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In the 40’s Whitney studied maps of C∞-manifolds. When a map is not an
immersion/submersion, one tries to deform it locally, in hope to make it ’generic’.
This approach has led to the rich theory of stable maps, developed by Thom, Mather
and many others.
The main ’engine’ was vector field integration. This chained the whole theory to the
C∞, or R/C-analytic setting.

I will present a purely algebraic approach, studying maps of germs of Noetherian
schemes, in any characteristic. The relevant groups of equivalence admit ’good’ tangent
spaces. One has the theory of unfoldings (triviality and versality). Then I will discuss the
new results on stable maps and theorems of Mather-Yau/Gaffney-Hauser.
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Prologue

Let k be R or C. Consider Maps
(
(kn, o),(kp, o)

)
(C∞ or k-analytic).

The main equivalences are: right (R), left-right (A ), contact (K ).
Among the first steps of Singularity Theory were: finite determinacy, unfoldings,
the theory of stable maps.

Many definitions/statements are of algebraic nature. But the proofs were based
on the integration of vector fields. In the last 40 years some results on the orbits
of the groups R,K were extended to k - any field, any characteristic.
[G.M.Greuel et al], [Belitski-K.].

The A -equivalence over k is essentially more complicated.
The A -orbits (and A -determinacy) are treated in arXiv:2111.02715.

Today’s talk [arXiv:2209.05071]: my recent results on unfoldings, stable maps,
Mather-Yau/Gaffney-Hauser theorems. (Over an arbitrary field.)

2 / 10



Prologue
Let k be R or C. Consider Maps

(
(kn, o),(kp, o)

)
(C∞ or k-analytic).

The main equivalences are: right (R), left-right (A ), contact (K ).

Among the first steps of Singularity Theory were: finite determinacy, unfoldings,
the theory of stable maps.

Many definitions/statements are of algebraic nature. But the proofs were based
on the integration of vector fields. In the last 40 years some results on the orbits
of the groups R,K were extended to k - any field, any characteristic.
[G.M.Greuel et al], [Belitski-K.].

The A -equivalence over k is essentially more complicated.
The A -orbits (and A -determinacy) are treated in arXiv:2111.02715.

Today’s talk [arXiv:2209.05071]: my recent results on unfoldings, stable maps,
Mather-Yau/Gaffney-Hauser theorems. (Over an arbitrary field.)

2 / 10



Prologue
Let k be R or C. Consider Maps

(
(kn, o),(kp, o)

)
(C∞ or k-analytic).

The main equivalences are: right (R), left-right (A ), contact (K ).
Among the first steps of Singularity Theory were: finite determinacy, unfoldings,
the theory of stable maps.

Many definitions/statements are of algebraic nature. But the proofs were based
on the integration of vector fields. In the last 40 years some results on the orbits
of the groups R,K were extended to k - any field, any characteristic.
[G.M.Greuel et al], [Belitski-K.].

The A -equivalence over k is essentially more complicated.
The A -orbits (and A -determinacy) are treated in arXiv:2111.02715.

Today’s talk [arXiv:2209.05071]: my recent results on unfoldings, stable maps,
Mather-Yau/Gaffney-Hauser theorems. (Over an arbitrary field.)

2 / 10



Prologue
Let k be R or C. Consider Maps

(
(kn, o),(kp, o)

)
(C∞ or k-analytic).

The main equivalences are: right (R), left-right (A ), contact (K ).
Among the first steps of Singularity Theory were: finite determinacy, unfoldings,
the theory of stable maps.

Many definitions/statements are of algebraic nature. But the proofs were based
on the integration of vector fields. In the last 40 years some results on the orbits
of the groups R,K were extended to k - any field, any characteristic.
[G.M.Greuel et al], [Belitski-K.].

The A -equivalence over k is essentially more complicated.
The A -orbits (and A -determinacy) are treated in arXiv:2111.02715.

