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Given a sequence of maps X Toy &z 0 W, with
nullhomotopies F:gof ~x% and G:hog ~ %, we obtain a

diagram:
(
Ccf
_ \
XU —— (o=
F
“

The nullhomotopies ho F and G o Cf induce a map
(f,g,h,(F,G)) : X - W
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Some background

Toda brackets were originally defined by Hirosi Toda in the 1950's
as a tool in calculating homotopy groups of spheres. Frank Adams
then showed that they serve as differentials in spectral sequences.

The original definition was later extended to longer Toda brackets,
in several ways. Here we describe the two most important versions:
e In cubically enriched categories (i.e., co-categories).

e In pointed model categories, where they serve as obstructions to
rectification.
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Toda bracket in terms of homotopy cofiber

If we have X > Y 57 and F:CX — Z a nullhomotopy
for gof , then we have the following commutative square:

f

X Y hcof(f)
\[ Jg J{B—B(ﬂng)
xX—Fr e 7

|

X m[__)h Cof(g)

Proposition: Given a sequence of maps X foy & 7 h w,
a nullhomotopies F:gof ~x*, and G:hog~ %, so we get:

ZX Cl(f,g,F) /B(g7h7G)

hcof(g) w

The composition equal to (f, g, h,(F,G)) : X — W.
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Toda bracket and rectification of linear diagrams

Definition: Given a diagram

X = (X1 5 X 2 Xo1 TV X,) where fiijof ok,

X, called rectifiable if we have:

X1 i X5 & ... > 1 ot s X,

J/Z f'll \LZ f2/ \Lg erl l/:
X! X} . X', X!
T: Tg /Fg T:
Yl_ 81 Y2_ 82 L Yn:l 8n—1 Yn_

where gii10gj = *.

Theorem: For X - v £, 7 1, W, where gof ~ % and
ho g ~ %, If there are null-homotopies F : CX — Z, and

G : CY — W, such that (f, g, h,(F,G)) is nullhomotopic, then

the diagram X Ty &7 "y W is rectifiable.
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What are we going to do?

Extend the definition of the Toda bracket to longer sequences, in
two ways:

e Cubical definition Generalization in the spirit of the original
definition, using a cubical (=simplicial) enrichment.

e Recursive definition Using the definition of o and (3, which
allows us to generalize the Rectification Theorem.

e Show that these two approaches yield equivalent notions of
higher Toda brackets.

In order to do so, we give a third diagrammatic description of
Toda brackets, more specifically, we can translate the data of the
primary toda bracket into:

XLy ¢y
[l
XLtz tsw
which we think of as a sequence of two horizontal maps of vertical
1-cubes.
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Cubical definition for Toda bracket

o Given X Y &7 "o w  with nullhomotopies
F:CX—=Z and G:CY - W, weglue hoF:CX —> W
and GoCf: CX - W toget (f,g,h,(F,G)): XX — W.

e Given X Y &7 " w X v with nullhomotopies
F:CX—=Z2Z, G:CY—>W, H:CZ— YV, and second-order
nullhomotopies F@ . c2x 5w, 6@ :C2y 5V with

.4 CYy
£ hoF \E koG
CX— C2X CY—— C%Y
F2) G®@
w 4
GoCf HoCg

yielding ko F® and G@ o C2f from C2X to V
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Cubical Definition for Toda bracket

koh o//;
e, .

we obtain a map (f,g, h, k,(F,G,H,F? G?)): 12X - V
with [2X ~ ¥2X.
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Recursive Definition for Toda bracket

X'y Y& L7 5 cof(g)  ZEP W —s cof(h)
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cxtfz CYCCs W ——W czv——v
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Recursive Toda system: a sequence of maps
£ g h k
Xsk X —Y 72— W-—YV

with a nullhomotopies F, : F,G,H, ,?(2)’ G®  as before called
(second order) recursive Toda system, and denoted by (X, F).

We will denote the corresponding Toda bracket of the system
(X.,F) by T(X., F.): 22X — cof(G?)

Later we will define an equivalence relation between such a Toda
systems where two equivalent systems have equivalent Toda
brackets. B

Theorem: If we have a recursive system (Xi, Fx) with a
nullhomotopic T (X, F.) then X, is rectifiable .
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The obvious difference between the two definitions

e The construction

In the cubical definition we have all the nullhomotopies, we
compose and glue to get the Toda bracket.

In the recursive definition we first construct the ordinary Toda
brackets, then choose second order nullhomotopies for them to
continue.

¢ Different second order nullhomotopies

Second order nullhomotopies in cubical Toda system:
F@.c2x - w, ¢@:cC?y - V.

