(Refined) Verlinde and Segre formula for Hilbert schemes of points

Lothar Göttsche
joint work with Anton Mellit
Seminar in Real \& Complex Geometry
Tel-Aviv University

Hilbert scheme of points:

S smooth projective surface, $S^{[n]}$ Hilbert scheme of points parametrizes 0 -dimensional subschemes of length n on S general points of $S^{[n]}$ is set of n distinct points on S
when points come together get non reduced scheme structure
e.g. in $\left(\mathbf{A}^{2}\right)^{[2]}$ limit of $\{(0, a),(0,-a)\}=Z\left(x, y^{2}-a^{2}\right)$ for $a \rightarrow 0$ is
$Z\left(x, y^{2}\right)=\{(0,0)\}$ with structure sheaf $\mathbb{C}[x, y] /\left(x, y^{2}\right)$
$S^{[n]}$ is smooth projective of dimension $2 n$
Related to symmetric power $S^{(n)}=S^{n} / \mathcal{S}_{n}$
$S^{(n)}$ parametrizes effective 0 -cycles of degree n

$$
n_{1} x_{1}+\ldots+n_{r} x_{r}, \quad x_{i} \in S, \quad \sum n_{i}=n
$$

Hilbert-Chow morphism

$$
\omega: S^{[n]} \rightarrow S^{(n)}, Z \mapsto \operatorname{supp}(Z)
$$

is a resolution of singularities

Examples:

- $S^{[0]}=\{\emptyset\}$ is a point
- $S^{[1]}=S$
- if $Z \in S^{[2]}$ then either $Z=\left\{x_{1}, x_{2}\right\} \subset S$
or $Z=(x, t) \in S$ with $x \in S, t$ tangent direction to S at x
$\Longrightarrow S^{[2]}$ is blowup of S^{2} along the diagonal divided by
exchanging factors
equivalently $S^{[2]}$ is blowup of $S^{(2)}$ along diagonal

Why care about it?

(1) via $Z \mapsto I_{Z}$ Hilbert scheme of points is moduli space of rank 1 sheaves
Simple example of moduli spaces of sheaves model case for all one wants to study about them
(2) Building block of moduli spaces, used to study them
(3) Important example of higher dimensional varieties e.g. if S is K3 surface, then $S^{[n]}$ is hyperkähler
(4) Enumerative applications, counting point configurations, curves and other things
(Refined) curve counting: Let L sufficiently ample line bundle on S of arithmetic genus g, let $B \subset|L|$ general δ-dimensional sub-linear system

$$
\mathcal{C}^{[n]}=\left\{(Z, C) \in S^{[n]} \times B \mid Z \subset C\right\}
$$

relative Hilbert scheme. Write

$$
\sum_{n \geq 0} e\left(\mathcal{C}^{[n]}\right) q^{n}=\sum_{i=0}^{\delta} n_{i} \frac{q^{i}}{(1-q)^{2(i+1-g)}}
$$

Then n_{δ} is the number of δ-nodal curves in B
Refinement: $\chi_{-y}(X)=\sum_{p, q}(-1)^{p+q} h^{p, q}(X)$. Write

$$
\sum_{n \geq 0} \chi_{-y}\left(\mathcal{C}^{[n]}\right) q^{n}=\sum_{i=0}^{\delta} N_{i}(y) \frac{q^{i}}{((1-q)(1-y q))^{i+1-g}}
$$

Then $N_{\delta}(y) \in \mathbb{Z}[y]$ is refined count of δ-nodal curves in B. Related to real and refined tropical curve counting
A lot of work by many authors, see slides of talk by Shustin

Universal subscheme:

$$
Z_{n}(S)=\{(x,[Z]) \mid x \in Z\} \subset S \times S^{[n]}
$$

$p: Z_{n}(S) \rightarrow S^{[n]}, \quad q: Z_{n}(S) \rightarrow S$ projections
Fibre $p^{-1}([Z])=Z$

Tautological sheaves:

