
Introduction Verlinde and Segre formulas Universality Previous work Our results About the proof

(Refined) Verlinde and Segre formula for
Hilbert schemes of points

Lothar Göttsche
joint work with Anton Mellit

Seminar in Real & Complex Geometry
Tel-Aviv University

19.1.2023



Introduction Verlinde and Segre formulas Universality Previous work Our results About the proof

Hilbert scheme of points:
S smooth projective surface, S[n] Hilbert scheme of points
parametrizes 0-dimensional subschemes of length n on S
general points of S[n] is set of n distinct points on S
when points come together get non reduced scheme structure
e.g. in (A2)[2] limit of {(0,a), (0,−a)} = Z (x , y2 − a2) for a→ 0
is
Z (x , y2) = {(0,0)} with structure sheaf C[x , y ]/(x , y2)

S[n] is smooth projective of dimension 2n

Related to symmetric power S(n) = Sn/Sn
S(n) parametrizes effective 0-cycles of degree n

n1x1 + . . .+ nr xr , xi ∈ S,
∑

ni = n

Hilbert-Chow morphism

ω : S[n] → S(n),Z 7→ supp(Z )

is a resolution of singularities
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Examples:
S[0] = {∅} is a point
S[1] = S
if Z ∈ S[2] then either Z = {x1, x2} ⊂ S
or Z = (x , t) ∈ S with x ∈ S, t tangent direction to S at x
=⇒ S[2] is blowup of S2 along the diagonal divided by
exchanging factors
equivalently S[2] is blowup of S(2) along diagonal
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Why care about it?
1 via Z 7→ IZ Hilbert scheme of points is moduli space of

rank 1 sheaves
Simple example of moduli spaces of sheaves
model case for all one wants to study about them

2 Building block of moduli spaces, used to study them
3 Important example of higher dimensional varieties

e.g. if S is K3 surface, then S[n] is hyperkähler
4 Enumerative applications, counting point configurations,

curves and other things
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(Refined) curve counting: Let L sufficiently ample line bundle on S
of arithmetic genus g, let B ⊂ |L| general δ-dimensional sub-linear
system

C[n] =
{

(Z ,C) ∈ S[n] × B
∣∣ Z ⊂ C

}
relative Hilbert scheme. Write

∑
n≥0

e(C[n])qn =
δ∑

i=0

ni
q i

(1− q)2(i+1−g)

Then nδ is the number of δ-nodal curves in B
Refinement: χ−y (X ) =

∑
p,q(−1)p+qhp,q(X ). Write

∑
n≥0

χ−y (C[n])qn =
δ∑

i=0

Ni (y)
q i(

(1− q)(1− yq)
)i+1−g

Then Nδ(y) ∈ Z[y ] is refined count of δ-nodal curves in B. Related to
real and refined tropical curve counting
A lot of work by many authors, see slides of talk by Shustin
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Verlinde and Segre formulas

Universal subscheme:

Zn(S) =
{

(x , [Z ])
∣∣ x ∈ Z

}
⊂ S × S[n]

p : Zn(S)→ S[n], q : Zn(S)→ S projections
Fibre p−1([Z ]) = Z

Tautological sheaves:
V vector bundle of rank r on S
V [n] := p∗q∗(V ) vector bundle of rank rn on S[n]

V [n]([Z ]) = H0(V |Z ), in particular O[n]
S ([Z ]) = H0(OZ ) = OZ (as

vector space)
These tautological bundles are useful for many applications of
Hilbert schemes
Determinant bundles: det(V [n]) ∈ Pic(S[n]) generate Pic(S[n])
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Verlinde and Segre formulas

Zn(S) =
{

(x , [Z ])
∣∣ x ∈ Z

}
⊂ S × S[n]

p : Zn(S)→ S[n], q : Zn(S)→ S projections

Tautological sheaves: V vector bundle of rank r on S
V [n] := p∗q∗(V ) vector bundle of rank rn on S[n]

V [n]([Z ]) = H0(V |Z ), in particular O[n]
S ([Z ]) = H0(OZ )

Extends to map of Grothendieck groups K 0(S)→ K 0(S[n]) by
(V −W )[n] = V [n] −W [n]

Line bundles on S[n]: det(V [n]) ∈ Pic(S[n]), these generate Pic(S[n])
Want formulas for

χ(S[n], det(V [n])) Verlinde formula∫
S[n]

c2n(V [n]) =

∫
S[n]

s2n(−V [n]) Segre formula
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Motivation:

