Nodes on quintic spectrahedra

Khazhgali Kozhasov (Universität Osnabrück) (based on a j.w.w. Taylor Brysiewicz and Mario Kummer)

Seminar in Real and Complex Geometry, Tel Aviv University

July 15, 2021

Outline

Outline

- Real algebraic geometry

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications
- Symmetroids

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications
- Symmetroids ~ algebraic boundaries of spectrahedra

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications
- Symmetroids \sim algebraic boundaries of spectrahedra
- Singular points

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications
- Symmetroids \sim algebraic boundaries of spectrahedra
- Singular points
- Reality questions

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications
- Symmetroids \sim algebraic boundaries of spectrahedra
- Singular points
- Reality questions, definition of a (combinatorial) type

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications
- Symmetroids \sim algebraic boundaries of spectrahedra
- Singular points
- Reality questions, definition of a (combinatorial) type
- Classification of types of quintic spectrahedra

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications
- Symmetroids \sim algebraic boundaries of spectrahedra
- Singular points
- Reality questions, definition of a (combinatorial) type
- Classification of types of quintic spectrahedra
- Restrictions on types

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications
- Symmetroids \sim algebraic boundaries of spectrahedra
- Singular points
- Reality questions, definition of a (combinatorial) type
- Classification of types of quintic spectrahedra
- Restrictions on types
- Numerical algebraic geometry

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications
- Symmetroids \sim algebraic boundaries of spectrahedra
- Singular points
- Reality questions, definition of a (combinatorial) type
- Classification of types of quintic spectrahedra
- Restrictions on types
- Numerical algebraic geometry
- Generic collisions/repulsions of singularities

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications
- Symmetroids \sim algebraic boundaries of spectrahedra
- Singular points
- Reality questions, definition of a (combinatorial) type
- Classification of types of quintic spectrahedra
- Restrictions on types
- Numerical algebraic geometry
- Generic collisions/repulsions of singularities
- Hill-climbing algorithm

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications
- Symmetroids \sim algebraic boundaries of spectrahedra
- Singular points
- Reality questions, definition of a (combinatorial) type
- Classification of types of quintic spectrahedra
- Restrictions on types
- Numerical algebraic geometry
- Generic collisions/repulsions of singularities
- Hill-climbing algorithm
- Certification

Outline

- Real algebraic geometry
- Effective bounds on topology, geometry, ... of real varieties
- Example: topology of real plane curves
- What are spectrahedra?
- Examples and applications
- Symmetroids \sim algebraic boundaries of spectrahedra
- Singular points
- Reality questions, definition of a (combinatorial) type
- Classification of types of quintic spectrahedra
- Restrictions on types
- Numerical algebraic geometry
- Generic collisions/repulsions of singularities
- Hill-climbing algorithm
- Certification
- Conclusion

Real algebraic geometry

Real algebraic geometry

Study properties of real polynomials $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$,

Real algebraic geometry

Study properties of real polynomials $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, real varieties
$X(\mathbb{R})=\left\{x \in \mathbb{R}^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\}, f_{1}, \ldots, f_{k} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$,

Real algebraic geometry

Study properties of real polynomials $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, real varieties $X(\mathbb{R})=\left\{x \in \mathbb{R}^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\}, f_{1}, \ldots, f_{k} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, and mappings between real varieties.

Real algebraic geometry

Study properties of real polynomials $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, real varieties $X(\mathbb{R})=\left\{x \in \mathbb{R}^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\}, f_{1}, \ldots, f_{k} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, and mappings between real varieties.

Nash-Tognoli theorem, 1976

Real algebraic geometry

Study properties of real polynomials $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, real varieties $X(\mathbb{R})=\left\{x \in \mathbb{R}^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\}, f_{1}, \ldots, f_{k} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, and mappings between real varieties.

Nash-Tognoli theorem, 1976

Any smooth closed manifold is diffeomorphic to a real algebraic variety.

Real algebraic geometry

Study properties of real polynomials $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, real varieties $X(\mathbb{R})=\left\{x \in \mathbb{R}^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\}, f_{1}, \ldots, f_{k} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, and mappings between real varieties.

Nash-Tognoli theorem, 1976

Any smooth closed manifold is diffeomorphic to a real algebraic variety.

Real algebraic geometry

Study properties of real polynomials $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, real varieties $X(\mathbb{R})=\left\{x \in \mathbb{R}^{n}: f_{1}(x)=\cdots=f_{k}(x)=0\right\}, f_{1}, \ldots, f_{k} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, and mappings between real varieties.

Nash-Tognoli theorem, 1976

Any smooth closed manifold is diffeomorphic to a real algebraic variety.

$$
25\left(x_{1}^{4}-x_{1}^{2}+x_{2}^{2}\right)^{2}+225 x_{3}^{2}-1=0
$$

Effective bounds / Classification

Consider a family $\mathcal{F} \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{k}$ of systems $\mathbf{f}=\left(f_{1}, \ldots, f_{k}\right)$.

Problem

Find effective bounds on some topological or geometric quantity of $\{\mathbf{f}=0\} \subset \mathbb{R}^{n}$, for a (general) element $\mathbf{f} \in \mathcal{F}$. Understand all members $\mathbf{f} \in \mathcal{F}$ that are maximal with respect to this bound.

Topology of plane curves

Topology of plane curves

Let $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$ be a homogeneous polynomial of degree d.

Topology of plane curves

Let $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$ be a homogeneous polynomial of degree d. Harnack's curve theorem, 1976

Topology of plane curves

Let $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$ be a homogeneous polynomial of degree d.

Harnack's curve theorem, 1976

The number c of connected components of the (real) plane curve $X_{f}(\mathbb{R})=\left\{\left(x_{1}: x_{2}: x_{3}\right) \in \mathbb{R} P^{2}: f\left(x_{1}, x_{2}, x_{3}\right)=0\right\}$

Topology of plane curves

Let $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$ be a homogeneous polynomial of degree d.

Harnack's curve theorem, 1976

The number c of connected components of the (real) plane curve $X_{f}(\mathbb{R})=\left\{\left(x_{1}: x_{2}: x_{3}\right) \in \mathbb{R} P^{2}: f\left(x_{1}, x_{2}, x_{3}\right)=0\right\}$ satisfies

$$
\frac{1-(-1)^{d}}{2} \leq c \leq \frac{(d-1)(d-2)}{2}+1
$$

Topology of plane curves

Let $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$ be a homogeneous polynomial of degree d.

Harnack's curve theorem, 1976

The number c of connected components of the (real) plane curve $X_{f}(\mathbb{R})=\left\{\left(x_{1}: x_{2}: x_{3}\right) \in \mathbb{R} P^{2}: f\left(x_{1}, x_{2}, x_{3}\right)=0\right\}$ satisfies

$$
\frac{1-(-1)^{d}}{2} \leq c \leq \frac{(d-1)(d-2)}{2}+1
$$

- For any d these bounds are optimal (Harnack).

Topology of plane curves

Let $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$ be a homogeneous polynomial of degree d.