V vector bundle of rank r on S
$V^{[n]}:=p_{*} q^{*}(V)$ vector bundle of rank $r n$ on $S^{[n]}$
$V^{[n]}([Z])=H^{0}\left(\left.V\right|_{Z}\right)$, in particular $\mathcal{O}_{S}^{[n]}([Z])=H^{0}\left(\mathcal{O}_{Z}\right)=\mathcal{O}_{Z}$ (as
vector space)
These tautological bundles are useful for many applications of Hilbert schemes
Determinant bundles: $\operatorname{det}\left(V^{[n]}\right) \in \operatorname{Pic}\left(S^{[n]}\right)$ generate $\operatorname{Pic}\left(S^{[n]}\right)$
$Z_{n}(S)=\{(x,[Z]) \mid x \in Z\} \subset S \times S^{[n]}$
$p: Z_{n}(S) \rightarrow S^{[n]}, \quad q: Z_{n}(S) \rightarrow S$ projections
Tautological sheaves: V vector bundle of rank r on S
$V^{[n]}:=p_{*} q^{*}(V)$ vector bundle of rank $r n$ on $S^{[n]}$
$V^{[n]}([Z])=H^{0}(V \mid z)$, in particular $\mathcal{O}_{S}^{[n]}([Z])=H^{0}\left(\mathcal{O}_{Z}\right)$
Extends to map of Grothendieck groups $K^{0}(S) \rightarrow K^{0}\left(S^{[n]}\right)$ by
$(V-W)^{[n]}=V^{[n]}-W^{[n]}$
Line bundles on $S^{[n]}: \operatorname{det}\left(V^{[n]}\right) \in \operatorname{Pic}\left(S^{[n]}\right)$, these generate $\operatorname{Pic}\left(S^{[n]}\right)$
Want formulas for
$\chi\left(S^{[n]}, \operatorname{det}\left(V^{[n]}\right)\right) \quad$ Verlinde formula

$$
\int_{S[n]} c_{2 n}\left(V^{[n]}\right)=\int_{S^{[n]}} s_{2 n}\left(-V^{[n]}\right) \quad \text { Segre formula }
$$

Verlinde formula: Via the correspondence $Z \mapsto \mathcal{I}_{Z}$ have $S^{[n]}=M_{S}^{H}(1,0, n)$ (moduli sp. of rk 1 stable sheaves E with $\left.\operatorname{det}(E)=0, c_{2}(E)=n\right)$
Verlinde formula is rk 1 case of surface analogue of the celebrated Verlinde formula for curves.
Segre formula has enumerative meaning, counts configurations of points in special positions e.g. $S \subset \mathbb{P}^{3 n-2}$ surface. H hyperplane bundle on $\mathbb{P}^{3 n-2}$

$$
\int_{S^{[n]}} s_{2 n}\left(H^{[n]}\right)
$$

is number of $n-2$ planes in $\mathbb{P}^{3 n-2}$ which are n-secant to S More generally many enumerate questions can be reduced to computing intersection numbers of Chern classes of tautological bundles and possibly of the tangent bundle of $S^{[n]}$ (also e.g. true for (refined) curve counting)

Aim: For $V \in K^{0}(S)$ want formula for generating functions

$$
\begin{aligned}
I_{S, V}^{\text {Verlinde }}(x) & =\sum_{n \geq 0} x^{n} \chi\left(S^{[n]}, \operatorname{det}\left(V^{[n]}\right)\right), \quad \text { Verlinde formula } \\
I_{S, V}^{\text {Chern }}(x) & =\sum_{n \geq 0} x^{n} \int_{S^{[n]}} c_{2 n}\left(V^{[n]}\right), \quad \text { Segre formula }
\end{aligned}
$$

Why care about the generating functions? The numbers are interesting, contain much information on geometry of $S^{[n]}$
For series of related numbers should study generating functions They bring hidden relations between the numbers to the surface

Note: The $S^{[n]}$ for different n are closely related. E.g. have rational maps

$$
S \times S^{[n]} \rightarrow S^{[n+1]} ;(x, Z) \mapsto\{x\} \cup Z
$$

\Longrightarrow gives inductive structure
can expect nice generating functions for invariants
Recall universal subscheme $Z_{n}(S) \subset S \times S^{[n]}$ can show: blowup of $S \times S^{[n]}$ along $Z_{n}(S)$ is

$$
S^{[n, n+1]}=\left\{(Z, W) \in S^{[n]} \times S^{[n+1]} \mid Z \subset W\right\}
$$

This allows to compute intersection numbers on $S^{[n]}$ recursively:
From $S^{[n]}$ pullback to $S^{[n-1, n]}$, pushforward to $S \times S^{[n-1]}$, etc until arriving at S^{n}.