Verlinde formula: Via the correspondence Z 7→ IZ have
S[n] = MH

S (1,0,n) (moduli sp. of rk 1 stable sheaves E with
det(E) = 0, c2(E) = n)
Verlinde formula is rk 1 case of surface analogue of the
celebrated Verlinde formula for curves.
Segre formula has enumerative meaning, counts
configurations of points in special positions
e.g. S ⊂ P3n−2 surface. H hyperplane bundle on P3n−2∫

S[n]
s2n(H [n])

is number of n − 2 planes in P3n−2 which are n-secant to S
More generally many enumerate questions can be reduced to
computing intersection numbers of Chern classes of
tautological bundles and possibly of the tangent bundle of S[n]

(also e.g. true for (refined) curve counting)
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Generating functions and multiplicativity

Aim: For V ∈ K 0(S) want formula for generating functions

IVerlinde
S,V (x) =

∑
n≥0

xnχ(S[n], det(V [n])), Verlinde formula

IChern
S,V (x) =

∑
n≥0

xn
∫

S[n]
c2n(V [n]), Segre formula

Why care about the generating functions? The numbers are
interesting, contain much information on geometry of S[n]

For series of related numbers should study generating functions
They bring hidden relations between the numbers to the surface
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Inductive structure

Note: The S[n] for different n are closely related. E.g. have
rational maps

S × S[n] → S[n+1]; (x ,Z ) 7→ {x} ∪ Z

=⇒ gives inductive structure
can expect nice generating functions for invariants
Recall universal subscheme Zn(S) ⊂ S × S[n]

can show: blowup of S × S[n] along Zn(S) is

S[n,n+1] =
{

(Z ,W ) ∈ S[n] × S[n+1] ∣∣ Z ⊂W
}

This allows to compute intersection numbers on S[n]

recursively:
From S[n] pullback to S[n−1,n], pushforward to S × S[n−1], etc
until arriving at Sn.
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Inductive structure

Tautological sheaves: V vector bundle of rank r on S
V [n] := p∗q∗(V ) vector bundle of rank rn on S[n], V [n]([Z ]) = H0(V |Z )

Ellingsrud-G-Lehn (2001): Let P((di )
rn
i=1, (ej )

2n
j=1) polynomial. Write

P(S[n],V ) := P
(
(ci (V [n]))i , (cj (S[n]))j

)
∈ H∗(S[n],Q)

Note that (S1 t S2)[n] =
∐

n1+n2=n S[n1]
1 × S[n2]

2
Let Pn((di )

rn
i=1, (ej )

2n
j=1), n ≥ 0 polynomials. Assume, when n = n1 + n2

Pn((S1 t S2)[n],V )|
S[n1 ]

1 ×S[n2 ]
2

= π∗1
(
Pn1 (S[n1]

1 ,V |S1 )
)
π∗2
(
Pn2 (S[n2]

2 ,V |S2 )
)
,

=⇒
∑
n≥0

∫
S[n]

P(S[n],V )xn = Ac2(V )
0 Ac1(V )2

1 Ac1(V )KS
2 AK 2

S
3 Aχ(OS)

4

for universal A0, . . . ,A4 ∈ Q[[x ]] depending only on P1 and r = rk(V )
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Inductive structure

IVerlinde
S,V (x) =

∑
n≥0

xnχ(S[n], det(V [n])), Verlinde formula

IChern
S,V (x) =

∑
n≥0

xn
∫

S[n]
c2n(V [n]), Segre formula

Universality (Ellingsrud-G-Lehn) implies

IVerlinde
S,V (x) = Aχ(det(V ))

1 A
1
2χ(OS)

2 A
c1(V )KS− 1

2 K 2
S

3 A
K 2

S
4 ,

IChern
S,V (x) = Bc2(V )

0 Bχ(det(V ))
1 B

1
2χ(OS)

2 B
c1(V )KS− 1

2 K 2
S

3 B
K 2

S
4

A1, . . . ,A4,B0, . . . ,B4 ∈ Q[[x ]] universal power series
(depending only on k = rk(V ))
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Lehn conjecture

IVerlinde
S,V (x) = Aχ(det(V ))

1 A
1
2χ(OS)

2 Ac1(V )KS− 1
2 K 2

S
3 AK 2

S
4

Verlinde Series IVerlinde
S,V (x) (EGL (2001)): With the change of

variables x = −t(1− t)r2−1 (r = rk(V )) have

A1(x) = (1− t), A2(x) =
(1− t)r2

1− r2t
.