Harnack's curve theorem, 1976

The number c of connected components of the (real) plane curve $X_{f}(\mathbb{R})=\left\{\left(x_{1}: x_{2}: x_{3}\right) \in \mathbb{R} P^{2}: f\left(x_{1}, x_{2}, x_{3}\right)=0\right\}$ satisfies

$$
\frac{1-(-1)^{d}}{2} \leq c \leq \frac{(d-1)(d-2)}{2}+1
$$

- For any d these bounds are optimal (Harnack).
- When $c=\frac{(d-1)(d-2)}{2}+1, X_{f}(\mathbb{R})$ is called an M-curve.

Topology of plane curves

Let $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$ be a homogeneous polynomial of degree d.

Harnack's curve theorem, 1976

The number c of connected components of the (real) plane curve $X_{f}(\mathbb{R})=\left\{\left(x_{1}: x_{2}: x_{3}\right) \in \mathbb{R} P^{2}: f\left(x_{1}, x_{2}, x_{3}\right)=0\right\}$ satisfies

$$
\frac{1-(-1)^{d}}{2} \leq c \leq \frac{(d-1)(d-2)}{2}+1
$$

- For any d these bounds are optimal (Harnack).
- When $c=\frac{(d-1)(d-2)}{2}+1, X_{f}(\mathbb{R})$ is called an M-curve.
- If the complex locus $X_{f}=\{f=0\} \subset \mathbb{C} P^{2}$ is non-singular,

Topology of plane curves

Let $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$ be a homogeneous polynomial of degree d.

Harnack's curve theorem, 1976

The number c of connected components of the (real) plane curve $X_{f}(\mathbb{R})=\left\{\left(x_{1}: x_{2}: x_{3}\right) \in \mathbb{R} P^{2}: f\left(x_{1}, x_{2}, x_{3}\right)=0\right\}$ satisfies

$$
\frac{1-(-1)^{d}}{2} \leq c \leq \frac{(d-1)(d-2)}{2}+1
$$

- For any d these bounds are optimal (Harnack).
- When $c=\frac{(d-1)(d-2)}{2}+1, X_{f}(\mathbb{R})$ is called an M-curve.
- If the complex locus $X_{f}=\{f=0\} \subset \mathbb{C} P^{2}$ is non-singular, it is a (Riemann) surface of genus $\frac{(d-1)(d-2)}{2}$.

Topology of plane curves

Let $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$ be a homogeneous polynomial of degree d.

Harnack's curve theorem, 1976

The number c of connected components of the (real) plane curve $X_{f}(\mathbb{R})=\left\{\left(x_{1}: x_{2}: x_{3}\right) \in \mathbb{R} P^{2}: f\left(x_{1}, x_{2}, x_{3}\right)=0\right\}$ satisfies

$$
\frac{1-(-1)^{d}}{2} \leq c \leq \frac{(d-1)(d-2)}{2}+1
$$

- For any d these bounds are optimal (Harnack).
- When $c=\frac{(d-1)(d-2)}{2}+1, X_{f}(\mathbb{R})$ is called an M-curve.
- If the complex locus $X_{f}=\{f=0\} \subset \mathbb{C} P^{2}$ is non-singular, it is a (Riemann) surface of genus $\frac{(d-1)(d-2)}{2}$.

Hilbert's 16th problem

Hilbert's 16th problem

When non-singular,

Hilbert's 16th problem

When non-singular, the real curve $X_{f}(\mathbb{R})$ is a collection of ovals

Hilbert's 16th problem

When non-singular, the real curve $X_{f}(\mathbb{R})$ is a collection of ovals plus (if d is odd) a pseudo-line positioned in a certain way in $\mathbb{R} \mathrm{P}^{2}$.

Hilbert's 16th problem

When non-singular, the real curve $X_{f}(\mathbb{R})$ is a collection of ovals plus (if d is odd) a pseudo-line positioned in a certain way in $\mathbb{R} \mathrm{P}^{2}$.

Hilbert's 16th problem

Hilbert's 16th problem

When non-singular, the real curve $X_{f}(\mathbb{R})$ is a collection of ovals plus (if d is odd) a pseudo-line positioned in a certain way in $\mathbb{R} \mathrm{P}^{2}$.

Hilbert's 16th problem

For a fixed d classify configurations of connected components of M-curves of degree d.

Hilbert's 16th problem

When non-singular, the real curve $X_{f}(\mathbb{R})$ is a collection of ovals plus (if d is odd) a pseudo-line positioned in a certain way in $\mathbb{R} \mathrm{P}^{2}$.

Hilbert's 16th problem

For a fixed d classify configurations of connected components of M-curves of degree d.

- Solved up to degree $d=7$ (Hilbert, Rohn, Petrovsky, Rokhlin, Gudkov, Nikulin, Kharlamov, Viro).

Hilbert's 16th problem

When non-singular, the real curve $X_{f}(\mathbb{R})$ is a collection of ovals plus (if d is odd) a pseudo-line positioned in a certain way in $\mathbb{R} \mathrm{P}^{2}$.

Hilbert's 16th problem

For a fixed d classify configurations of connected components of M-curves of degree d.

- Solved up to degree $d=7$ (Hilbert, Rohn, Petrovsky, Rokhlin, Gudkov, Nikulin, Kharlamov, Viro).
- For $d=6$ there are 56 classes of curves, 3 of them are M-curves with 11 components each (Gudkov).

Hilbert's 16th problem

When non-singular, the real curve $X_{f}(\mathbb{R})$ is a collection of ovals plus (if d is odd) a pseudo-line positioned in a certain way in $\mathbb{R} \mathrm{P}^{2}$.

Hilbert's 16th problem

For a fixed d classify configurations of connected components of M-curves of degree d.

- Solved up to degree $d=7$ (Hilbert, Rohn, Petrovsky, Rokhlin, Gudkov, Nikulin, Kharlamov, Viro).
- For $d=6$ there are 56 classes of curves, 3 of them are M-curves with 11 components each (Gudkov).
- For $d=4$ there is only one M-curve.

In this talk

Optimal bound on the number of singular points on the boundary of a quintic spectrahedron

$$
S_{A}=\left\{x \in \mathbb{R}^{3}: \mathbb{1}+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3} \succcurlyeq 0\right\}
$$

where A_{1}, A_{2}, A_{3} are general 5×5 real symmetric matrices.

What are spectrahedra?

What are spectrahedra?

$$
\mathbb{S}^{d}=\{d \times d \text { real symmetric matrices }\}
$$

What are spectrahedra?

$$
\mathbb{S}^{d}=\{d \times d \text { real symmetric matrices }\}
$$

$$
\mathbb{S}_{\mathbb{C}}^{d}=\{d \times d \text { complex symmetric matrices }\}
$$

What are spectrahedra?

$$
\mathbb{S}^{d}=\{d \times d \text { real symmetric matrices }\}
$$

$$
\mathbb{S}_{\mathbb{C}}^{d}=\{d \times d \text { complex symmetric matrices }\}
$$

The convex cone of positive semidefinite matrices :

$$
\mathbb{S}_{\succcurlyeq}^{d}=\left\{A \in \mathbb{S}_{\mathbb{R}}^{d}: A \succcurlyeq 0\right\}=\left\{A \in \mathbb{S}_{\mathbb{R}}^{d}: \boldsymbol{v}^{T} A \boldsymbol{v} \geq 0, \boldsymbol{v} \in \mathbb{R}^{d}\right\}
$$

What are spectrahedra?

$$
\mathbb{S}^{d}=\{d \times d \text { real symmetric matrices }\}
$$

$$
\mathbb{S}_{\mathbb{C}}^{d}=\{d \times d \text { complex symmetric matrices }\}
$$