Tautological sheaves: V vector bundle of rank r on S $V^{[n]}:=p_{*} q^{*}(V)$ vector bundle of rank $r n$ on $S^{[n]}, V^{[n]}([Z])=H^{0}(V \mid z)$ Ellingsrud-G-Lehn (2001): Let $P\left(\left(d_{i}\right)_{i=1}^{r n},\left(e_{j}\right)_{j=1}^{2 n}\right)$ polynomial. Write

$$
P\left(S^{[n]}, V\right):=P\left(\left(c_{i}\left(V^{[n]}\right)\right)_{i},\left(c_{j}\left(S^{[n]}\right)\right)_{j}\right) \in H^{*}\left(S^{[n]}, \mathbb{Q}\right)
$$

Note that $\left(S_{1} \sqcup S_{2}\right)^{[n]}=\coprod_{n_{1}+n_{2}=n} S_{1}^{\left[n_{1}\right]} \times S_{2}^{\left[n_{2}\right]}$
Let $P_{n}\left(\left(d_{i}\right)_{i=1}^{r n},\left(e_{j}\right)_{j=1}^{2 n}\right), n \geq 0$ polynomials. Assume, when $n=n_{1}+n_{2}$

$$
\begin{gathered}
\left.P_{n}\left(\left(S_{1} \sqcup S_{2}\right)^{[n]}, V\right)\right|_{S_{1}^{\left[n_{1}\right]} \times S_{2}^{\left[n_{2}\right]}}=\pi_{1}^{*}\left(P_{n_{1}}\left(S_{1}^{\left[n_{1}\right]},\left.V\right|_{S_{1}}\right)\right) \pi_{2}^{*}\left(P_{n_{2}}\left(S_{2}^{\left[n_{2}\right]},\left.V\right|_{S_{2}}\right)\right), \\
\Longrightarrow \sum_{n \geq 0} \int_{S^{[n]}} P\left(S^{[n]}, V\right) x^{n}=A_{0}^{c_{2}(V)} A_{1}^{c_{1}(V)^{2}} A_{2}^{G_{1}(V) K_{S}} A_{3}^{K_{s}^{2}} A_{4}^{\chi\left(\mathcal{O}_{S}\right)}
\end{gathered}
$$

for universal $A_{0}, \ldots, A_{4} \in \mathbb{Q}[[x]]$ depending only on P_{1} and $r=\operatorname{rk}(V)$

$$
I_{S, V}^{\text {Verlinde }}(x)=\sum_{n \geq 0} x^{n} \chi\left(S^{[n]}, \operatorname{det}\left(V^{[n]}\right)\right), \quad \text { Verlinde formula }
$$

$$
I_{S, V}^{C h e r n}(x)=\sum_{n \geq 0} x^{n} \int_{S^{[n]}} c_{2 n}\left(V^{[n]}\right), \quad \text { Segre formula }
$$

Universality (Ellingsrud-G-Lehn) implies

$$
\begin{aligned}
I_{s, V}^{\text {Verlinde }}(x) & =A_{1}^{\chi(\operatorname{det}(V))} A_{2}^{\frac{1}{2} \chi\left(\mathcal{O}_{s}\right)} A_{3}^{c_{1}(V) K_{s}-\frac{1}{2} \kappa_{s}^{2}} A_{4}^{K_{s}^{2}}, \\
I_{S, V}^{C h e r r}(x) & =B_{0}^{c_{2}(V)} B_{1}^{\chi(\operatorname{det}(V))} B_{2}^{\frac{1}{2} \chi\left(\mathcal{O}_{s}\right)} B_{3}^{c_{1}(V) K_{s}-\frac{1}{2} K_{s}^{2}} B_{4}^{K_{s}^{2}}
\end{aligned}
$$

$A_{1}, \ldots, A_{4}, B_{0}, \ldots, B_{4} \in \mathbb{Q}[[x]]$ universal power series (depending only on $k=r k(V)$)

$$
I_{S, V}^{\text {Verlinde }}(x)=A_{1}^{\chi(\operatorname{det}(V))} A_{2}^{\frac{1}{2} \chi\left(\mathcal{O}_{S}\right)} A_{3}^{C_{1}(V) K_{S}-\frac{1}{2} K_{S}^{2}} A_{4}^{K_{S}^{2}}
$$