Second order nullhomotopies in recursive Toda system:
F@:.CcxX —»w, 6@:Czy > V.

e Different domain and codomain
Cubical Toda bracket:  T(X,, F.): L°X — V.

Recursive Toda bracket:  T(X,, F.) : £2X — cof(G?).
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F,G,H F® c®3.
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Diagrammatic description for a cubical Toda system (lII)

The data of the cubical Toda system (X,, F.) is encoded in this
commutative diagram.
We will use the following notations:

A (X, Fi) B (X, F.)

c@x

M@)(X,, F.) V(X,, F.)
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Equivalence relation between cubical Toda systems

Definition Two cubical Toda systems (X,, F.) and (X],G,)
are equivalent (written (X, F.) = (X[, G,)) if there is a zig-zag
of weak equivalences between the sequences

cOx AC) (X, Fy) M@ (X.. F.) B (X, Fy) e (X.,F.)
and
> AR)(X!,G.) 5 BQ)(X!,G,) N/ s

Proposition: If (X, F.) =~ (X[, G.), then

T(X., F) = T(X., Gs)
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How To get the cubical Toda bracket from the diagram?

Recall that applying the homotopy cofiber functor to

yields
X — % heof(g) = W

and the corresponding Toda bracket is o a.
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Homotopy cofiber of a square(cont.)

and its the homotopy cofiber is the colimit of

Xt 7

[

Y% CX cz
[a

Yy




Homotopy cofiber of a square(cont.)

and its the homotopy cofiber is the colimit of

Xtz

[

Y s w cX 4
\ la

Example: For the following square:

Yy

X—— CX

CX—— C%2X

the cofiber is £2X, and the homotopy cofiber is L2X.
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Cubical definition in terms of homotopy cofiber

Applying homotopy cofiber of squares to

X——— X

CX—— C2X Yy cy
\x G\
F(2)
F
Z—"=w cY — 3 C?y
‘\\J/X lGQ)
cZ %
H

[2X — hcof(MP)(X,, F,)) —— V

yields

The composite equals T (X, F.) : L2X — V.
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A diagrammatic description for recursive Toda systems

Recall that a recursive Toda system is a sequence of maps
f h k
Xo: X =y 5725w Sy

with corresponding nullhomotopies I?* : F,G,H, ,?(2)’ G®

One can encodes this data in the following commutative diagram:
Xe— %

jm

cX CX X Y %

g
N\)
F
ﬁzor

Z 2275 cof(G) « *

* —>cof(5(2))



How To get the recursive Toda bracket from the diagram?

Applying cofiber of squares to
Xe—x%
\[N
X Cr X Y x
2
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How To get the recursive Toda bracket from the diagram?

Applying cofiber of squares to
Xe—x%
\[N
X Cr X Y x
2

\K\l\

F

F

Z%cof(G) * *

« — cof (G(@)

yields
52X — 5 cof(....) — cof (G?@)

The composite equals 7~'(X*7 E*) SY2X cof(g(z)).
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From cubical system to recursive system(cont.)

Theorem 1:If we have a cubical Toda system (X«, Fx), then we
get a recursive Toda system (X, F.) = R(X, F) where:

T(Xs,F)
 ——

L?X %4

~

~

T(Xe,F)
—_—

y2X cof(G?)



From cubical system to recursive system(cont.)

Theorem 1:If we have a cubical Toda system (X«, Fx), then we
get a recursive Toda system (X, F.) = R(X, F) where:

T(Xs,Fy)
—

L?X %4

~

~

T(Xe,F)
—

y2X cof(G?)

Note that R preserve the equivalence relation between Toda
systems.



From recursive system to cubical system

Xe—x%
\{N
cX CrX Y %
\f\N\
F?2)
F
z 2 cof(G) * *
W l

* —— cof(g(z))



From recursive system to cubical system

Xe— CX

L]

CXC— C2X

Xe—x
\[N
X CEX Y *
m&
F@)
F
4 % cof(G) * *
\w J

* — cof(g(Z))



From recursive system to cubical system

X CX
[ x
f
X C2X Y CcYy
g
F
Xe— 3%
\[N
X CEX Y *
m&
F@)
F
Z % cof(G) * *
\w J

* — cof(g(Z))

N<——



From recursive system to cubical system

X CX
[ x
f
X C2X Y cy
S jcf
F
Xe— 3% 7 M=y

CXe—CEX 4 *
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From recursive system to cubical system

Theorem 2:If we have a recursive Toda system (X,, l-:*) then
there is a cubical Toda system (X],F.) where:

j25 TOLF)
s2x TR Lof(62)

In addition R(X!,F.) ~ (X,, F.), and if we have a cubical Toda
system (X,, F.), then a corresponding cubical Toda system for
R(X., F.) can be (X, Fy).