The convex cone of positive semidefinite matrices :

$$
\mathbb{S}_{\succcurlyeq}^{d}=\left\{A \in \mathbb{S}_{\mathbb{R}}^{d}: A \succcurlyeq 0\right\}=\left\{A \in \mathbb{S}_{\mathbb{R}}^{d}: \boldsymbol{v}^{T} A \boldsymbol{v} \geq 0, \boldsymbol{v} \in \mathbb{R}^{d}\right\}
$$

A spectrahedron is the slice of $\mathbb{S} \succcurlyeq$ by an affine-linear subspace

What are spectrahedra?

$$
\mathbb{S}^{d}=\{d \times d \text { real symmetric matrices }\}
$$

$$
\mathbb{S}_{\mathbb{C}}^{d}=\{d \times d \text { complex symmetric matrices }\}
$$

The convex cone of positive semidefinite matrices:

$$
\mathbb{S}_{\succcurlyeq}^{d}=\left\{A \in \mathbb{S}_{\mathbb{R}}^{d}: A \succcurlyeq 0\right\}=\left\{A \in \mathbb{S}_{\mathbb{R}}^{d}: \boldsymbol{v}^{T} A \boldsymbol{v} \geq 0, \boldsymbol{v} \in \mathbb{R}^{d}\right\}
$$

A spectrahedron is the slice of $\mathbb{S} \succcurlyeq$ by an affine-linear subspace

$$
L=\left\{\boldsymbol{A}(\boldsymbol{x})=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}: \boldsymbol{x} \in \mathbb{R}^{n}\right\} \subseteq \mathbb{S}^{d}:
$$

What are spectrahedra?

$$
\mathbb{S}^{d}=\{d \times d \text { real symmetric matrices }\}
$$

$$
\mathbb{S}_{\mathbb{C}}^{d}=\{d \times d \text { complex symmetric matrices }\}
$$

The convex cone of positive semidefinite matrices:

$$
\mathbb{S}_{\succcurlyeq}^{d}=\left\{A \in \mathbb{S}_{\mathbb{R}}^{d}: A \succcurlyeq 0\right\}=\left\{A \in \mathbb{S}_{\mathbb{R}}^{d}: \boldsymbol{v}^{T} A \boldsymbol{v} \geq 0, \boldsymbol{v} \in \mathbb{R}^{d}\right\}
$$

A spectrahedron is the slice of $\mathbb{S} \succcurlyeq$ by an affine-linear subspace

$$
L=\left\{\boldsymbol{A}(\boldsymbol{x})=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}: \boldsymbol{x} \in \mathbb{R}^{n}\right\} \subseteq \mathbb{S}^{d}:
$$

$$
S_{A}=\mathbb{S}_{\succcurlyeq}^{d} \cap L \simeq\left\{x \in \mathbb{R}^{n}: A(x) \succcurlyeq 0\right\} .
$$

What are spectrahedra?

$$
\mathbb{S}^{d}=\{d \times d \text { real symmetric matrices }\}
$$

$$
\mathbb{S}_{\mathbb{C}}^{d}=\{d \times d \text { complex symmetric matrices }\}
$$

The convex cone of positive semidefinite matrices :

$$
\mathbb{S}_{\succcurlyeq}^{d}=\left\{A \in \mathbb{S}_{\mathbb{R}}^{d}: A \succcurlyeq 0\right\}=\left\{A \in \mathbb{S}_{\mathbb{R}}^{d}: \boldsymbol{v}^{T} A \boldsymbol{v} \geq 0, \boldsymbol{v} \in \mathbb{R}^{d}\right\}
$$

A spectrahedron is the slice of $\mathbb{S} \succcurlyeq$ by an affine-linear subspace

$$
L=\left\{\boldsymbol{A}(\boldsymbol{x})=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}: \boldsymbol{x} \in \mathbb{R}^{n}\right\} \subseteq \mathbb{S}^{d}:
$$

$$
S_{A}=\mathbb{S}_{\succcurlyeq}^{d} \cap L \simeq\left\{x \in \mathbb{R}^{n}: A(x) \succcurlyeq 0\right\} .
$$

In particular, spectrahedra are convex sets.

Examples

Examples

A spectrahedron is a "nonlinear" generalization of a polyhedron:

Examples

A spectrahedron is a "nonlinear" generalization of a polyhedron:

$$
\boldsymbol{A}(\boldsymbol{x})=\left(\begin{array}{ccc}
a_{1}^{0} & & 0 \\
& \ddots & \\
0 & & a_{d}^{0}
\end{array}\right)+x_{1}\left(\begin{array}{ccc}
a_{1}^{1} & & 0 \\
& \ddots & \\
0 & & a_{d}^{1}
\end{array}\right)+x_{n}\left(\begin{array}{ccc}
a_{1}^{n} & & 0 \\
& \ddots & \\
0 & & a_{d}^{n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1}(\boldsymbol{x}) & & 0 \\
& \ddots & \\
0 & & a_{d}(\boldsymbol{x})
\end{array}\right)
$$

Examples

A spectrahedron is a "nonlinear" generalization of a polyhedron:

$$
\boldsymbol{A}(\boldsymbol{x})=\left(\begin{array}{ccc}
a_{1}^{0} & & 0 \\
& \ddots & \\
0 & & a_{d}^{0}
\end{array}\right)+x_{1}\left(\begin{array}{ccc}
a_{1}^{1} & & 0 \\
& \ddots & \\
0 & & a_{d}^{1}
\end{array}\right)+x_{n}\left(\begin{array}{ccc}
a_{1}^{n} & & 0 \\
& \ddots & \\
0 & & a_{d}^{n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1}(x) & & 0 \\
& \ddots & \\
0 & & a_{d}(x)
\end{array}\right),
$$

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n}: a_{1}(\boldsymbol{x}), \ldots, a_{d}(\boldsymbol{x}) \geq 0\right\}
$$

Examples

A spectrahedron is a "nonlinear" generalization of a polyhedron:

$$
\boldsymbol{A}(\boldsymbol{x})=\left(\begin{array}{ccc}
a_{1}^{0} & & 0 \\
& \ddots & \\
0 & & a_{d}^{0}
\end{array}\right)+x_{1}\left(\begin{array}{ccc}
a_{1}^{1} & & 0 \\
& \ddots & \\
0 & & a_{d}^{1}
\end{array}\right)+x_{n}\left(\begin{array}{ccc}
a_{1}^{n} & & 0 \\
& \ddots & \\
0 & & a_{d}^{n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1}(x) & & 0 \\
& \ddots & \\
0 & & a_{d}(x)
\end{array}\right),
$$

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n}: a_{1}(\boldsymbol{x}), \ldots, a_{d}(\boldsymbol{x}) \geq 0\right\}
$$

$$
\boldsymbol{A}(\boldsymbol{x})=\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & 1 & x_{3} \\
x_{2} & x_{3} & 1
\end{array}\right)
$$

