Real plane sextic curves with smooth real part

Alex Degtyarev

(Bilkent University)

Joint w/ Ilia Itenberg

Topology of algebraic varieties

Fix a deformation family \mathcal{X} of complex varieties.

Consider a generic member $X \in \mathcal{X}$ "well understood."

Try to study "topological" (\approx deformation invariant) properties of specific members $X \in \bar{\mathcal{X}}$, with extra structures.

Ultimate goal: classification up to appropriate deformation.

E.g., $\bar{\mathcal{X}} = \text{degree } d$ curves in \mathbb{P}^2 , with $\mathcal{X} = \text{smooth curves.}$ singular curves/ equisingular deformation equivariant deformation singular real curves/equisingular equivariant deformation

Real = with an anti-holomorphic involution $\sigma: X \to X$. Equisingular \approx stratum $\mu = \text{const.}$ No question for A-D-E.

\rightarrow Topology of algebraic varieties

Degree	Singular complex	Smooth real
d = 2	Ancient Greeks (?)	Ancient Greeks (?)
d = 3	Newton (?)	Newton (?)
d = 4	Klein (?)	Klein (?)
d = 5	D-, 1987	Kharlamov, 1981 (used nodal real)
d = 6 !!	Akyol, 2012 (*)	Gudkov (topological) Nikulin, 1979; Kharlamov
d = 7	??	?? Viro (topological)
d = 8	??	?? Korchagin, Orevkov, Shustin,

^{*}Artal, Carmona, Cogolludo, Tokunaga, ...; Eyral, Oka; ...

^{*}Persson, Urabe, Yang, Shimada, D-, ... (K3-theoretic)

^{*}A-D-E-singularities; non-simple: easier D-, 1989

→ Topology of algebraic varieties

Singular complex vs. smooth real curves: totally different, but: compatible difficulty, often similar tools.

Singular and real curves are less studied:

- Gudkov et al., 1966: irreducible quartics.
- Gudkov et al.: <u>rational</u> quintics (sets of singularities) ??
- Kharlamov, 1981: one-nodal quintics (to do nonsingular).
- Jaramillo-Puentes, 2021: <u>nodal</u> <u>rational</u> quintics.
- Itenberg, 1991: <u>one-nodal</u> sextics (**problem discovered**).
- Josi, 2017: <u>nodal rational sextics</u> (same problem).

The magic of K3-surfaces

The degree deg = 6 seems a natural threshold for curves in \mathbb{P}^2 . (Similar, deg = 4 is a threshold for surfaces in \mathbb{P}^3 .)

- deg < 6: everything is classical and straightforward.
- deg > 6: nothing is known; there are no tools.
- deg = 6: classical means do not work well, but using the "magic of K3-surfaces" any "reasonable" geometric question can be reduced to an arithmetical problem.

<u>Remarkable fact:</u> these arithmetical problems are very difficult, but they turn out feasible as long as they are K3-related.

Remark 1 If $C \subset \mathbb{P}^2$ is a sextic with at worst A–D–E-singularities, the (minimal resolution of singularities of) the double covering $X \to \mathbb{P}^2$ ramified over C is a K3-surface.

- The global Torelli theorem [Pjateckiĭ-Šapiro-Šafarevič, 1971].
- Surjectivity of the period map [Kulikov, 1977].
- Projective models of K3-surfaces [Saint-Donat, 1974].
- The Riemann–Roch theorem (for K3): every (-2)-class is a (unique) algebraic curve!
- Discriminant forms and embeddings of lattices [Nikulin, 1979]
 extended in [Miranda–Morrison, 1985, 1986, 2009].
- Groups generated by reflections [Vinberg, 1972].

See also [Beauville, Dolgachev, Huybrechts, . . .].

<u>In a nutshell:</u> we record the geometric data in the homology

$$H_2(X) \cong \mathbf{L} := 2\mathbf{E}_8 \oplus 3\mathbf{U}$$

and call this the *homological type*.

State simple necessary conditions: they turn out sufficient. Hence, we have

 $\{\text{homological types}\}/\cong = \{\text{geometric objects}\}/\sim$

It remains to classify the homological types.

Remark 2 Extracting geometric invariants back from the homological type may still be difficult.

Even more difficult is writing down the defining equations.

Singular complex sextics:

polarization $h \in H_2(X) \supset S$ exceptional divisors

Algebraic geometry is in the *lattice type* $\tilde{\mathbf{S}}_h := (\mathbf{S} \oplus \mathbb{Z}h)^{\sim}$: this is the "typical" Néron–Severi lattice.

Conditions: S is a root lattice, $h^2 = 2$, and $h \perp S$; besides, there are no "bad" vectors $e \in \tilde{S}_h$ s.t.

$$e^2 = -2$$
, $e \cdot h = 0$, $e \notin S$ or $e^2 = 0$, $e \cdot h = 1$.