Verlinde Series $I_{S, V}^{V \text { erlinde }}(x)$ (EGL (2001)): With the change of variables $x=-t(1-t)^{r^{2}-1}(r=r k(V))$ have

$$
A_{1}(x)=(1-t), \quad A_{2}(x)=\frac{(1-t)^{r^{2}}}{1-r^{2} t}
$$

and $A_{3}(x)=A_{4}(x)=1$ for $|r| \leq 1$

Segre Series:

Lehn conjecture (1999): formula for $I_{S,-L}^{C h e r n}(x)$ for $L \in \operatorname{Pic}(S)$ Proven by Marian-Oprea-Pandharipande, Voisin (2019) MOP consider $I_{S, V}^{C h e r n}(x)$ for general $V \in K^{0}(S)$

$$
I_{S, V}^{C h e r n}(x)=B_{0}^{C_{2}(V)} B_{1}^{\chi(\operatorname{det}(V))} B_{2}^{\frac{1}{2} \chi\left(\mathcal{O}_{s}\right)} B_{3}^{C_{1}(V) K_{s}-\frac{1}{2} K_{S}^{2}} B_{4}^{K_{S}^{2}}
$$

Theorem (MOP (2022))

Put $k=r k(V), r=k-1$, with change of variable $x=-y(1-r y)^{r-1}$. Then

$$
B_{0}(x)=\frac{(1-y)^{r+1}}{1-r y}, B_{1}(x)=\frac{1-r y}{(1-y)^{r}}, \quad B_{2}(x)=\frac{(1-r y)^{2 r}}{(1-y)\left(1-r^{2} y\right)}
$$

Furthermore MOP determine $B_{3}(x), B_{4}(x)$ as algebraic functions for $|k| \leq 2$.
(1) formulas are complicated, even when $K_{S}=0$: multiplying out $A_{1}^{\chi(\operatorname{det}(V))} A_{2}^{\frac{1}{2} \chi\left(\mathcal{O}_{s}\right)}$ or $B_{0}^{\mathcal{C}_{2}(V)} B_{1}^{\chi(\operatorname{det}(V))} B_{2}^{\frac{1}{2} \chi\left(\mathcal{O}_{s}\right)}$ and undoing the change of variables gives something very complicated
(2) $A_{1}, A_{2} ; B_{0}, B_{1}, B_{2}$ are easier to study: can compute on K3 surface, then $S^{[n]}$ is hyperkähler and there are powerful tools
$A_{3}, A_{4}, B_{3}, B_{4}$ which involve K_{S} are much more mysterious

$$
\begin{aligned}
& I_{S, V}^{\text {Verlinde }}(x)=A_{1}^{\chi(\operatorname{det}(V))} A_{2}^{\frac{1}{2} \chi\left(\mathcal{O}_{S}\right)} A_{3}^{c_{1}(V) K_{S}-\frac{1}{2} K_{S}^{2}} A_{4}^{K_{S}^{2}} \\
& \quad I_{S, V}^{C h e r n}(x)=B_{0}^{c_{2}(V)} B_{1}^{\chi(\operatorname{det}(V))} B_{2}^{\frac{1}{2} \chi\left(\mathcal{O}_{S}\right)} B_{3}^{c_{1}(V) K_{S}-\frac{1}{2} K_{S}^{2}} B_{4}^{K_{S}^{2}}
\end{aligned}
$$

Mysterious relation: Verlinde series \longleftrightarrow Segre series:

Conjecture (Johnson, MOP)

Put $r=k-1$, then

$$
\begin{aligned}
& B_{3}^{(k)}\left(-y(1-r y)^{r-1}\right)=A_{3}^{(r)}\left(-y(1-y)^{r^{2}-1}\right) \\
& B_{4}^{(k)}\left(-y(1-r y)^{r-1}\right)=A_{4}^{(r)}\left(-y(1-y)^{r^{2}-1}\right)
\end{aligned}
$$

Here we mean that for the Segre (B) series we take $\operatorname{rk}(V)=k$ and for the Verlinde (A) series $\operatorname{rk}(V)=k-1=r$.

How can this be and where could shift k to $k-1$ come from?

