Artin approximation.

The ordinary, the inverse, the left-right, and on quivers.

Dmitry Kerner TAU-seminar, February 2024.

Abstract

- 1. Artin approximation is useful.
- 2. What is this "Weakly-finite singularity type"?
- 3. Continue the sequence:

ArXiv: 2310.01521

Prologue (we often have to resolve equations)

Let \mathbb{R} be \mathbb{R} or \mathbb{C} . Consider equations F(x,y)=0. Here:

$$x = (x_1, ..., x_n),$$
 $y = (y_1, ..., y_m),$ $F = (f_1, ..., f_c),$ with $f_i \in \mathbb{R}\{x, y\}.$

Want an analytic solution, F(x, y(x)) = 0. Usually no chance for explicit solutions.

An approach: resolve order-by-order. F(x, $y^{(d)}(x)$) $\in (x)^d$, for each $d \in \mathbb{N}$. Then take $\hat{y}(x) := \lim_{d \to \infty} y^{(d)}(x) \in \mathbb{k}[[x]]$. (Does this limit exist?)

- Is this an analytic solution? $(\hat{y}(x) \in \mathbb{k}\{x\}?)$
- Suppose $F(x,y) \in \mathbb{k}[x,y]$. Is this a Nash solution? $(\hat{y}(x) \in \mathbb{k}\langle x \rangle?)$

Example. $(\mathbb{k}^n, o) \xrightarrow{f} (\mathbb{k}^1, o)$ Take a perturbation, f + h. Can this be undone by a coordinate change? Namely, f(x) + h(x) = f(y(x)).

More generally, this question for $X \xrightarrow{f} Y$. (With various equivalence relations.) For deformation theory. For vector fields/foliations. For dynamical systems. . . .

Ruling out the trivial case. F(x,y)=0. Suppose $\partial_y F|_{(o,o)}$ is non-degenerate. Then the (analytic/Nash) solution exists. (Implicit Function Theorem.) Below $\partial_y F|_{(o,o)}$ is always degenerate.

Trying to resolve the equation F(x,y) = o. (Always assume F(o,o) = o.) **Geometry.** $(\mathbbm{k}^n_x,o) \times (\mathbbm{k}^m_y,o) \supset V(F(x,y)) \stackrel{\textit{analytic}}{\to} (\mathbbm{k}^n_x,o)$. Does there exist an analytic section?

Can this formal section be approximated by analytic sections?

Two main settings:

- (Analytic) \mathbb{R} is a complete normed field. (e.g. $\mathbb{R}, \mathbb{C}, \mathbb{Q}_p$.) $\mathbb{R}\{x\}$ =(locally convergent power series). $\mathbb{R}\{x,y\} \ni F(x,y) = 0$, analytic equations.
- (Nash) \mathbbm{k} is any field, $\mathbbm{k}\langle x\rangle=\{\text{power series that satisfy polynomial equations}\}$ $a_d(x)f^d+\cdots+a_1(x)f+a_0(x)=0,$ with $a_i(x)\in\mathbbm{k}[x]$ and $a_d(o)\neq 0.$ E.g. (for $char(\mathbbm{k})=0$) $f(x)=\sqrt[d]{1+q(x)},$ for $q(x)\in(x)\subset\mathbbm{k}[x].$ $\mathbbm{k}\langle x,y\rangle\ni F(x,y)=0,$ Nash equations.

The question. Given a system of (analytic/Nash) equations, F(x,y)=0. Given a formal solution, $F(x,\hat{y}(x))=0$, $\hat{y}(x)\in \Bbbk[[x]]$. Want to approximate it by ordinary (analytic/Nash) solutions. Namely, for any $d\in \mathbb{N}$ we want:

$$y^{(d)}(x) \in \mathbb{K}\{x\}, \mathbb{K}\langle x \rangle$$
, such that: $F(x, y^{(d)}(x)) = 0$ and $\hat{y}(x) - y^{(d)}(x) \in (x)^d$.

(Artin, 1968, 1969) This approximation exists. (Name: the Artin approximation)

Artin approximation: Every formal solution is approximated by ordinary solutions.

Example 1. Take $f:(\mathbb{R}^n,o)\to(\mathbb{R}^m,o)$ (analytic/Nash). Take a perturbation, f+g. Suppose $f+g\ \mathcal{R}$ f. I.e. $f(x)+g(x)=f(\hat{y}(x))$, a formal coordinate change. Then $f+g\ \mathcal{R}$ f. Moreover, $\forall d$ can ensure $y^{(d)}(x)-\hat{y}(x)\in(x)^d$.

Example 2. Given a system of analytic/Nash equations F(x, y) = 0. Suppose it has the unique (formal) solution, y(x). Then y(x) is analytic/Nash.

Remark. Given a system of equations, physicists solve it up to order 3 or 4. Engineers solve it up to order 1 or 2. And ... somehow it works.

Question. Maybe it is enough to resolve F(x,y)=0 up to a high enough order? (Do not need to construct a formal solution $\hat{y}(x) \in \mathbb{k}[[x]]$.)