Examples

A spectrahedron is a "nonlinear" generalization of a polyhedron:

$$
\boldsymbol{A}(\boldsymbol{x})=\left(\begin{array}{ccc}
a_{1}^{0} & & 0 \\
& \ddots & \\
0 & & a_{d}^{0}
\end{array}\right)+x_{1}\left(\begin{array}{ccc}
a_{1}^{1} & & 0 \\
& \ddots & \\
0 & & a_{d}^{1}
\end{array}\right)+x_{n}\left(\begin{array}{ccc}
a_{1}^{n} & & 0 \\
& \ddots & \\
0 & & a_{d}^{n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1}(x) & & 0 \\
& \ddots & \\
0 & & a_{d}(x)
\end{array}\right),
$$

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n}: a_{1}(\boldsymbol{x}), \ldots, a_{d}(\boldsymbol{x}) \geq 0\right\}
$$

$$
\boldsymbol{A}(\boldsymbol{x})=\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & 1 & x_{3} \\
x_{2} & x_{3} & 1
\end{array}\right)
$$

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{3}: 1-x_{1}^{2}, 1-x_{2}^{2}, 1-x_{3}^{2}, 1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+2 x_{1} x_{2} x_{3} \geq 0\right\}
$$

Spectrahedra, SOS and optimization

Spectrahedra, SOS and optimization

- Sum of squares representations of a real polynomial

Spectrahedra, SOS and optimization

- Sum of squares representations of a real polynomial

$$
1+2 t+3 t^{2}+5 t^{4}=\left(\begin{array}{lll}
1 & t & t^{2}
\end{array}\right) A\left(\begin{array}{c}
1 \\
t \\
t^{2}
\end{array}\right), A=\left(\begin{array}{lll}
1 & 1 & a \\
1 & b & 0 \\
a & 0 & 5
\end{array}\right) \succcurlyeq 0
$$

Spectrahedra, SOS and optimization

- Sum of squares representations of a real polynomial

$$
1+2 t+3 t^{2}+5 t^{4}=\left(\begin{array}{lll}
1 & t & t^{2}
\end{array}\right) A\left(\begin{array}{c}
1 \\
t \\
t^{2}
\end{array}\right), A=\left(\begin{array}{lll}
1 & 1 & a \\
1 & b & 0 \\
a & 0 & 5
\end{array}\right) \succcurlyeq 0
$$

- Semidefine programming

Spectrahedra, SOS and optimization

- Sum of squares representations of a real polynomial

$$
1+2 t+3 t^{2}+5 t^{4}=\left(\begin{array}{lll}
1 & t & t^{2}
\end{array}\right) A\left(\begin{array}{c}
1 \\
t \\
t^{2}
\end{array}\right), A=\left(\begin{array}{lll}
1 & 1 & a \\
1 & b & 0 \\
a & 0 & 5
\end{array}\right) \succcurlyeq 0
$$

- Semidefine programming

$$
\min _{\boldsymbol{x} \in S_{A}}\langle\boldsymbol{\ell}, \boldsymbol{x}\rangle=\min \left\{\langle\boldsymbol{\ell}, \boldsymbol{x}\rangle: \boldsymbol{x} \in \mathbb{R}^{n}, A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succcurlyeq 0\right\}
$$

Spectrahedra are feasible regions of semidefinite programs (polyhedra)

Spectrahedra, SOS and optimization

- Sum of squares representations of a real polynomial

$$
1+2 t+3 t^{2}+5 t^{4}=\left(\begin{array}{lll}
1 & t & t^{2}
\end{array}\right) A\left(\begin{array}{c}
1 \\
t \\
t^{2}
\end{array}\right), A=\left(\begin{array}{lll}
1 & 1 & a \\
1 & b & 0 \\
a & 0 & 5
\end{array}\right) \succcurlyeq 0
$$

- Semidefine programming

$$
\min _{\boldsymbol{x} \in S_{A}}\langle\ell, \boldsymbol{x}\rangle=\min \left\{\langle\ell, \boldsymbol{x}\rangle: \boldsymbol{x} \in \mathbb{R}^{n}, A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succcurlyeq 0\right\}
$$

Spectrahedra are feasible regions of semidefinite programs (polyhedra)

Particular case:

Spectrahedra, SOS and optimization

- Sum of squares representations of a real polynomial

$$
1+2 t+3 t^{2}+5 t^{4}=\left(\begin{array}{lll}
1 & t & t^{2}
\end{array}\right) A\left(\begin{array}{c}
1 \\
t \\
t^{2}
\end{array}\right), A=\left(\begin{array}{lll}
1 & 1 & a \\
1 & b & 0 \\
a & 0 & 5
\end{array}\right) \succcurlyeq 0
$$

- Semidefine programming

$$
\min _{\boldsymbol{x} \in S_{A}}\langle\ell, \boldsymbol{x}\rangle=\min \left\{\langle\boldsymbol{\ell}, \boldsymbol{x}\rangle: \boldsymbol{x} \in \mathbb{R}^{n}, A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succcurlyeq 0\right\},
$$

Spectrahedra are feasible regions of semidefinite programs (polyhedra)

Particular case: SOS approach to polynomial optimization

Spectrahedra, SOS and optimization

- Sum of squares representations of a real polynomial

$$
1+2 t+3 t^{2}+5 t^{4}=\left(\begin{array}{lll}
1 & t & t^{2}
\end{array}\right) A\left(\begin{array}{c}
1 \\
t \\
t^{2}
\end{array}\right), A=\left(\begin{array}{lll}
1 & 1 & a \\
1 & b & 0 \\
a & 0 & 5
\end{array}\right) \succcurlyeq 0
$$

- Semidefine programming

$$
\min _{\boldsymbol{x} \in S_{A}}\langle\ell, \boldsymbol{x}\rangle=\min \left\{\langle\ell, \boldsymbol{x}\rangle: \boldsymbol{x} \in \mathbb{R}^{n}, A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succcurlyeq 0\right\},
$$

Spectrahedra are feasible regions of semidefinite programs (polyhedra)

Particular case: SOS approach to polynomial optimization

$$
\min _{\boldsymbol{t} \in \mathbb{R}^{m}} f(\boldsymbol{t}) \geq \max \left\{\lambda \in \mathbb{R}: f(\boldsymbol{t})-\lambda=\left(\begin{array}{lll}
1 & t_{1} & \ldots
\end{array}\right) A\left(\begin{array}{c}
1 \\
t_{1} \\
\vdots
\end{array}\right), A \succcurlyeq 0\right\}
$$

Projective setting

Projective setting

Linear space $L \subseteq \mathbb{S}^{d}$:

Projective setting

Linear space $L \subseteq \mathbb{S}^{d}$:

$$
L=\left\{\boldsymbol{A}(\boldsymbol{x})=A_{0} x_{0}+A_{1} x_{1}+\cdots+x_{n} A_{n}: \boldsymbol{x} \in \mathbb{R}^{n+1}\right\}
$$

Projective setting

Linear space $L \subseteq \mathbb{S}^{d}$:

$$
L=\left\{\boldsymbol{A}(\boldsymbol{x})=A_{0} x_{0}+A_{1} x_{1}+\cdots+x_{n} A_{n}: \boldsymbol{x} \in \mathbb{R}^{n+1}\right\}
$$

Spectrahedral cone:

Projective setting

Linear space $L \subseteq \mathbb{S}^{d}$:

$$
L=\left\{\boldsymbol{A}(\boldsymbol{x})=A_{0} x_{0}+A_{1} x_{1}+\cdots+x_{n} A_{n}: \boldsymbol{x} \in \mathbb{R}^{n+1}\right\}
$$