Theorem

The Verlinde Segre correspondence is true:
$B_{3}^{(r+1)}\left(-y(1-r y)^{r-1}\right)=A_{3}^{(r)}\left(-y(1-y)^{r^{2}-1}\right), \quad B_{4}^{(r+1)}\left(-y(1-r y)^{r-1}\right)=A_{4}^{(r)}\left(-y(1-y)^{r^{2}-1}\right)$
Therefore it is enough to determine A_{3}, A_{4}

Theorem

With $x=-y(1-y)^{r^{2}-1}$ we have

$$
A_{3}^{(r)}(x)=\frac{1}{(1-y)^{\frac{r}{2}}} \exp \left(-\sum_{n>0} \frac{y^{n}}{2 n} \operatorname{Coeff}_{x^{0}}\left(\frac{x^{r}-x^{-r}}{x-x^{-1}}\right)^{2 n}\right)
$$

Looks complicated, but is much simpler than expected Alternative formula: let $\alpha_{i}(y), \quad i=1, \ldots, r-1$ branches of the inverse of $\frac{\left(x^{\frac{1}{2}}-x^{-\frac{1}{2}}\right)^{2}}{\left(x^{\frac{1}{2}}-x^{-\frac{1}{2}}\right)^{2}}=x^{r-1}+\ldots$
i.e. $x=\alpha_{i}(y)=\epsilon_{r-1}^{i} y^{\frac{1}{r-1}}+\ldots$ sol. of $\left(x^{r}-2+x^{-r}\right) y=x-2+x^{-1}$.

Then

$$
A_{3}\left(-y(1-y)^{r^{2}-1}\right)^{2}=\frac{y}{(1-y)^{r} \prod_{i=1}^{r-1} \alpha_{i}(y)} .
$$

Conjectural formula for A_{4} : Recall

$$
A_{3}\left(-y(1-y)^{r^{2}-1}\right)^{2}=\frac{y}{(1-y)^{r} \prod_{i=1}^{r-1} \alpha_{i}(y)} .
$$

Conjecture

With $x=-y(1-y)^{r^{2}-1}$, we have

$$
\begin{aligned}
& \left(A_{4}(x) A_{3}(x)^{r}\right)^{8}= \\
& =\frac{\left(1-r^{2} y\right)^{3}}{(1-y)^{3 r^{2}}} \prod_{i, j=1}^{r-1}\left(1-\alpha_{i}(y) \alpha_{j}(y)\right)^{2} \prod_{\substack{i, j=1 \\
i \neq j}}^{r-1}\left(1-\alpha_{i}(y)^{r} \alpha_{j}(y)^{r}\right)^{2}
\end{aligned}
$$

So complete Verlinde and Segre formula. Proven when $K_{S}^{2}=0$

Proposition (based on computations with Don Zagier)

This conjecture is true modulo x^{50} (until 49-th Hilbert scheme).

For $V \in K^{0}(S)$ of rank k define

$$
I_{S, V}(x, z):=\sum_{n \geq 0}(-x)^{n} \chi\left(S^{[n]}, \operatorname{det}\left(\mathcal{O}_{S}^{[n]}\right)^{-1} \otimes \Lambda_{-z} V^{[n]}\right) \in \mathbb{Z}[[x, z]]
$$

where $\Lambda_{-z} W=\sum_{n \geq 0}(-z)^{n} \Lambda^{n} W$
$I_{S, V}(x, z)$ specializes to $I_{S, V}^{\text {Verinde }}(x, z)$ and $I_{S, V}^{C h e r n}(x, z)$:

$$
\begin{aligned}
(-1)^{n(k-1)} \operatorname{Coeff}_{x^{n} z^{k n}}\left(I_{S, V}(x, z)\right) & =\chi\left(S^{[n]}, \operatorname{det}\left(V^{[n]}\right) \otimes \operatorname{det}\left(\mathcal{O}_{S}^{[n]}\right)^{-1}\right) \\
& =\chi\left(S^{[n]}, \operatorname{det}\left(\left(V-\mathcal{O}_{S}\right)^{[n]}\right)\right.
\end{aligned}
$$

$\lim _{\epsilon \rightarrow 0}\left(I_{S, V}\left(\frac{-(1+\epsilon)^{k}}{\epsilon^{k-2}} x, \frac{1}{1+\epsilon}\right)\right)=I_{S, V}^{\text {Chern }}(x, z)$
Note that in $\chi\left(S^{[n]}, \operatorname{det}\left(\left(V-\mathcal{O}_{S}\right)^{[n]}\right)\right.$ the rank drops by 1 Universality says

$$
I_{s, V}(x, z)=G_{0}^{c_{2}(V)} G_{1}^{\chi(\operatorname{det}(V))} G_{2}^{\frac{1}{2} \chi\left(\mathcal{O}_{s}\right)} G_{3}^{c_{1}(V) K_{s}-\frac{1}{2} K_{s}^{2}} G_{4}^{K_{s}^{2}}
$$

for $G_{0}, G_{1}, G_{2}, G_{3}, G_{4} \in \mathbb{Q}[[x, z]]$ depending only on $k=r k(V)$.