Smooth real sextics:

polarization $h \in H_2(X) \circlearrowleft \theta := \sigma_*$ real structure Conditions (\mathbf{L}_{\pm} are the ± 1 -eigenlattices of θ):

$$h^2 = 2$$
, $\theta^2 = id$, $h \in L_-$, $\sigma_+(L_-) = 2$.

(By Nikulin, everything is in the 2-elementary lattice L_{-} .)

Singular real sextics

We combine the two, recording h, S, and θ .

The extra condition is that S must be θ -invariant and, moreover, S must have a θ -skew-invariant Weyl chamber (??) The result is called the *real homological type*.

However, this does not determine the deformation class!

Here, the two nodes are indistinguishable homologically!

Remark 3 Everything **is** in the homology; we need extra data: a distinguished fundamental polyhedron of a certain group. Difficult to compute, often infinite; hence, try to avoid. In the smooth case, that would be the one containing h.

Real sextics with smooth real part

The problem is due to the real singular points: •—• (First observed by Josi in the nodal case.)

Theorem 4 Two real simple sextics without real singular points are in the same equisingular equivariant deformation class if and only if their real homological types are isomorphic.

Hence, we have a complete list of such sextics. (The arithmetical problem is doable due to its K3-origin.)

Observations: (to be discussed later)

- lack of "obvious" topological invariants;
- extremal congruences for singular curves/surfaces;
- "dominance" of type I real schemes.

→ Real sextics with smooth real part

Proof of Theorem 4

Since we want to compare several surfaces, $H_2(X)$ will not do. The classical approach:

- 1. Consider abstract homological types $(h \in L \supset S, \theta)$.
- 2. Work with *marked* surfaces $(X, \varphi : H_2(X) \xrightarrow{\sim} \mathbf{L})$.
- 3. Use (1) to define the *period space* Ω of **marked** surfaces.
- 4. This space is **disconnected**: it has walls $H_v \approx v^{\perp} \cap \Omega$, where $v \in \mathbf{L}$, $v^2 = -2$, $v \cdot h = 0$.
- 5. (!!) Prove that (wall crossing) = (change of marking). It is this part that fails for real singular points.

→ Real sextics with smooth real part

In the problem at hand, periods are

$$\omega := (\omega_+, \omega_-) \in \Omega := \mathcal{C}(\tilde{\mathbf{S}}_h^{\perp} \cap \mathbf{L}_+) \times \mathcal{C}(\tilde{\mathbf{S}}_h^{\perp} \cap \mathbf{L}_-),$$

where

$$\mathcal{C}(\mathbf{N}) := \left\{ x \in \mathbf{N} \otimes \mathbb{R} \mid x^2 > 0 \right\} / \mathbb{R}^{\times}$$

is (the projectivization of) the positive cone.

A wall H_v has codimension 1 iff $v \in \mathbf{L}_+$ or $v \in \mathbf{L}_{-h} := h^\perp \subset \mathbf{L}_-$. It does intersect the positive cone iff $\mathbf{S} + \mathbb{Z}v$ is negative definite. (Otherwise, x, h, ω_+, ω_- would be four positive squares.) We need an autoisometry $r \colon \mathbf{L} \to \mathbf{L}$ "reflecting" against H_v and preserving the structure, i.e., h, \mathbf{S} , and θ .

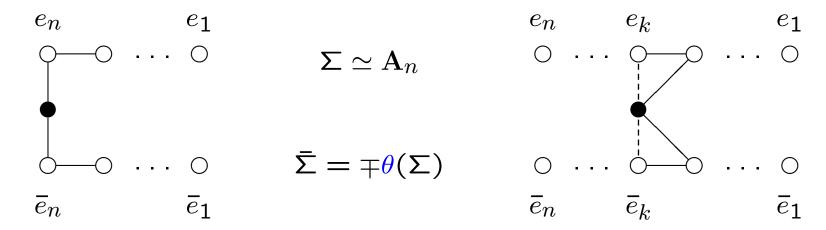
<u>For example</u>, in the smooth case S = 0, ref_v would do. If • is a real node and v = • is like •—•, there is no hope!

→ Real sextics with smooth real part

Thus, (Dynkin basis for S) $\cup \{v\}$ must be a "Dynkin diagram" with dotted edges (intersection -1) allowed.

<u>Crucial</u>: the A-D-E-components of S split into pairs interchanged by θ (no real singular points).

Easy to classify: a symmetric graph without induced $\tilde{\mathbf{A}}$, $\tilde{\mathbf{D}}$, $\tilde{\mathbf{E}}$.