Today’s talk [arXiv:2209.05071]: my recent results on unfoldings, stable maps,
Mather-Yau/Gaffney-Hauser theorems. (Over an arbitrary field.)

2 / 10



Prologue
Let k be R or C. Consider Maps

(
(kn, o),(kp, o)

)
(C∞ or k-analytic).

The main equivalences are: right (R), left-right (A ), contact (K ).
Among the first steps of Singularity Theory were: finite determinacy, unfoldings,
the theory of stable maps.

Many definitions/statements are of algebraic nature. But the proofs were based
on the integration of vector fields. In the last 40 years some results on the orbits
of the groups R,K were extended to k - any field, any characteristic.
[G.M.Greuel et al], [Belitski-K.].

The A -equivalence over k is essentially more complicated.
The A -orbits (and A -determinacy) are treated in arXiv:2111.02715.

Today’s talk [arXiv:2209.05071]: my recent results on unfoldings, stable maps,
Mather-Yau/Gaffney-Hauser theorems. (Over an arbitrary field.)

2 / 10



Prologue
Let k be R or C. Consider Maps

(
(kn, o),(kp, o)

)
(C∞ or k-analytic).

The main equivalences are: right (R), left-right (A ), contact (K ).
Among the first steps of Singularity Theory were: finite determinacy, unfoldings,
the theory of stable maps.

Many definitions/statements are of algebraic nature. But the proofs were based
on the integration of vector fields. In the last 40 years some results on the orbits
of the groups R,K were extended to k - any field, any characteristic.
[G.M.Greuel et al], [Belitski-K.].

The A -equivalence over k is essentially more complicated.
The A -orbits (and A -determinacy) are treated in arXiv:2111.02715.

Today’s talk [arXiv:2209.05071]: my recent results on unfoldings, stable maps,
Mather-Yau/Gaffney-Hauser theorems. (Over an arbitrary field.)

2 / 10



Prologue
Let k be R or C. Consider Maps

(
(kn, o),(kp, o)

)
(C∞ or k-analytic).

The main equivalences are: right (R), left-right (A ), contact (K ).
Among the first steps of Singularity Theory were: finite determinacy, unfoldings,
the theory of stable maps.

Many definitions/statements are of algebraic nature. But the proofs were based
on the integration of vector fields. In the last 40 years some results on the orbits
of the groups R,K were extended to k - any field, any characteristic.
[G.M.Greuel et al], [Belitski-K.].

The A -equivalence over k is essentially more complicated.
The A -orbits (and A -determinacy) are treated in arXiv:2111.02715.

Today’s talk [arXiv:2209.05071]: my recent results on unfoldings, stable maps,
Mather-Yau/Gaffney-Hauser theorems. (Over an arbitrary field.)

2 / 10



(Definitions) Maps, equivalences and unfoldings

Consider Maps(X, (kp, o)) (formal/analytic/algebraic map-germs). Namely:

L 3 ΦY 	

.

.......................................................................................................

.

.............
.............

.............
.

.

................
................
................
................
..........

.

.....................................................................

•

(kp, o)

←f

X=Spec(OX )

� ΦX ∈ R

k is a(ny) field, e.g. Q,R,C, a finite field, p-adic, . . .
OX is one of: k[[x]]/J , k{x}/J (for k-normed and complete),
k〈x〉/J (algebraic power series).
Accordingly X = Spec(OX ) is the (formal/analytic/algebraic) germ of a
scheme. E.g. for J = 0 get Maps

(
(kn, o),(kp, o)

)
An assumption through the talk: if char(k) > 0 then J = 0, i.e. X ∼= (kn, o).

Fix a group G ∈ R,A ,K , where:
R-equivalence. Aut(X ):=Autk(OX )�Maps(X, (kp, o)) by f  f ◦Φ−1

X .
L -equivalence. Aut(kp, o) :=Autk(O(kp,o))�Maps(X, (kp, o)) by f  ΦY ◦f .
A := L ×R, f  ΦY ◦ f ◦ Φ−1

X . The contact equivalence (K ) . . .

