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Let f e R[x,y,z] be a homogeneous polynomial of degree d.
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RX ={[x:y:z]eRP?|f(x,y,z)=0} c RP?
N N
CX ={[x:y:z]eCP?|f(x,y,z)=0} c CP.

Let us assume f is non-singular, i.e., Vf has no solutions
in C3\ 0.
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The topology of RX does not depend entirely on its degree.
If the degree is odd, then k > 1.
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Theorem (Harnack, 1876)

If X is a non-singular curve in RP? of degree d, then
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Moreover, this bound is sharp.
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Puentes (RP?,RX) = (RP?,RY) if 3o € Homeo(RP? RP?)
o(RX) =RY.
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Since Homeo(RP?, RIP?) is connected, this is equivalent to:

3p; € Homeo(RP? RP?),0 < t <1,

o = Idpp2,
Y1 =p-
Equivalently, the sets RX, RY are isotopic as subsets of RP?.
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Puentes Given a degree d, classify the homeomorphism classes of pairs
(RP?,RX), where RX c RP? is a non-singular curve of

degree d.
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Equivalently,

Given a degree d, classify all non-singular curves RX c RP? of
degree d up to isotopy.
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In such a family ¢, every set p:(RX) 2 RX.
However, only po(RX) = RX and ¢1(RX) =RY are algebraic
sets.

Imposing that ¢:(RX) is the real point set of a non-singular
curve of degree d gives rise to the following notion.
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Definition

Two curves X, Y are rigidly isotopic if there exists an isotopy
vt, 0<t <1, from RX to RY such that ¢;(RX) is the real
point set of a non-singular curve of degree d.
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codimpg=1
RDy4 c RCy
N N
CDy c CCy
codimg=1
codimg=2

The connected components of RCy \ RDy are called chambers.
The classification of the chambers is equivalent to the
classification of real curves up to rigid isotopy.
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The classification of non-singular curves in RP? of degree 5 up
to rigid isotopy was obtained by Kharlamov.
In degree 6, it was obtained by Nikulin.
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fndree From now on, we assume that X c RP? is a generic rational
arar (e

Puentes curve of degree 5. Thus, the curve X has a parametrization

Introduction

crt — CP?
[u:v] — [P(u,v): Q(u,v): R(u,v)],

where P, @ and R are real homogeneous polynomials of

degree d which do not have common zeros in CP?.
(d-1)(d-2)
2

A generic rational curve of degree d has nodal

singular points.
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v h hyperbolic nodes, i.e.,
nodal points where two
real branches cross.

Introduction

e ¢ elliptic nodes, i.e.,
where two imaginary
complex conjugate
branches intersect.

o ¢ imaginary nodes, i.e.,
nodal points of CX \ RX.
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Since the imaginary nodes
come in pairs of complex
conjugate points, we have that

e+he{0,2,4,6}.
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Itenberg, Mikhalkin and Rau found a classification of nodal real
rational curves up to isotopy.
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{RX c RP?marked nodal rational curves of degree 5} [rigid isotopy

I

{D c D?marked nodal dessins of degree 9} [equiv. of marked dessins
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birational transformations

C c ¥, —> CP! proper trigonal curve

Jj-invariant fiberwise

D c D? dessins
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I birational transformations

{C cy, — CP! proper trigonal curve} [equivariant equisingular def.

I j-invariant fiberwise

{D c D? dessins} /elementary equivalence
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Let ¥ —— B be a ruled surface endowed with an exceptional
ol divisor E of negative self-intersection.
Let C c X be a reduced irreducible curve such that

@ 7|c: C — B is a morphism of degree 3,
e CnE=0.
We define the function

Dessins

je: B—>CP!
b+ j-inv(7~1(b) n (C UE)).



Real property of the j-invariant

Classification

°§;§i§"§' The value of the j-invariant determines the relative position of
the points 7 1(b)n C.

The set 71(b) N C has a symmetry if and only if jc(b) € RP!,

Moreover, the configuration of these points has the form

D= H-<:<1<14“ [ [ [

__________ X RIP)].
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along with the decorations of the RP! in the target CP?.
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(a) Monochrome modification (b) Creating/destroying a bridge
Dessins
alr X NI
(c) e-in/e-out (d) e-in/e-out

(e) o-in/o-out (f) o-in/o-out
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There is a one-to-one correspondence between the rigid isotopy
Dessins classes of marked nodal real rational curves of degree 5 and the
equivalence classes of marked dessins on D? with a fixed set of
vertices.
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Theorem (JP)

There is a one-to-one correspondence between the rigid isotopy
classes of marked nodal real rational curves of degree 5 and the
equivalence classes of marked dessins on D? with a fixed set of
vertices.

This gives rise to a classification of marked curves. From this
we can easily deduce the rigid isotopy classification.
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Theorem (JP)

There is a one-to-one correspondence between the weak
equivalence classes of degree 6 uninodal toiles and the chambers
of generic real pointed quartic curves in their moduli space.

Dessins
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In order to present the rigid isotopy classification we introduce
the following notion.

Definition

A type I perturbation Xy of a nodal rational real curve X is a
type I curve obtained by perturbing every elliptic node into an
oval and every hyperbolic node into two real branches
compatible with any orientation of X.
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Definition

A nodal rational real curve of degree 5 is called
icihuteiedl (M — s)-perturbable if it has a type I perturbation with 7 —s
connected components.
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Jurliz degree 5 in RP?, then the rigid isotopy class of X is determined

Puentes by its isotopy class and the position of its nodes with respect to
the cyclic order of the ovals of a type 1 perturbation.
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Let us denote by h, the number of hyperbolic nodal points
connecting the pseudoline to an oval in a type I perturbation of
the curve.
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Jaramillo If X c RP? is an (M — 2)-perturbable nodal rational curve, its
Tuenes rigid isotopy class is determined by its isotopy class except for
the following cases.
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If X ¢ RIP? is an (M — 4)-perturbable nodal rational curve, its
rigid isotopy class is determined by its isotopy class and the
number o(C).
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perturbable
curves
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s Figure: Rigid isotopy classes of nodal rational (M — 4)-perturbable
Porvareble curves of degree 5 in RP? with o = 0.
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Figure: Rigid isotopy classes of nodal rational (M — 4)-perturbable
(M- 4 curves of degree 5 in RP? with o = 2.
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Figure: Rigid isotopy classes of nodal rational (M — 4)-perturbable
(M- 4 curves of degree 5 in RP? with o = 4.
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Theorem (JP)

There is a unique rigid isotopy class of (M — 6)-perturbable
nodal rational curves in RIP?.

(M- 6)-

perturbable
curves
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