and A3(x) = A4(x) = 1 for |r | ≤ 1
Segre Series:
Lehn conjecture (1999): formula for IChern

S,−L (x) for L ∈ Pic(S)
Proven by Marian-Oprea-Pandharipande, Voisin (2019)
MOP consider IChern

S,V (x) for general V ∈ K 0(S)
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Lehn conjecture

IChern
S,V (x) = Bc2(V )

0 Bχ(det(V ))
1 B

1
2χ(OS)

2 Bc1(V )KS− 1
2 K 2

S
3 BK 2

S
4

Theorem (MOP (2022))

Put k = rk(V ), r = k − 1, with change of variable x = −y(1− ry)r−1.
Then

B0(x) =
(1− y)r+1

1− ry
, B1(x) =

1− ry
(1− y)r , B2(x) =

(1− ry)2r

(1− y)(1− r2y)

Furthermore MOP determine B3(x), B4(x) as algebraic functions for
|k | ≤ 2.

(1) formulas are complicated, even when KS = 0: multiplying out
Aχ(det(V ))

1 A
1
2χ(OS)

2 or Bc2(V )
0 Bχ(det(V ))

1 B
1
2χ(OS)

2 and undoing the change of
variables gives something very complicated
(2) A1, A2; B0, B1, B2 are easier to study: can compute on K3 surface,
then S[n] is hyperkähler and there are powerful tools

A3, A4, B3, B4 which involve KS are much more mysterious
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Verlinde-Segre correspondence

IVerlinde
S,V (x) = Aχ(det(V ))

1 A
1
2χ(OS)

2 A
c1(V )KS− 1

2 K 2
S

3 A
K 2

S
4 ,

IChern
S,V (x) = Bc2(V )

0 Bχ(det(V ))
1 B

1
2χ(OS)

2 B
c1(V )KS− 1

2 K 2
S

3 B
K 2

S
4

Mysterious relation: Verlinde series←→ Segre series:

Conjecture (Johnson, MOP)
Put r = k − 1, then

B(k)
3 (−y(1− ry)r−1) =A(r)

3 (−y(1− y)r2−1)

B(k)
4 (−y(1− ry)r−1) =A(r)

4 (−y(1− y)r2−1)

Here we mean that for the Segre (B) series we take rk(V ) = k
and for the Verlinde (A) series rk(V ) = k − 1 = r .

How can this be and where could shift k to k − 1 come from?
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Segre and Verlinde formula

Theorem
The Verlinde Segre correspondence is true:
B(r+1)

3 (−y(1 − ry)r−1) = A(r)
3 (−y(1 − y)r

2−1), B(r+1)
4 (−y(1 − ry)r−1) = A(r)

4 (−y(1 − y)r
2−1)

Therefore it is enough to determine A3, A4

Theorem

With x = −y(1− y)r2−1 we have

A(r)
3 (x) =

1
(1− y)

r
2

exp

(
−
∑
n>0

yn

2n
Coeffx0

(
x r − x−r

x − x−1

)2n
)

Looks complicated, but is much simpler than expected
Alternative formula: let αi (y), i = 1, . . . , r − 1 branches of the

inverse of (x
1
2−x− 1

2 )2

(x
r
2−x− r

2 )2
= x r−1 + . . .

i.e. x = αi (y) = εir−1y
1

r−1 + . . . sol. of (x r − 2 + x−r )y = x − 2 + x−1.
Then

A3(−y(1− y)r2−1)2 =
y

(1− y)r
∏r−1

i=1 αi (y)
.
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Segre and Verlinde formula

Conjectural formula for A4: Recall

A3(−y(1− y)r2−1)2 =
y

(1− y)r
∏r−1

i=1 αi(y)
.

Conjecture

With x = −y(1− y)r2−1, we have(
A4(x)A3(x)r)8

=

=
(1− r2y)3

(1− y)3r2

r−1∏
i,j=1

(1− αi(y)αj(y))2
r−1∏
i,j=1
i 6=j

(1− αi(y)rαj(y)r )2

So complete Verlinde and Segre formula. Proven when K 2
S = 0

Proposition (based on computations with Don Zagier)

This conjecture is true modulo x50 (until 49-th Hilbert scheme).
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Refinement of Segre and Verlinde formula

For V ∈ K 0(S) of rank k define

IS,V (x , z) :=
∑
n≥0

(−x)nχ
(
S[n], det(O[n]