An unfolding of X f→ (kp, o) is the map X × (kr
t , o)

F=(ft(x),t)−→ (kp, o)× (kr
t , o).

The group G ∈ R,K ,A acts on unfoldings: (ft(x), t) (gt ft(x), t).
Here gt ∈ Gt is an unfolding of identity. E.g. (Rt) x → x + t · (. . . )
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k is a(ny) field, e.g. Q,R,C, a finite field, p-adic, . . .
OX is one of: k[[x]]/J , k{x}/J (for k-normed and complete),
k〈x〉/J (algebraic power series).
Accordingly X = Spec(OX ) is the (formal/analytic/algebraic) germ of a
scheme. E.g. for J = 0 get Maps

(
(kn, o),(kp, o)

)
An assumption through the talk: if char(k) > 0 then J = 0, i.e. X ∼= (kn, o).

Fix a group G ∈ R,A ,K , where:
R-equivalence. Aut(X ):=Autk(OX )�Maps(X, (kp, o)) by f  f ◦Φ−1

X .
L -equivalence. Aut(kp, o) :=Autk(O(kp,o))�Maps(X, (kp, o)) by f  ΦY ◦f .
A := L ×R, f  ΦY ◦ f ◦ Φ−1

X . The contact equivalence (K ) . . .

An unfolding of X f→ (kp, o) is the map X × (kr
t , o)

F=(ft(x),t)−→ (kp, o)× (kr
t , o).

The group G ∈ R,K ,A acts on unfoldings: (ft(x), t) (gt ft(x), t).
Here gt ∈ Gt is an unfolding of identity. E.g. (Rt) x → x + t · (. . . )
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Triviality of unfoldings (OX∈k[[x]]/J ,k{x}/J ,k〈x〉/J . G∈R,A ,K . )

Take fo ∈ Maps(X, (kp, o)) and its unfolding X×(kr ,o)
F=(ft(x),t)−→ (kp,o)×(kr ,o).

Def. 1. F is called G -trivial if gt ft = fo for some gt ∈ Gt . i.e. F Gt∼ (fo , t).
2. F is called infinitesimally G -trivial if ∂t1 ft , . . . , ∂tr ft ∈ TG e ft .

Lemma (Thom-Levine).(k∈R,C) F is G -trivial iff F is infinitesimally G -trivial.

Example: (kn, o)
fo→ (k1, o), ft(x) = fo(x) + t · h(x). Then the R-triviality

transforms into the “linear algebra": h(x) = ∂t ft(x)
?
∈ TRe ft = Jacx(ft(x)).

This does not hold if char(k)>0. E.g. for ft(x)=xn+tpx have ∂t ft =0 ∈ TRe ft .

Def. F is inseparable if ft(x)
G∼ fo(x) + td · fd(x) + (t)d+1,

where char(k)|d and fd(x) 6∈ TG e fo .

Lemma (2022) (any k). 1. If F is trivial then F is infinitesimally trivial.
2.Suppose F is infinitesimally trivial and G -separable. Then F is trivial.
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Versality of unfoldings (OX∈k[[x]]/J ,k{x}/J ,k〈x〉/J . G∈R,A ,K . )

Def. 1. F = (ft(x), t) is called G -versal if any other unfolding is G -equivalent to
a pull-back of F .

Namely, any F̃ is G -equivalent to (ft(t̃)(x), t̃) for some t(t̃).

2. F is called infinitesimally G -versal if
Span(∂t1 ft ,. . ., ∂tr ft)|t=o +TG ef =TMaps(X,(kp,o))

∼= Maps(X, (kp, o)).

Theorem (Classics, k ∈ R,C): 1. F is G -versal iff it is infinitesimally G -versal.
2. The tangent space to the miniversal unfolding is T 1

G f = Maps(X, (kp, o))/TG e f .