Both are A_{2n+1} : $e_{n+1}:=v-(e_k+\ldots+e_n+\bar{e}_n+\ldots+\bar{e}_k)$. "Reflection" preserving $\{e_i,\mp\bar{e}_i\}$: either $-\theta$ or

$$e_i \leftrightarrow e_{i+n+1}, i = 1, \dots, n, e_{n+1} \mapsto -(e_1 + \dots + e_{2n+1}).$$

Acts trivially on the discriminant \Rightarrow product of reflections.

Topological invariants

The classification is topological **by definition**: distinct deformation families differ homologically. One can try to compute more "visible" invariants:

```
irreducible components singularities w.r.t. components \leftarrow lattice type splitting conics \approx \tilde{S}_h/(S \oplus \mathbb{Z}h) components real/conj? splitting conics real/conj/...? \leftarrow RLT types I/II of the components ovals w.r.t. the components intersection of halves: number, where
```

No fundamental polyhedron ⇒ not enough data but we use heuristic approach + adjacencies

Still, not enough to distinguish everything!

Interesting phenomena: e.g., differ by degenerations.

Some can be explained by the "geometric construction."

Extremal congruences

Locally irreducible simple singularities: A_{2k} , E_6 , E_8 .

In other words, no 2-torsion in the discriminant.

The additive Kronecker–Jacobi symbol

$$J(\mathbf{S}) := \frac{1}{2} - \frac{1}{2} \left(\frac{2}{|\det \mathbf{S}|} \right) = \begin{cases} 0 \mod 2, & \text{if } \det \mathbf{S} = \pm 1 \mod 8, \\ 1 \mod 2, & \text{if } \det \mathbf{S} = \pm 3 \mod 8. \end{cases}$$

Example 5 $J(S_1 \oplus S_2) = J(S_1) + J(S_2) \mod 2$ and

$$J(A_2) = J(A_4) = J(E_6) = 1$$
, $J(A_6) = J(A_8) = J(E_8) = 0$.

Theorem 6 X: a real (M-d)-surface, $H_1(X) = 0$ (?), locally simple singularities 2S, none real.

- $d = 0 \Rightarrow \chi(X_{\mathbb{R}}) = \sigma(X) + 8J(S) \mod 16$;
- $d=1 \Rightarrow \chi(X_{\mathbb{R}}) = \sigma(X) + 8J(S) \pm 2 \mod 16$;
- $d = 2 \& \chi(X_{\mathbb{R}}) = \sigma(X) + 8J(S) + 8 \mod 16 \Rightarrow X \text{ is type I.}$

→ Extremal congruences

Example 7 Type I real M-schemes of sextics with n ovals:

$$n = 9$$
: $2\mathbf{A}_2$: $2\langle 6 \rangle$, $6\langle 2 \rangle$
 $n = 7$: $2\mathbf{A}_4$: $1\langle 5 \rangle$, $5\langle 1 \rangle$
 $4\mathbf{A}_2$: $3\langle 3 \rangle$
 $n = 5$: $6\mathbf{A}_2$, $2\mathbf{E}_6$: $0\langle 4 \rangle$
 $2\mathbf{A}_4 \oplus 2\mathbf{A}_2$: $2\langle 2 \rangle$

Real (M-1)-schemes:

$$n=8$$
: $2\mathbf{A}_2$: $1\langle 6 \rangle$, $2\langle 5 \rangle$, $5\langle 2 \rangle$, $6\langle 1 \rangle$
 $n=7$: $2\mathbf{A}_4$: $0\langle 5 \rangle$, $1\langle 4 \rangle$, $4\langle 1 \rangle$, $5\langle 0 \rangle = 6$
 $4\mathbf{A}_2$: $2\langle 3 \rangle$, $3\langle 2 \rangle$
 $n=4$: $6\mathbf{A}_2$, $2\mathbf{E}_6$: $0\langle 3 \rangle$, $3\langle 0 \rangle = 4$
 $2\mathbf{A}_4 \oplus 2\mathbf{A}_2$: $1\langle 2 \rangle$, $2\langle 1 \rangle$

Agrees with "modifications of real schemes of type I."

→ Extremal congruences

Remark 8 Need to distinguish between two "types I":

- the curve itself, or upon smoothing (type I scheme);
- the curve upon the normalization (type I component).

The two coincide if all singularities are locally irreducible.

Example 9 $2A_2$ does not appear in $3\langle 3 \rangle$ of type II.

 $4A_2$ does not appear in $0\langle 4\rangle$ or $4\langle 0\rangle = 5$ of type II.

 $2A_4$ does not appear in $2\langle 2 \rangle$ of type II.

They do appear in all other schemes with the same n.

Conjecture 10 A similar statement should hold for

$$A_3, A_7, A_{11}, \ldots, D_5, D_7, \ldots,$$

(no rigorous proof or statement yet), but not for

$$A_1, A_5, \ldots, D_4, D_6, \ldots, E_7.$$

In other words, no hope if discr S has $\mathbb{Z}/2$ -summands.