Spectrahedral cone:

$$
L \cap \mathbb{S}_{\succcurlyeq}^{d} \simeq\left\{x \in \mathbb{R}^{n+1}: \boldsymbol{A}(x) \succcurlyeq 0\right\}
$$

Projective setting

Linear space $L \subseteq \mathbb{S}^{d}$:

$$
L=\left\{\boldsymbol{A}(\boldsymbol{x})=A_{0} x_{0}+A_{1} x_{1}+\cdots+x_{n} A_{n}: \boldsymbol{x} \in \mathbb{R}^{n+1}\right\}
$$

Spectrahedral cone:

$$
L \cap \mathbb{S}_{\succcurlyeq}^{d} \simeq\left\{\boldsymbol{x} \in \mathbb{R}^{n+1}: \boldsymbol{A}(\boldsymbol{x}) \succcurlyeq 0\right\}
$$

Assumption

Projective setting

Linear space $L \subseteq \mathbb{S}^{d}$:

$$
L=\left\{\boldsymbol{A}(\boldsymbol{x})=A_{0} x_{0}+A_{1} x_{1}+\cdots+x_{n} A_{n}: \boldsymbol{x} \in \mathbb{R}^{n+1}\right\}
$$

Spectrahedral cone:

$$
L \cap \mathbb{S}_{\succcurlyeq}^{d} \simeq\left\{x \in \mathbb{R}^{n+1}: \boldsymbol{A}(x) \succcurlyeq 0\right\}
$$

Assumption

$\boldsymbol{A}(\boldsymbol{x}) \succ 0$ for some $\boldsymbol{x} \in \mathbb{R}^{n+1}$
($L \cap \mathbb{S}_{\succcurlyeq}^{d} \subset \mathbb{R}^{n+1}$ is full-dimensional)

Projective setting

Linear space $L \subseteq \mathbb{S}^{d}$:

$$
L=\left\{\boldsymbol{A}(\boldsymbol{x})=A_{0} x_{0}+A_{1} x_{1}+\cdots+x_{n} A_{n}: \boldsymbol{x} \in \mathbb{R}^{n+1}\right\}
$$

Spectrahedral cone:

$$
L \cap \mathbb{S}_{\succcurlyeq}^{d} \simeq\left\{\boldsymbol{x} \in \mathbb{R}^{n+1}: \boldsymbol{A}(\boldsymbol{x}) \succcurlyeq 0\right\}
$$

Assumption

$$
\underset{\left(L \cap S \subseteq \subset \subset \mathbb{R}^{n+1}\right. \text { is full-dimensional) }}{\boldsymbol{A}(\boldsymbol{x}) \succ} \Rightarrow \underset{\text { (orthogonal congruence applied to } L \text {) }}{\text { can take } A_{0}=\mathbb{1}} .
$$

Projective setting

Linear space $L \subseteq \mathbb{S}^{d}$:

$$
L=\left\{\boldsymbol{A}(\boldsymbol{x})=A_{0} x_{0}+A_{1} x_{1}+\cdots+x_{n} A_{n}: \boldsymbol{x} \in \mathbb{R}^{n+1}\right\}
$$

Spectrahedral cone:

$$
L \cap \mathbb{S}_{\succcurlyeq}^{d} \simeq\left\{\boldsymbol{x} \in \mathbb{R}^{n+1}: \boldsymbol{A}(\boldsymbol{x}) \succcurlyeq 0\right\}
$$

Assumption

$$
\underset{\left(L \cap \mathbb{S}_{\succcurlyeq}^{d} \subset \mathbb{R}^{n+1}\right. \text { is full-dimensional) }}{\boldsymbol{A}(\boldsymbol{x}) \succ 0 \text { for some } \boldsymbol{x} \in \mathbb{R}^{n+1} \Rightarrow} \begin{gathered}
\text { can take } A_{0}=\mathbb{1} \\
\text { (orthogonal congruence applied to } L \text {) }
\end{gathered}
$$

Projective spectrahedron:

Projective setting

Linear space $L \subseteq \mathbb{S}^{d}$:

$$
L=\left\{\boldsymbol{A}(\boldsymbol{x})=A_{0} x_{0}+A_{1} x_{1}+\cdots+x_{n} A_{n}: \boldsymbol{x} \in \mathbb{R}^{n+1}\right\}
$$

Spectrahedral cone:

$$
L \cap \mathbb{S}_{\succcurlyeq}^{d} \simeq\left\{\boldsymbol{x} \in \mathbb{R}^{n+1}: \boldsymbol{A}(\boldsymbol{x}) \succcurlyeq 0\right\}
$$

Assumption

$$
\begin{aligned}
& \boldsymbol{A}(\boldsymbol{x}) \succ 0 \text { for some } \boldsymbol{x} \in \mathbb{R}^{n+1} \Rightarrow \quad \text { can take } A_{0}=\mathbb{1} \\
& \text { (} L \cap \mathbb{S}_{\succcurlyeq}^{d} \subset \mathbb{R}^{n+1} \text { is full-dimensional) } \\
& \text { (orthogonal congruence applied to } L \text {) }
\end{aligned}
$$

Projective spectrahedron:

$$
S_{A}=\mathbb{P}\left(L \cap \mathbb{S}_{\succcurlyeq}^{d}\right) \simeq\left\{[\boldsymbol{x}] \in \mathbb{R} \mathrm{P}^{n}: \boldsymbol{A}(\boldsymbol{x}) \succcurlyeq 0 \text { or }-\boldsymbol{A}(\boldsymbol{x}) \succcurlyeq 0\right\}
$$

Algebraic boundary of spectrahedra

Algebraic boundary of spectrahedra

The Euclidean boundary of $S_{A} \subset \mathbb{R P}^{n}$:

Algebraic boundary of spectrahedra

The Euclidean boundary of $S_{A} \subset \mathbb{R} P^{n}$:

$$
\partial S_{A}=\left\{[\boldsymbol{x}] \in S_{A}: \operatorname{det}(\boldsymbol{A}(\boldsymbol{x}))=0\right\}
$$

Algebraic boundary of spectrahedra

The Euclidean boundary of $S_{A} \subset \mathbb{R} P^{n}$:

$$
\partial S_{A}=\left\{[\boldsymbol{x}] \in S_{A}: \operatorname{det}(\boldsymbol{A}(\boldsymbol{x}))=0\right\}
$$

For generic $A_{1}, \ldots, A_{n} \in \mathbb{S}^{d}$

Algebraic boundary of spectrahedra

The Euclidean boundary of $S_{A} \subset \mathbb{R} P^{n}$:

$$
\partial S_{A}=\left\{[\boldsymbol{x}] \in S_{A}: \operatorname{det}(\boldsymbol{A}(\boldsymbol{x}))=0\right\}
$$

For generic $A_{1}, \ldots, A_{n} \in \mathbb{S}^{d}$ the Zariski closure of $\partial S_{A} \subset \mathbb{C} P^{n}$

Algebraic boundary of spectrahedra

The Euclidean boundary of $S_{A} \subset \mathbb{R} P^{n}$:

$$
\partial S_{A}=\left\{[\boldsymbol{x}] \in S_{A}: \operatorname{det}(\boldsymbol{A}(\boldsymbol{x}))=0\right\}
$$