$$
I_{S, V}(x, z)=G_{0}^{C_{2}(V)} G_{1}^{\chi(\operatorname{det}(V))} G_{2}^{\frac{1}{2} \chi\left(\mathcal{O}_{s}\right)} G_{3}^{\mathcal{C}_{1}(V) K_{s}-\frac{1}{2} K_{s}^{2}} G_{4}^{K_{S}^{2}}
$$

Theorem

Let $k=r k(V), r=k-1$. With the changes of variables

$$
x=\frac{u(1-u)^{r}}{v(1-v)^{r}}, \quad z=\frac{v}{(1-u)^{r}}, \quad y=\frac{u v}{(1-u)(1-v)},
$$

we have

$$
\begin{aligned}
G_{0} G_{1}(x, z) & =1-y, \quad G_{0}=\frac{(1-u-v)^{r+1}}{(1-v)^{r}\left((1-u)^{r}-v\right)} \\
G_{2}(x, z) & =\frac{\left(1-\frac{u}{v}\right)^{2}(1-v)^{r^{2}-1}\left((1-u)^{r}-v\right)}{(1-u-v)^{r^{2}}(1-u)^{r^{2}-1}\left(1-u-v-\left(r^{2}-1\right) u v\right)} \\
G_{3}(x, z) & =A_{3}\left(-y(1-y)^{r^{2}-1}\right), \quad G_{4}(x, z)=A_{4}\left(-y(1-y)^{r^{2}-1}\right)
\end{aligned}
$$

Verlinde-Segre correspondence "explained" by the fact that $G_{3}(x, z)$ and $G_{4}(x, z)$ only depend on the variable y

Let X be a smooth projective variety with action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ with finitely many fixpoints, $p_{1}, \ldots, p_{e}, d=\operatorname{dim}(X)$ Let E be equivariant vector bundle of rank r on X
Fibre $E\left(p_{i}\right)$ of X at fixp. p_{i} has basis of eigenvect. for T-action $E\left(p_{i}\right)=\bigoplus_{k=1}^{r} \mathbb{C} v_{k}$, with action $\left(t_{1}, t_{2}\right) \cdot v_{k}=t_{1}^{n_{k}} t_{2}^{m_{k}} v_{k}, n_{k}, m_{k} \in \mathbb{Z}$ Then the $n_{k} \epsilon_{1}+m_{k} \epsilon_{2} \in \mathbb{Z}\left[\epsilon_{1}, \epsilon_{2}\right]$ are called the weights of $E\left(p_{i}\right)$ Denote $u_{1, i}, \ldots, u_{d, i}$ the weights of $T_{p_{i}} X$
$c_{i}^{T}\left(E\left(p_{i}\right)\right)=i$-th elementary symm. fctn in weights of $E\left(p_{i}\right) \in \mathbb{Z}\left[\epsilon_{1}, \epsilon_{2}\right]$
Let $P\left(\left(c_{i}(E)\right)_{i}\right)$ be a polynomial in Chern classes of E

Theorem (Bott residue formula)

$$
\int_{[X]} P\left(\left(c_{i}(E)\right)_{i}\right)=\left.\left(\sum_{k=1}^{e} \frac{P\left(\left(c_{i}^{T}\left(E\left(p_{k}\right)\right)_{i}\right)\right.}{u_{1, k} \cdots u_{d, k}}\right)\right|_{\epsilon_{1}=\epsilon_{2}=0}
$$

Sum in brackets is a polynomial in $\epsilon_{1}, \epsilon_{2}$.