Example. Let f : (k1, o)→(k1, o), x→xd+1. Then TRe f =TK e f =(x)d ⊂ OX .
Then T 1

Re f = T 1
K e f = Spank(1, x , . . . , xd−1).

The miniversal unfolding: (xd+1 +
∑d−1

j=0 tjx
j , t).

(2022): This holds for any k.
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Stable maps (G =A , OX∈k[[x]]/J ,k{x}/J ,k〈x〉/J , extending results of Mather)

Def. 1. f ∈Maps(X, (kp, o)) is called stable if any unfolding of f is A -trivial.
2. f is called infinitesimally stable if TA e f = TMaps(X,(kp,o))

∼= Maps(X, (kp, o)).

Theorem (2022, any k). f is stable iff f is infinitesimally stable.
i.e. T 1

A e f = 0, i.e. codimA e (f ) = 0.

(For char(k) = 0: X can have arbitrary singularities.)

Howtoproduce stablemaps? Mather:“Stablemaps are unfoldings of their genotypes."

Theorem (2022, k is infinite). F is stable iff F is A -equivalent to the unfolding
(f (x)+

∑
tjvj ,t), where f (x)∈(x)2 is K-finite, and Spank{vj} = (x)·T 1

K e f.

Example. f (x) = xd , char(k) - d . Then (x) · T 1
K e f = Spank(x , x2, . . . , xd−2).

The corresponding stable map: (x , t)→ (xd +
∑

x j tj , t).

Here f is called the genotype of F . For each genotype we get a stable map.
One gets lots of stable maps for various germs X . How to distinguish these maps?

Theorem (2022, k is infinite) Suppose F , F̃ are stable. Then F
A∼ F̃ iff f

K∼ f̃ .
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Mather-Yau/Gaffney-Hauser results (OX∈k[[x]]/J ,k{x}/J ,k〈x〉/J )

Theorem (2022). (char(k) = 0, k = k̄)
1. The K -type of f ∈ Maps(X, (kp, o)) is determined by [T 1

K f ].
2. If V (f )⊂X has an isolated singularity then the K -type is determined by [T 1

K e f ].

Here: • T 1
K e f = Maps(X, (kp, o))/TKe f

∼= O⊕p
X /TRe f + (f ) · O⊕p

X
.

• [. . . ] is the equivalence class of a module. [MR ] = [NS ] if φ : R ∼−→ S (isom.)
and Φ : M ∼−→ N, an additive bijection satisfying: Φ(r ·m) = φ(r) · Φ(m).
• Part 2 for p = 1, OX = k[[x ]] in [Greuel-Pham.2019].

This fails if char(k)>0. Amodified version in [Greuel-Pham.19]. A stronger version:

Theorem (2022). (k an infinite field. OX ∈ k[[x ]],k{x},k〈x〉)
The K -type of f is determined by the k-algebra OX/(f ) + a · Ann(T 1

Re f ) .
Here a ⊂ OX is any ideal satisfying: a2 · O⊕pX ⊆ (x) · a · TRe f + (x) · (f ) · O⊕pX .

Example (p=1) The K -type of f is determined by the k-algebra OX/(f )+a·Jac(f ) ,
for any ideal satisfying: a2 ⊆ (x) · a · Jac(f ) + (x) · (f ).

And a similar result for A -equivalence.
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Thanks for your attention!
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A bit about the proofs

1 The Implicit Function Theorem (IFT) holds over any field. But it is not
directly applicable in Singularities, as the derivative f ′|o is typically zero. Yet,
there are some tricks (à la Tougeron’s “implicit function theorem") to convert
a system of equations into another form, where the IFT is applicable.

2 When the IFT “does not help", one can try to get an order-by-order solution.
This will provide a formal solution to the problem. To ensure that the
solution is (e.g.) analytic, one uses the Artin approximation. This works for
the R, K equivalences.

3 The A -equivalence is more complicated, as the involved equations are not of
implicit function type. Then one needs additional tools, e.g. the finite
determinacy.
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