For generic $A_{1}, \ldots, A_{n} \in \mathbb{S}^{d}$ the Zariski closure of $\partial S_{A} \subset \mathbb{C P}^{n}$ is a degree d hypersurface,

Algebraic boundary of spectrahedra

The Euclidean boundary of $S_{A} \subset \mathbb{R} P^{n}$:

$$
\partial S_{A}=\left\{[\boldsymbol{x}] \in S_{A}: \operatorname{det}(\boldsymbol{A}(\boldsymbol{x}))=0\right\}
$$

For generic $A_{1}, \ldots, A_{n} \in \mathbb{S}^{d}$ the Zariski closure of $\partial S_{A} \subset \mathbb{C P}^{n}$ is a degree d hypersurface, called (spectrahedral) symmetroid:

Algebraic boundary of spectrahedra

The Euclidean boundary of $S_{A} \subset \mathbb{R} P^{n}$:

$$
\partial S_{A}=\left\{[\boldsymbol{x}] \in S_{A}: \operatorname{det}(\boldsymbol{A}(\boldsymbol{x}))=0\right\}
$$

For generic $A_{1}, \ldots, A_{n} \in \mathbb{S}^{d}$ the Zariski closure of $\partial S_{A} \subset \mathbb{C P}^{n}$ is a degree d hypersurface, called (spectrahedral) symmetroid:

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

Algebraic boundary of spectrahedra

The Euclidean boundary of $S_{A} \subset \mathbb{R} P^{n}$:

$$
\partial S_{A}=\left\{[\boldsymbol{x}] \in S_{A}: \operatorname{det}(\boldsymbol{A}(\boldsymbol{x}))=0\right\}
$$

For generic $A_{1}, \ldots, A_{n} \in \mathbb{S}^{d}$ the Zariski closure of $\partial S_{A} \subset \mathbb{C P}^{n}$ is a degree d hypersurface, called (spectrahedral) symmetroid:

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

$S_{A} \subset \mathbb{R P}^{n}$ is a polyhedron (A_{1}, \ldots, A_{n} are diagonal)

Algebraic boundary of spectrahedra

The Euclidean boundary of $S_{A} \subset \mathbb{R} P^{n}$:

$$
\partial S_{A}=\left\{[\boldsymbol{x}] \in S_{A}: \operatorname{det}(\boldsymbol{A}(\boldsymbol{x}))=0\right\}
$$

For generic $A_{1}, \ldots, A_{n} \in \mathbb{S}^{d}$ the Zariski closure of $\partial S_{A} \subset \mathbb{C P}^{n}$ is a degree d hypersurface, called (spectrahedral) symmetroid:

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

$S_{A} \subset \mathbb{R P}^{n}$ is a polyhedron $\Rightarrow X_{A} \subset \mathbb{C} P^{n}$ is a set of hyperplanes. (A_{1}, \ldots, A_{n} are diagonal)

Singular points

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 .

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 . For $n \geq 3$ any symmetroid

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 . For $n \geq 3$ any symmetroid

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 . For $n \geq 3$ any symmetroid

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

contains points of corank ≥ 2

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 . For $n \geq 3$ any symmetroid

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

contains points of corank ≥ 2 and hence is singular.

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 . For $n \geq 3$ any symmetroid

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

contains points of corank ≥ 2 and hence is singular.

$$
\mathrm{n}=3 \text { : }
$$

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 .
For $n \geq 3$ any symmetroid

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

contains points of corank ≥ 2 and hence is singular. $\mathrm{n}=3$: surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$ has

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 .
For $n \geq 3$ any symmetroid

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

contains points of corank ≥ 2 and hence is singular. $\mathrm{n}=3$: surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$ has

$$
\binom{d+1}{3}=\# \operatorname{Sing}(X)=\operatorname{deg}(\Sigma)
$$

singular points,

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 .
For $n \geq 3$ any symmetroid

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

contains points of corank ≥ 2 and hence is singular. $\mathrm{n}=3$: surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$ has

$$
\binom{d+1}{3}=\# \operatorname{Sing}(X)=\operatorname{deg}(\Sigma)
$$

singular points, which are all nodal (of multiplicity 2).

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 .
For $n \geq 3$ any symmetroid

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

contains points of corank ≥ 2 and hence is singular. $\mathrm{n}=3$: surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$ has

$$
\binom{d+1}{3}=\# \operatorname{Sing}(X)=\operatorname{deg}(\Sigma)
$$

singular points, which are all nodal (of multiplicity 2).

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 .
For $n \geq 3$ any symmetroid

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

contains points of corank ≥ 2 and hence is singular. $\mathrm{n}=3$: surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$ has

$$
\binom{d+1}{3}=\# \operatorname{Sing}(X)=\operatorname{deg}(\Sigma)
$$

singular points, which are all nodal (of multiplicity 2).

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 .
For $n \geq 3$ any symmetroid

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

contains points of corank ≥ 2 and hence is singular. $\mathrm{n}=3$: surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$ has

$$
\binom{d+1}{3}=\# \operatorname{Sing}(X)=\operatorname{deg}(\Sigma)
$$

$$
\binom{3+1}{3}=4
$$

singular points, which are all nodal (of multiplicity 2).

Combinatorial type $(\rho, \sigma), \sigma \leq \rho$

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 .
For $n \geq 3$ any symmetroid

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

contains points of corank ≥ 2 and hence is singular. $\mathrm{n}=3$: surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$ has

$$
\binom{d+1}{3}=\# \operatorname{Sing}(X)=\operatorname{deg}(\Sigma)
$$

$$
\binom{3+1}{3}=4
$$

singular points, which are all nodal (of multiplicity 2).

Combinatorial type $(\rho, \sigma), \sigma \leq \rho$

$\rho=\#\left(\operatorname{Sing}(X) \cap \mathbb{R} P^{3}\right)$ is the number of real singularities of X.

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 .
For $n \geq 3$ any symmetroid

$$
X_{A}=\left\{[\boldsymbol{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)=0\right\}
$$

contains points of corank ≥ 2 and hence is singular. $\mathrm{n}=3$: surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$ has

$$
\binom{d+1}{3}=\# \operatorname{Sing}(X)=\operatorname{deg}(\Sigma)
$$

$$
\binom{3+1}{3}=4
$$

singular points, which are all nodal (of multiplicity 2).

Combinatorial type $(\rho, \sigma), \sigma \leq \rho$

$\rho=\#\left(\operatorname{Sing}(X) \cap \mathbb{R} P^{3}\right)$ is the number of real singularities of X. $\sigma=\#(\operatorname{Sing}(X) \cap \partial S)$ is the number of singularities on $\partial S \subset X$.
$\mathrm{n}=3$
Questions about real geometry
$\mathrm{n}=3$

Questions about real geometry

Does there exist $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$

Questions about real geometry

Does there exist $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$

- with $\binom{d+1}{3}$ real singular points?

Questions about real geometry

Does there exist $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$

- with $\binom{d+1}{3}$ real singular points?
- with $\binom{d+1}{3}$ real singular points, all lying on ∂S_{A} ?

Questions about real geometry

Does there exist $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$

- with $\binom{d+1}{3}$ real singular points?
- with $\binom{d+1}{3}$ real singular points, all lying on ∂S_{A} ?
- with a given combinatorial type (ρ, σ) ?