Localization

Let S be a smooth toric surface, i.e. S has action of $T=\mathbb{C}^{*} \times \mathbb{C}^{*}$ with finitely many fixpoints p_{1}, \ldots, p_{e}
Near each fixpoint p_{i} have affine T-equivariant coordinates x_{i}, y_{i} The action of T on S lifts to an action on $S^{[n]}$
$Z \in S^{[n]}$ is T-invariant $\Longleftrightarrow Z=Z_{1} \sqcup \ldots \sqcup Z_{e} \quad \operatorname{supp}\left(Z_{i}\right)=p_{i}$, and $I_{z_{i}} \in k\left[x_{i}, y_{i}\right]$ is gen. by monomials i.e.

$$
I_{z_{i}}=\left(x_{i}^{n_{0}}, y_{i} x_{i}^{n_{1}}, \ldots, y_{i}^{r} x_{i}^{n_{r}}, y_{i}^{r+1}\right) \quad\left(n_{0}, \ldots, n_{r}\right) \text { partition }
$$

\Longrightarrow Fixpoints on $S^{[n]}$ are in bijection to e-tuples $\left(P_{1}, \ldots, P_{e}\right)$ of partitions, of numbers adding up to n

$$
V^{[n]}(Z)=\bigoplus_{i=1}^{e} V^{\left[n_{i}\right]}\left(Z_{i}\right), \quad T_{S[n]}(Z)=\bigoplus_{i=1}^{e} T_{S^{\left[n_{i}\right]}}\left(Z_{i}\right)
$$

The weights of the action on $V^{\left[n_{i}\right]}\left(Z_{i}\right)$ and $T_{S^{\left[n_{i}\right]}}\left(Z_{i}\right)$ are given in terms of the combinatorics of the partition P_{i}

By Universality enough to prove for S toric surface and V toric vector bundle on S i.e. $T=\left(\mathbb{C}^{*}\right)^{2}$ acts on S with finitely many fixpoints, action lifts to $V \Longrightarrow$ can use localization
Let p_{1}, \ldots, p_{e} fixpoints of T-action on S, denote $t_{1}^{(i)}, t_{2}^{(i)}$ wts on $T_{S}\left(p_{i}\right)$ and $v_{1}^{(i)}, \ldots, v_{k}^{(i)}$ wts on $V\left(p_{i}\right)$ (each weight is of the form $n \epsilon_{1}+m \epsilon_{2}$) On $S^{[n]}$ fixpoints are parametrized by e-tuples of partitions of numbers adding up to n. Put

$$
\Omega\left(x, z_{1}, \ldots, z_{k}, q, t\right):=\sum_{\lambda \text { partitions }} \frac{\prod_{i=1}^{k} \prod_{\square \in \lambda}\left(1-q^{c(\square)} t^{(\square)} z_{i}\right)}{\prod_{\square \in \lambda}\left(q^{a(\square)+1}-t^{\prime(\square)}\right)\left(q^{a(\square)}-t^{\prime(\square)+1}\right)} x^{|\lambda|}
$$

Identify partition with graph, and put $c(\square)$ column, $r(\square)$ row, $a(\square)$ arm length, $c(\square)$ leg length

Put $H=\log (\Omega)$
By Riemann-Roch and localization on $S^{[n]}$ have

$$
\begin{aligned}
I_{S, V}(x, z) & =\left.\left(\prod_{i=1}^{e} \Omega\left(x, e^{v_{1}^{(i)}} z, \ldots, e^{v_{k}^{(i)}} z, e^{t_{1}^{(i)}}, e^{t_{2}^{(i)}}\right)\right)\right|_{\epsilon_{1}=\epsilon_{2}=0} \\
& =\left.\exp \left(\sum_{i=1}^{e} H\left(x, e^{v_{1}^{(i)}} z, \ldots, e_{k}^{v_{k}^{(i)}} z, e_{1}^{t_{1}^{(i)}}, e^{t_{2}^{(i)}}\right)\right)\right|_{\epsilon_{1}=\epsilon_{2}=0}
\end{aligned}
$$

So we "only" have to compute this.

Proposition

We can expand

$$
H\left(x, z_{1}, \ldots, z_{k}, e^{\epsilon_{1}}, e^{\epsilon_{2}}\right)=\sum_{d_{1}, d_{2} \geq-1} H_{d_{1}, d_{2}}\left(x, z_{1}, \ldots, z_{k}\right) \epsilon_{1}^{d_{1}} \epsilon_{2}^{d_{2}}
$$

(not trivial could have deep pole in $\epsilon_{1}, \epsilon_{2}$)

