degeneracy locus? This might allow for extensions of Eisenbud-Harris' dimensional transversality of Schubert varieties associated with ramification in points of linear series.
- What, explicitly, is the *deformation theory* of unicuspidal rational curves? E.g., we'd like a description of the space of (flat) infinitesimal deformations of maps f : P¹ → Pⁿ that preserve a cusp of type S and its preimage, viewed as a subset of global sections of f*T_{Pn}.

- 1. Is there a more *intrinsic* (i.e. coordinate-free) description of $M_{d,g;S}^n$ as a degeneracy locus? This might allow for extensions of Eisenbud-Harris' dimensional transversality of Schubert varieties associated with ramification in points of linear series.
- What, explicitly, is the *deformation theory* of unicuspidal rational curves? E.g., we'd like a description of the space of (flat) infinitesimal deformations of maps f : P¹ → Pⁿ that preserve a cusp of type S and its preimage, viewed as a subset of global sections of f*T_{Pn}.
- 3. What is the *homotopy type of the Berkovich analytification* of Severi varieties over Puiseux series?

- 1. Is there a more *intrinsic* (i.e. coordinate-free) description of $M_{d,g;S}^n$ as a degeneracy locus? This might allow for extensions of Eisenbud-Harris' dimensional transversality of Schubert varieties associated with ramification in points of linear series.
- What, explicitly, is the *deformation theory* of unicuspidal rational curves? E.g., we'd like a description of the space of (flat) infinitesimal deformations of maps f : P¹ → Pⁿ that preserve a cusp of type S and its preimage, viewed as a subset of global sections of f*T_{Pn}.
- 3. What is the *homotopy type of the Berkovich analytification* of Severi varieties over Puiseux series?
- 4. What is the dimension theory of Severi varieties of unisingular rational curves whose singularities have *multiple* branches? *Realizability* and (geometric) *reconstruction* are wide open for semigroups of rank greater than one.