Modifications of real schemes of type I

A phenomenon specific to real plane sextics (K3):

every empty oval can be contracted (and then erased)

Can also be proved in the presence of other singularities.

Induces a transformation of the sets of deformation classes.

(May depend on the oval chosen.)

An observation (still needs understanding):

type I real scheme \longrightarrow (any) one oval erased deformation classes deformation classes

First observed for $\langle \langle 1 \rangle \rangle \rightarrow \langle 1 \rangle$.

For "very" singular curves \Leftarrow the "geometric construction."

The geometric construction

"Very" singular sextics have stable involutions ($\Leftarrow K3$), i.e., involutions $c: \mathbb{P}^2 \to \mathbb{P}^2$ persistent throughout the family

$$C \subset \mathbb{P}^2 \supset O \cup L$$

trigonal curve $\, \bar{C} \, \subset \, \Sigma_2 \, \supset \, E \cup \bar{L} \,$ except. + ord. section

The trigonal curve $\bar{C} \subset \Sigma_2$ is *extremal* \approx rigid $\approx \mu(\bar{C}) = 8$. Exceptional section: $y = \infty$; ordinary section \bar{L} : a "parabola."

Also provides **examples** in the non-extremal case: involution may exist, but it is no longer stable.

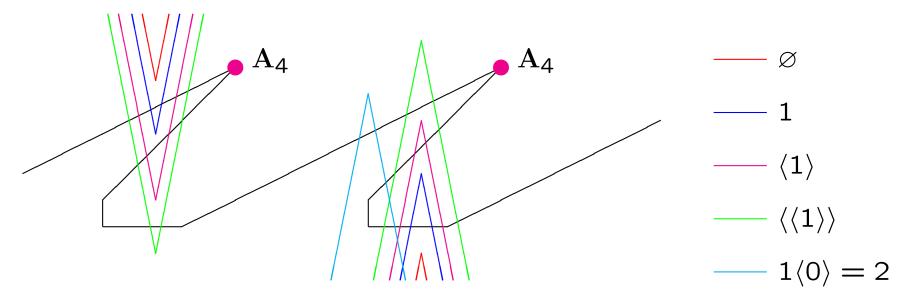
→ The geometric construction

This picture shows all "algebraic geometry", such as

- \bullet components of C and the action of σ ,
- ullet splitting conics and the action of σ , etc., and a bit of topology (not detectable otherwise), e.g.,
 - \bar{C} may have several real forms (e.g., if Sing $\bar{C} = A_7 \oplus A_1$),
 - "upwards" vs. "downwards" parabolas.

→ The geometric construction

Example 11 The set of singularities $4A_4$, with $Sing \bar{C} = 2A_4$.

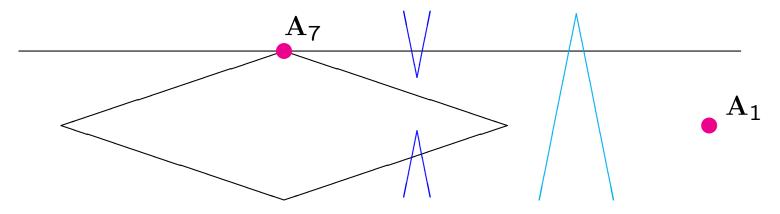


Can **always** create an oval inside a nest $\langle 1 \rangle \rightarrow \langle \langle 1 \rangle \rangle$: once we see two branches, we also see the third one! May **not** be able to create an extra oval in $1\langle 0 \rangle = 2$.

Remark 12 Typically, the "upwards"/"downwards" parabolas differ by the action of σ on splitting conics & their pull-backs. The splitting conics are also clearly seen in these pictures: sections passing in a certain way through singular points.

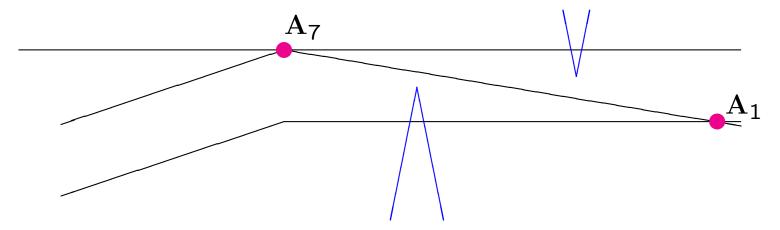
\rightarrow The geometric construction

Example 13 Sing $C=2A_7\oplus 2A_1$, with Sing $\bar{C}=A_7\oplus A_1$. An "ellipse" and a parabola:



May not be able to convert 1 to $\langle 1 \rangle$.

There is another real form, a "hyperbola" and a parabola; the distinction upstairs is not clear.



Thank you!