Strong Artin approximation. (Pfister-Popescu) Given F(x,y), there exists a function $\beta: \mathbb{N} \to \mathbb{N}$ satisfying: if $F(x,y^{(d)}(x)) \in (x)^{\beta_d}$ then exists a (analytic/Nash) solution, F(x,y(x)) = 0, and moreover $y(x) - y^{(d)}(x) \in (x)^d$.

How to find/to bound this β ? It is large and complicated.

Fact: β depends only on n, m and degrees of F. (Not on the coefficients of F.)

The inverse question

Artin approximation addresses equations of implicit function type, F(x, y) = 0. There are many other functional equations.

The inverse Artin question (Grothendieck, 1961).

Given $y(x) = y_1(x), \dots, y_m(x) \in \mathbb{R}\{x\}, \mathbb{R}\langle x \rangle$. Suppose $\hat{F}(y(x)) = 0$. Is this \hat{F} approximated by analytic/Nash relations among y(x)?

A counterexample (Osgood 1916, Gabrielov, 1971) There exists an analytic map $(\mathbb{C}^2, o) \to (\mathbb{C}^4, o), x \to y(x)$, whose components satisfy a formal relation, $\hat{F}(y_1(x), \dots, y_4(x)) = 0$, but do not satisfy any (non-trivial) analytic relation.

Geometry: The image $y(\mathbb{C}^2, o) \subset (\mathbb{C}^4, o)$ lies inside a formal hypersurface germ. But it does not lie inside any analytic hypersurface germ.

Facts: 1. The inverse AP holds for algebraic power series, $y(x) \in \mathbb{k}\langle x \rangle$. For any \mathbb{k} .

- **2**.(Shiota,1998)The inverse AP holds for \mathbb{R} -analytic maps of finite singularity type.
- I.e. the map $(\mathbb{R}^n, o) \stackrel{y(x)}{\rightarrow} (\mathbb{R}^m, o)$ is contact-finite.
- I.e. the subscheme $V(y(x))_{\mathbb{C}} \subset (\mathbb{C}^n, o)$ is either one-point or an ICIS.

Local structure of morphisms, Maps(X,Y)

Here $X = V(I_X) \subseteq (\mathbb{k}^n, o)$ and $Y = V(I_Y) \subseteq (\mathbb{k}^m, o)$, germs of schemes. Analytic $(R_X = \mathbb{K}\{x\}/I_Y, R_Y = \mathbb{K}\{y\}/I_Y)$ or Nash $(R_X = \mathbb{K}\langle x\rangle/I_Y, R_Y = \mathbb{K}\langle y\rangle/I_Y)$.

They are studied up to automorphisms (over \mathbb{k}), $Aut_X \circ X$, i.e. $Aut_{\mathbb{k}}(R_X) \circ R_X$. And similarly $Aut_Y \circlearrowleft Y$.

Example. The classic case: $I_X = 0$, $I_Y = 0$. Then Maps $((k^n, o), (k^m, o))$. $Aut_X =$ ocal coordinate changes in the source.

 $\begin{array}{ccc} X \xrightarrow{f} Y & R_X \xrightarrow{f^{\sharp}} R_Y \\ \circlearrowleft & \circlearrowleft & \Phi_X^{\sharp} \downarrow & \downarrow \Phi_Y^{\sharp} \end{array}$ $Aut_Y = \dots$ in the target. These define the left-right equivalence $\mathscr{R}:=Aut_{\mathbf{X}} \quad \mathscr{L}:=Aut_{\mathbf{Y}} \qquad R_{\mathbf{X}} \stackrel{\tilde{\mathbf{f}}\sharp}{\to} R_{\mathbf{Y}}$ of morphisms, $f \rightsquigarrow \Phi_Y \circ f \circ \Phi_Y^{-1}$.

Question (the left-right Artin approximation, $\mathcal{L}\mathcal{R}$ -AP) Suppose $\tilde{f} \stackrel{\mathcal{P}}{\sim} f$. i.e. $\tilde{f} = \hat{\Phi}_Y \circ f \circ \hat{\Phi}_Y^{-1}$. Is this approximated by $\tilde{f} = \Phi_Y \circ f \circ \Phi_Y^{-1}$?

Shiota.1998 \mathbb{R} **K.2023** \mathbb{R} : $\mathcal{L}\mathcal{R}$ -AP holds for Nash maps, $\mathbb{R}\langle x \rangle / \mathbb{I}_{\mathbf{v}}$, $\mathbb{R}\langle y \rangle / \mathbb{I}_{\mathbf{v}}$.

Shiota.1998. $\mathcal{L}\mathcal{R}$ -AP holds for analytic $Maps((\mathbb{R}^n, o), (\mathbb{R}^m, o))$ of finite i.e. $V(f)_{\mathbb{C}} \subset (\mathbb{C}^n, o)$ is either a point or an ICIS. singularity type.

K.2023. $\mathcal{L}\mathcal{R}$ -AP holds for analytic Maps(X,Y) of weakly-finite singularity type.