Trick: Rewrite previous formula for $I_{S, V}(x, z)$: Inside exponential apply localization formula on S

$$
\begin{aligned}
& I_{S, V}(x, z)=\left.\exp \left(\sum_{i=1}^{e} H\left(x, e^{v_{1}^{(i)}} z, \ldots, e^{v_{k}^{(i)}} z, e^{t_{1}^{(i)}}, e^{t_{2}^{(i)}}\right)\right)\right|_{\epsilon_{1}=\epsilon_{2}=0} \\
& =\exp \left(\left(\sum _ { i = 1 } ^ { e } \frac { 1 } { t _ { 1 } ^ { (i) } t _ { 2 } ^ { (i) } } \left(H_{-1,-1}\left(x, e^{v_{j}^{(i)}} z\right)+\left(t_{1}^{(i)}+t_{2}^{(i)}\right) H_{-1,0}\left(x, e^{v_{j}^{(i)}} z\right)\right.\right.\right. \\
& \left.\left.\left.\quad+t_{1}^{(i)} t_{2}^{(i)} H_{0,0}\left(x, e^{v_{j}^{(i)}} z\right)+\left(\left(t_{1}^{(i)}\right)^{2}+\left(t_{2}^{(i)}\right)^{2}\right) H_{-1,1}\left(x, e^{v_{j}^{(i)}} z\right)\right)\right)\left.\right|_{\epsilon_{1}=\epsilon_{2}=0}\right) \\
& =\exp \left(c_{2}(V) C_{2}+c_{1}(V)^{2} C_{11}+K_{S} C_{1}(V) D_{1}+e(S) F+\left(K_{S}^{2}-2 e(S)\right) E\right)
\end{aligned}
$$

Put $H_{d_{1}, d_{2}, k}(x, z)=H_{d_{1}, d_{1}}(x, z, \ldots, z)$,
Then $F(x, z), E(x, z), \mathrm{D}_{1}(x, z), C_{2}(x, z), C_{11}(x, z)$ are given in terms of $H_{-1,-1, k}(x, z), H_{-1,0, k}(x, z), H_{0,0, k}(x, z), H_{-1,1, k}(x, z)$
So we need to understand these power series.

Want to understand
$H_{-1,-1, k}(x, z), \quad H_{-1,0, k}(x, z), \quad H_{0,0, k}(x, z), \quad H_{-1,1, k}(x, z)$

Use two properties: regularity and symmetry

(1) $f(x, z) \in \mathbb{C}[[x, z]]$ is d-regular (wrt k) if $f\left(x \epsilon^{2-k}(1+\epsilon)^{k}, \frac{1}{1+\epsilon}\right) \in \epsilon^{d} \mathbb{C}[[x, \epsilon]]$,
(2) $f(x, z)$ is called symmetric if $f(x, z)=f\left(x^{-1}, x z\right)$.

Theorem

(1) $H_{d_{1}, d_{2}, k}(x, z)$ is $-d_{1}-d_{2}$ regular for $d_{1}+d_{1} \leq 0$
(2) $H_{d_{1}, d_{2}, k}(x, z)+\frac{B_{d_{1}+1} B_{d_{2}+1}}{\left(d_{1}+1\right)!\left(d_{2}+1\right)!}\left(L i_{1-d_{1}-d_{2}}(x)+k L i_{1-d_{1}-d_{2}}(z)\right)$ is symmetric $\left(L i_{d}(x)=\sum_{n>0} x^{n} / n^{d}\right.$ polylog $)$.

First part follows from the fact that $I_{S, V}^{C h e r n}$ is limit of $I_{S, V}$ Second part is deep input from symmetric function theory: identities of generalized MacDonald's polynomials

Symmetric and regular functions fulfill very strong constraints:

Theorem

Let $f(x, z)$ be a symmetric d-regular function (wrt k).
(1) if $d>0$, then $f(x, z)=0$.
(2) if $d=0$, there exists a unique $h(y) \in \mathbb{C}[[y]]$, such that

$$
f\left(\frac{u(1-u)^{k-1}}{(1-v)^{k-1}}, \frac{v}{(1-u)^{k-1}}\right)=h\left(\frac{u v}{(1-u)(1-v)}\right) .
$$

The functions $F(x, z), E(x, z), D_{1}(x, z), C_{2}(x, z), C_{11}(x, z)$ can be expressed in terms of symmetric regular functions A symmetric regular function is determined by few of its coefficients, Trick: assume $g(x, z)$ is 1-regular, then $f(x, z):=D_{z} g(x, z)$ is regular. If furthermore $f(x, z)$ is symmetric, then $g(x, 0)$ determines $f(x, z)$