Questions about real geometry

Does there exist $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$

- with $\binom{d+1}{3}$ real singular points?
- with $\binom{d+1}{3}$ real singular points, all lying on ∂S_{A} ?
- with a given combinatorial type (ρ, σ) ?
$d=3$:

Questions about real geometry

Does there exist $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$

- with $\binom{d+1}{3}$ real singular points?
- with $\binom{d+1}{3}$ real singular points, all lying on ∂S_{A} ?
- with a given combinatorial type (ρ, σ) ?
$\mathrm{d}=3$: can have either $(\rho, \sigma)=(4,4)$

Questions about real geometry

Does there exist $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$

- with $\binom{d+1}{3}$ real singular points?
- with $\binom{d+1}{3}$ real singular points, all lying on ∂S_{A} ?
- with a given combinatorial type (ρ, σ) ?
$\mathrm{d}=3$: can have either $(\rho, \sigma)=(4,4)$ or $(\rho, \sigma)=(2,2)$.

Questions about real geometry

Does there exist $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$

- with $\binom{d+1}{3}$ real singular points?
- with $\binom{d+1}{3}$ real singular points, all lying on ∂S_{A} ?
- with a given combinatorial type (ρ, σ) ?
$\mathrm{d}=3$: can have either $(\rho, \sigma)=(4,4)$ or $(\rho, \sigma)=(2,2)$.

Degtyarev and Itenberg, 2011

Questions about real geometry

Does there exist $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$

- with $\binom{d+1}{3}$ real singular points?
- with $\binom{d+1}{3}$ real singular points, all lying on ∂S_{A} ?
- with a given combinatorial type (ρ, σ) ?
$\mathrm{d}=3$: can have either $(\rho, \sigma)=(4,4)$ or $(\rho, \sigma)=(2,2)$.

Degtyarev and Itenberg, 2011

(ρ, σ) is a combinatorial type of a generic quartic $\mathrm{d}=4$ spectrahedron

Questions about real geometry

Does there exist $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$

- with $\binom{d+1}{3}$ real singular points?
- with $\binom{d+1}{3}$ real singular points, all lying on ∂S_{A} ?
- with a given combinatorial type (ρ, σ) ?
$\mathrm{d}=3$: can have either $(\rho, \sigma)=(4,4)$ or $(\rho, \sigma)=(2,2)$.

Degtyarev and Itenberg, 2011

(ρ, σ) is a combinatorial type of a generic quartic $\mathrm{d}=4$ spectrahedron iff $0 \leq \sigma \leq \rho \leq 10$, both are even and $2 \leq \rho$.

Questions about real geometry

Does there exist $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$

- with $\binom{d+1}{3}$ real singular points?
- with $\binom{d+1}{3}$ real singular points, all lying on ∂S_{A} ?
- with a given combinatorial type (ρ, σ) ?
$\mathrm{d}=3$: can have either $(\rho, \sigma)=(4,4)$ or $(\rho, \sigma)=(2,2)$.

Degtyarev and Itenberg, 2011

(ρ, σ) is a combinatorial type of a generic quartic $\mathrm{d}=4$ spectrahedron iff $0 \leq \sigma \leq \rho \leq 10$, both are even and $2 \leq \rho$.

In 2015 Ottem, Ranestad, Sturmfels and Vinzant gave an alternative proof.

Questions about real geometry

Does there exist $X_{A} \subset \mathbb{C} P^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$

- with $\binom{d+1}{3}$ real singular points?
- with $\binom{d+1}{3}$ real singular points, all lying on ∂S_{A} ?
- with a given combinatorial type (ρ, σ) ?
$\mathrm{d}=3$: can have either $(\rho, \sigma)=(4,4)$ or $(\rho, \sigma)=(2,2)$.

Degtyarev and Itenberg, 2011

(ρ, σ) is a combinatorial type of a generic quartic $\mathrm{d}=4$ spectrahedron iff $0 \leq \sigma \leq \rho \leq 10$, both are even and $2 \leq \rho$.

In 2015 Ottem, Ranestad, Sturmfels and Vinzant gave an alternative proof.
$d=5:$ Does a similar classification hold for quintic spectrahedra?

Main result

Main result

Brysiewicz, K. and Kummer, 2020

(ρ, σ) is a combinatorial type of a generic quintic $\mathrm{d}=5$ spectrahedron iff $0 \leq \sigma \leq \rho \leq 20$, both are even and $2 \leq \rho$.

Main result

Brysiewicz, K. and Kummer, 2020

(ρ, σ) is a combinatorial type of a generic quintic $d=5$ spectrahedron iff $0 \leq \sigma \leq \rho \leq 20$, both are even and $2 \leq \rho$.

Proof strategy:

Main result

Brysiewicz, K. and Kummer, 2020

(ρ, σ) is a combinatorial type of a generic quintic $d=5$ spectrahedron iff $0 \leq \sigma \leq \rho \leq 20$, both are even and $2 \leq \rho$.

Proof strategy:

- Understand restrictions on (ρ, σ)

Main result

Brysiewicz, K. and Kummer, 2020

(ρ, σ) is a combinatorial type of a generic quintic $d=5$ spectrahedron iff $0 \leq \sigma \leq \rho \leq 20$, both are even and $2 \leq \rho$.

Proof strategy:

- Understand restrictions on $(\rho, \sigma) \quad 65$ possible types
- Find explicit representatives for each (ρ, σ) numerically

Main result

Brysiewicz, K. and Kummer, 2020

(ρ, σ) is a combinatorial type of a generic quintic $d=5$ spectrahedron iff $0 \leq \sigma \leq \rho \leq 20$, both are even and $2 \leq \rho$.

Proof strategy:

- Understand restrictions on $(\rho, \sigma) \quad 65$ possible types
- Find explicit representatives for each (ρ, σ) numerically
- Certify the numerical answers

Main result

Brysiewicz, K. and Kummer, 2020

(ρ, σ) is a combinatorial type of a generic quintic $d=5$ spectrahedron iff $0 \leq \sigma \leq \rho \leq 20$, both are even and $2 \leq \rho$.

Proof strategy:

- Understand restrictions on $(\rho, \sigma) \quad 65$ possible types
- Find explicit representatives for each (ρ, σ) numerically
- Certify the numerical answers

$$
(\rho, \sigma)=(20,20)
$$

$$
(\rho, \sigma)=(20,0)
$$

Restrictions on combinatorial types

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$,

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$, then

- $0 \leq \sigma \leq \rho \leq\binom{ d+1}{3}$,

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$, then

- $0 \leq \sigma \leq \rho \leq\binom{ d+1}{3}$,
- ρ is of the same parity as $\binom{d+1}{3}=\# \operatorname{Sing}\left(X_{A}\right)$,

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$, then

- $0 \leq \sigma \leq \rho \leq\binom{ d+1}{3}$,
- ρ is of the same parity as $\binom{d+1}{3}=\# \operatorname{Sing}\left(X_{A}\right)$,
(non-real nodes come in complex conjugate pairs since X_{A} is real and generic),

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$, then

- $0 \leq \sigma \leq \rho \leq\binom{ d+1}{3}$,
- ρ is of the same parity as $\binom{d+1}{3}=\# \operatorname{Sing}\left(X_{A}\right)$,
(non-real nodes come in complex conjugate pairs since X_{A} is real and generic),
- σ is even,

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$, then

- $0 \leq \sigma \leq \rho \leq\binom{ d+1}{3}$,
- ρ is of the same parity as $\binom{d+1}{3}=\# \operatorname{Sing}\left(X_{A}\right)$,
(non-real nodes come in complex conjugate pairs since X_{A} is real and generic),
- σ is even,
(there exist X_{A} with $\sigma=0$ and (generically) nodes can come to S_{A} (or leave it) only in pairs)

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$, then

- $0 \leq \sigma \leq \rho \leq\binom{ d+1}{3}$,
- ρ is of the same parity as $\binom{d+1}{3}=\# \operatorname{Sing}\left(X_{A}\right)$,
(non-real nodes come in complex conjugate pairs since X_{A} is real and generic),
- σ is even,
(there exist X_{A} with $\sigma=0$ and (generically) nodes can come to S_{A} (or leave it) only in pairs)
- $\rho>0\left(\right.$ for all $\left.X_{A}\right)$ if and only if $d \neq-1,0,1 \bmod 8$.