(Analytic) Maps of weakly-finite singularity type Take $f: (\mathbb{R}^n, o) \to (\mathbb{R}^m, o), n \ge m$. $f' \in Mat_{m \times n}$. Critical locus $Crit:=V(I_m[f']) \subseteq (\mathbb{R}^n, o)$.

Def. Let $X \xrightarrow{f} Y$ (dominant). The critical module $\mathcal{C} := Der(f^*T_Y, T_X)/Der_X f$. The critical locus $Crit_X f := Supp[\mathcal{C}] \subseteq X$. (set-theoretically)

Ex. $X \xrightarrow{f} (\mathbb{k}^m, o)$. Then $C = R_X^{\oplus m}/_{Der_X f}$ and $Crit_X f = V(I_m[Der_X f])$.

 $X \xrightarrow{f} Y$ **Def.** f is of finite singularity type if $Crit_X \xrightarrow{f} \Delta_Y$ is finite.

discriminant \bullet (for $k = \overline{k}$) $V(f) \subset X$ is of dim = 0 or an ICIS.

Suppose $f_{\mid :}$ $Crit_X \rightarrow \Delta_Y$ is not finite. Maybe $f_{\mid :}$ $Crit_X \rightarrow \Delta_Y$ is of finite sing. type? (I.e. $f_{\mid :}$ $Crit_{Crit_X} \rightarrow \Delta_{\Delta_Y}$ is finite.) If not, then maybe $f_{\mid :}$ $Crit_{Crit_X} \rightarrow \Delta_{\Delta_Y}$ is of finite sing. type? (I.e. $f_{\mid :}$ $Cirt_{Crit_{Crit_X}} \rightarrow \Delta_{\Delta_{\Delta_Y}}$ is finite.) And so on...

Def. (Roughly) $f: X \rightarrow Y$ is of weakly finite singularity type if

- Cirt_{Crit} =: Crit_r $\xrightarrow{f_1} \Delta_r := \Delta_{\Delta_n}$ is finite for some r.
- (for $char(\mathbb{k}) > 0$) Certain logarithmic derivations of $X/Crit_X, X/Crit_X/Crit_{Crit_X}/\dots$ are integrable.

K.2023. \mathcal{LR} -AP holds for analytic Maps(X,Y) of weakly-finite singularity type.

Artin approximation on quivers

We spoke about several approximation problems for morphisms of scheme-germs

$$Y \leftarrow X \circlearrowleft \mathscr{R}$$
 $\mathscr{L} \circlearrowright Y \leftarrow X$ $\tilde{f} = f \circ \Phi_X$ $\tilde{f} = \Phi_Y \circ f$

$$\mathcal{L} \circlearrowleft Y \leftarrow \lambda$$

$$\tilde{f} = \Phi_Y \circ f$$

$$\mathscr{L} \circlearrowleft Y \leftarrow X \circlearrowleft \mathscr{R}$$

$$\tilde{f} = \Phi_Y \circ f \circ \Phi_X$$

Artin approximation Inverse Artin approximation

Left-Right Artin approximation

But X could be a multi-germ.

These all are some simple graphs.

Each graph encodes an approximation problem.

 $\begin{array}{ccc} \mathscr{R} & & & X_1 \\ & \cdots & & & Y \\ \mathscr{R} & & & & X_1 \end{array} Y & \circlearrowleft \mathscr{L}.$

Def. A quiver of map-germs: $(\Gamma, \{X_v\}_v, \{f_{wv}\}_{wv})$.

$$\underset{\nearrow}{\rightarrow} X_{\nu} \overset{\mathsf{f}_{\mathsf{wv}}}{\rightarrow} X_{w} \overset{\nearrow}{\rightarrow}$$

 $f_{\mu\nu} \circ \Phi_{\nu} = \Phi_{\mu\nu} \circ f_{\mu\nu}$

$$\begin{array}{ccc}
\stackrel{\rightarrow}{\rightarrow} \tilde{X}_{v} & \stackrel{\tilde{f}_{wy}}{\rightarrow} & \tilde{X}_{w} \stackrel{\rightarrow}{\rightarrow} \\
\Phi_{v} \downarrow & \downarrow \Phi_{w} \\
\stackrel{\rightarrow}{\rightarrow} X_{v} & \stackrel{f_{wy}}{\rightarrow} & X_{w} \stackrel{\nearrow}{\rightarrow}
\end{array}$$

E.g.
$$(\mathbb{k}^n, o) \stackrel{f_{-\not e}}{\to} (\mathbb{k}^1, o)$$

 $\mathscr{R}: \Phi_X \downarrow |Id_{(\mathbb{k}^1, o)}||$
 $(\mathbb{k}^n, o) \stackrel{f}{\to} (\mathbb{k}^1, o)$

Def. (Γ -AP) The Artin approximation holds for a quiver (Γ , $\{X_v\}_v$, $\{f_{wv}\}_{wv}$) if any formal morphism, $\{\hat{\Phi}_{\nu}\}_{\nu}$, is approximated by analytic/Nash morphisms, $\{\Phi_{\nu}\}_{\nu}$.

K.2023. Γ-AP holds in the Nash case for directed rooted trees.

Thanks for your attention!