S )−1 ⊗ Λ−zV [n]) ∈ Z[[x , z]]

where Λ−zW =
∑

n≥0(−z)nΛnW

IS,V (x , z) specializes to IVerlinde
S,V (x , z) and IChern

S,V (x , z):

(−1)n(k−1)Coeffxnzkn

(
IS,V (x , z)

)
= χ(S[n], det(V [n])⊗ det(O[n]

S )−1)

= χ(S[n], det((V −OS)[n])

lim
ε→0

(
IS,V

(
−(1 + ε)k

εk−2 x ,
1

1 + ε

))
= IChern

S,V (x , z)

Note that in χ(S[n], det((V −OS)[n]) the rank drops by 1
Universality says

IS,V (x , z) = Gc2(V )
0 Gχ(det(V ))

1 G
1
2χ(OS)

2 G
c1(V )KS− 1

2 K 2
S

3 G
K 2

S
4

for G0,G1,G2,G3,G4 ∈ Q[[x , z]] depending only on k = rk(V ).
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Refinement of Segre and Verlinde formula

IS,V (x , z) = Gc2(V )
0 Gχ(det(V ))

1 G
1
2χ(OS)

2 Gc1(V )KS− 1
2 K 2

S
3 GK 2

S
4

Theorem
Let k = rk(V ), r = k − 1. With the changes of variables

x =
u(1− u)r

v(1− v)r , z =
v

(1− u)r , y =
uv

(1− u)(1− v)
,

we have

G0G1(x , z) = 1− y , G0 =
(1− u − v)r+1

(1− v)r
(
(1− u)r − v

) ,
G2(x , z) =

(1− u
v )2(1− v)r2−1

(
(1− u)r − v

)
(1− u − v)r2 (1− u)r2−1

(
1− u − v − (r2 − 1)uv

)
G3(x , z) = A3(−y(1− y)r2−1), G4(x , z) = A4(−y(1− y)r2−1)

Verlinde-Segre correspondence "explained" by the fact that G3(x , z)
and G4(x , z) only depend on the variable y
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Localization

Let X be a smooth projective variety with action of T = C∗ × C∗
with finitely many fixpoints, p1, . . . ,pe, d = dim(X )
Let E be equivariant vector bundle of rank r on X
Fibre E(pi ) of X at fixp. pi has basis of eigenvect. for T -action
E(pi ) =

⊕r
k=1 Cvk , with action (t1, t2) · vk = tnk

1 tmk
2 vk , nk ,mk ∈ Z

Then the nkε1 + mkε2 ∈ Z[ε1, ε2] are called the weights of E(pi )
Denote u1,i , . . . ,ud,i the weights of Tpi X

cT
i (E(pi )) = i-th elementary symm. fctn in weights of E(pi ) ∈ Z[ε1, ε2]

Let P
(
(ci (E))i

)
be a polynomial in Chern classes of E

Theorem (Bott residue formula)

∫
[X ]

P
(
(ci (E))i

)
=

(
e∑

k=1

P
(
(cT

i (E(pk ))i
)

u1,k · · · ud,k

)∣∣∣∣∣
ε1=ε2=0

Sum in brackets is a polynomial in ε1, ε2.
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Localization

Let S be a smooth toric surface, i.e. S has action of
T = C∗ × C∗ with finitely many fixpoints p1, . . . ,pe
Near each fixpoint pi have affine T -equivariant coordinates xi , yi
The action of T on S lifts to an action on S[n]

Z ∈ S[n] is T -invariant ⇐⇒ Z = Z1 t . . . t Ze supp(Zi) = pi ,
and IZi ∈ k [xi , yi ] is gen. by monomials i.e.

IZi = (xn0
i , yix

n1
i , ...., y r

i xnr
i , y

r+1
i ) (n0, . . . ,nr ) partition

=⇒ Fixpoints on S[n] are in bijection to e-tuples (P1, . . . ,Pe) of
partitions, of numbers adding up to n

V [n](Z ) =
e⊕

i=1

V [ni ](Zi), TS[n](Z ) =
e⊕

i=1

TS[ni ](Zi)

The weights of the action on V [ni ](Zi) and TS[ni ](Zi) are given in
terms of the combinatorics of the partition Pi
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Localization

By Universality enough to prove for S toric surface and V toric vector
bundle on S i.e. T = (C∗)2 acts on S with finitely many fixpoints,
action lifts to V =⇒ can use localization
Let p1, . . . ,pe fixpoints of T -action on S, denote t (i)1 , t (i)2 wts on TS(pi )

and v (i)
1 , . . . , v (i)

k wts on V (pi ) (each weight is of the form nε1 + mε2)

On S[n] fixpoints are parametrized by e-tuples of partitions of
numbers adding up to n. Put

Ω(x , z1, . . . , zk ,q, t) :=
∑

λpartitions

∏k
i=1
∏

�∈λ(1− qc(�)t r(�)zi )∏
�∈λ(qa(�)+1 − t l(�))(qa(�) − t l(�)+1)

x |λ|

Identify partition with graph, and put c(�) column, r(�) row, a(�) arm
length, c(�) leg length
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Localization

Put H = log(Ω)
By Riemann-Roch and localization on S[n] have

IS,V (x , z) =

(
e∏

i=1

Ω(x ,ev (i)
1 z, . . . ,ev (i)

k z,et(i)1 ,et(i)2 )

)∣∣∣∣∣
ε1=ε2=0

= exp

(
e∑

i=1

H(x ,ev (i)
1 z, . . . ,ev (i)

k z,et(i)1 ,et(i)2 )

)∣∣∣∣∣
ε1=ε2=0

So we "only" have to compute this.

Proposition
We can expand

H(x , z1, . . . , zk ,eε1 ,eε2) =
∑

d1,d2≥−1

Hd1,d2(x , z1, . . . , zk )εd1
1 ε

d2
2

(not trivial could have deep pole in ε1, ε2)
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Localization

Trick: Rewrite previous formula for IS,V (x , z): Inside exponential apply
localization formula on S

IS,V (x , z) = exp

(
e∑

i=1

H(x , ev(i)
1 z, . . . , ev(i)

k z, et(i)1 , et(i)2 )

)∣∣∣∣∣
ε1=ε2=0

= exp

((
e∑

i=1

1

t (i)1 t (i)2

(
H−1,−1(x , e

v(i)
j z) + (t (i)1 + t (i)2 )H−1,0(x , e

v(i)
j z)

+ t (i)1 t (i)2 H0,0(x , e
v(i)

j z) + ((t (i)1 )2 + (t (i)2 )2)H−1,1(x , e
v(i)

j z)
))∣∣∣∣∣

ε1=ε2=0

)
= exp

(
c2(V )C2 + c1(V )2C11 + KSc1(V )D1 + e(S)F + (K 2

S − 2e(S))E
)

Put Hd1,d2,k (x , z) = Hd1,d1(x , z, . . . , z),

Then F (x , z), E(x , z),D1(x , z), C2(x , z), C11(x , z) are given in terms of
H−1,−1,k (x , z), H−1,0,k (x , z), H0,0,k (x , z), H−1,1,k (x , z)
So we need to understand these power series.
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Regularity and Symmetry

Want to understand
H−1,−1,k (x , z), H−1,0,k (x , z), H0,0,k (x , z), H−1,1,k (x , z)

Use two properties: regularity and symmetry
1 f (x , z) ∈ C[[x , z]] is d-regular (wrt k ) if

f
(

xε2−k (1 + ε)k , 1
1+ε

)
∈ εdC[[x , ε]],

2 f (x , z) is called symmetric if f (x , z) = f (x−1, xz).

Theorem
1 Hd1,d2,k (x , z) is −d1 − d2 regular for d1 + d1 ≤ 0

2 Hd1,d2,k (x , z) +
Bd1+1Bd2+1

(d1+1)!(d2+1)!(Li1−d1−d2(x) + kLi1−d1−d2(z))

is symmetric (Lid (x) =
∑

n>0 xn/nd polylog).

First part follows from the fact that IChern
S,V is limit of IS,V

Second part is deep input from symmetric function theory:
identities of generalized MacDonald’s polynomials
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Regularity and Symmetry

Symmetric and regular functions fulfill very strong constraints:

Theorem
Let f (x , z) be a symmetric d-regular function (wrt k).

1 if d > 0, then f (x , z) = 0.

2 if d = 0, there exists a unique h(y) ∈ C[[y ]], such that

f
(

u(1− u)k−1

(1− v)k−1 ,
v

(1− u)k−1

)
= h

(
uv

(1− u)(1− v)

)
.

The functions F (x , z), E(x , z), D1(x , z), C2(x , z), C11(x , z) can be
expressed in terms of symmetric regular functions
A symmetric regular function is determined by few of its coefficients,
Trick: assume g(x , z) is 1-regular, then f (x , z) := Dzg(x , z) is
regular. If furthermore f (x , z) is symmetric, then g(x ,0) determines
f (x , z)
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