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$, then

- $0 \leq \sigma \leq \rho \leq\binom{ d+1}{3}$,
- ρ is of the same parity as $\binom{d+1}{3}=\# \operatorname{Sing}\left(X_{A}\right)$,
(non-real nodes come in complex conjugate pairs since X_{A} is real and generic),
- σ is even,
(there exist X_{A} with $\sigma=0$ and (generically) nodes can come to S_{A} (or leave it) only in pairs)
- $\rho>0\left(\right.$ for all $\left.X_{A}\right)$ if and only if $d \neq-1,0,1 \bmod 8$.
(topological argument a lá Radon-Hurwitz)

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$, then

- $0 \leq \sigma \leq \rho \leq\binom{ d+1}{3}$,
- ρ is of the same parity as $\binom{d+1}{3}=\# \operatorname{Sing}\left(X_{A}\right)$,
(non-real nodes come in complex conjugate pairs since X_{A} is real and generic),
- σ is even,
(there exist X_{A} with $\sigma=0$ and (generically) nodes can come to S_{A} (or leave it) only in pairs)
- $\rho>0\left(\right.$ for all $\left.X_{A}\right)$ if and only if $d \neq-1,0,1 \bmod 8$.
(topological argument a lá Radon-Hurwitz)

Corollary $\mathrm{d}=5$

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$, then

- $0 \leq \sigma \leq \rho \leq\binom{ d+1}{3}$,
- ρ is of the same parity as $\binom{d+1}{3}=\# \operatorname{Sing}\left(X_{A}\right)$,
(non-real nodes come in complex conjugate pairs since X_{A} is real and generic),
- σ is even,
(there exist X_{A} with $\sigma=0$ and (generically) nodes can come to S_{A} (or leave it) only in pairs)
- $\rho>0\left(\right.$ for all $\left.X_{A}\right)$ if and only if $d \neq-1,0,1 \bmod 8$.
(topological argument a lá Radon-Hurwitz)

Corollary $\mathrm{d}=5$

If (σ, ρ) is a combinatorial type of a quintic spectrahedron,

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$, then

- $0 \leq \sigma \leq \rho \leq\binom{ d+1}{3}$,
- ρ is of the same parity as $\binom{d+1}{3}=\# \operatorname{Sing}\left(X_{A}\right)$,
(non-real nodes come in complex conjugate pairs since X_{A} is real and generic),
- σ is even,
(there exist X_{A} with $\sigma=0$ and (generically) nodes can come to S_{A} (or leave it) only in pairs)
- $\rho>0\left(\right.$ for all $\left.X_{A}\right)$ if and only if $d \neq-1,0,1 \bmod 8$.
(topological argument a lá Radon-Hurwitz)

Corollary $\mathrm{d}=5$

If (σ, ρ) is a combinatorial type of a quintic spectrahedron, then $0 \leq \sigma \leq \rho \leq 20$,

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$, then

- $0 \leq \sigma \leq \rho \leq\binom{ d+1}{3}$,
- ρ is of the same parity as $\binom{d+1}{3}=\# \operatorname{Sing}\left(X_{A}\right)$,
(non-real nodes come in complex conjugate pairs since X_{A} is real and generic),
- σ is even,
(there exist X_{A} with $\sigma=0$ and (generically) nodes can come to S_{A} (or leave it) only in pairs)
- $\rho>0\left(\right.$ for all $\left.X_{A}\right)$ if and only if $d \neq-1,0,1 \bmod 8$.
(topological argument a lá Radon-Hurwitz)

Corollary $\mathrm{d}=5$

If (σ, ρ) is a combinatorial type of a quintic spectrahedron, then $0 \leq \sigma \leq \rho \leq 20$, both σ and ρ are even

Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface $X_{A} \subset \mathbb{C} P^{3}$ defined by generic matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$, then

- $0 \leq \sigma \leq \rho \leq\binom{ d+1}{3}$,
- ρ is of the same parity as $\binom{d+1}{3}=\# \operatorname{Sing}\left(X_{A}\right)$,
(non-real nodes come in complex conjugate pairs since X_{A} is real and generic),
- σ is even,
(there exist X_{A} with $\sigma=0$ and (generically) nodes can come to S_{A} (or leave it) only in pairs)
- $\rho>0\left(\right.$ for all $\left.X_{A}\right)$ if and only if $d \neq-1,0,1 \bmod 8$.
(topological argument a lá Radon-Hurwitz)

Corollary $\mathrm{d}=5$

If (σ, ρ) is a combinatorial type of a quintic spectrahedron, then $0 \leq \sigma \leq \rho \leq 20$, both σ and ρ are even and $2 \leq \rho$.

Numerical algebraic geometry

Numerical algebraic geometry

Singular points of $X_{A} \subset \mathbb{C P}^{3}$ are (projective) zeros of the system:

Numerical algebraic geometry

Singular points of $X_{A} \subset \mathbb{C} P^{3}$ are (projective) zeros of the system:

$$
F_{A}: \quad \frac{\partial}{\partial x_{i}} \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}\right)=0, \quad i=0, \ldots, 3 .
$$

Numerical algebraic geometry

Singular points of $X_{A} \subset \mathbb{C} P^{3}$ are (projective) zeros of the system:

$$
F_{A}: \quad \frac{\partial}{\partial x_{i}} \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}\right)=0, \quad i=0, \ldots, 3 .
$$

For a generic triple $A=\left(A_{1}, A_{2}, A_{3}\right) \in\left(\mathbb{S}_{\mathbb{C}}^{5}\right)^{3}$ of complex symmetric matrices, F_{A} has 20 zeros.

Numerical algebraic geometry

Singular points of $X_{A} \subset \mathbb{C} P^{3}$ are (projective) zeros of the system:

$$
F_{A}: \quad \frac{\partial}{\partial x_{i}} \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}\right)=0, \quad i=0, \ldots, 3 .
$$

For a generic triple $A=\left(A_{1}, A_{2}, A_{3}\right) \in\left(\mathbb{S}_{\mathbb{C}}^{5}\right)^{3}$ of complex symmetric matrices, F_{A} has 20 zeros.If we know (can easily find) solutions to a reference system $F_{A^{\prime}}$,

Numerical algebraic geometry

Singular points of $X_{A} \subset \mathbb{C} P^{3}$ are (projective) zeros of the system:

$$
F_{A}: \quad \frac{\partial}{\partial x_{i}} \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}\right)=0, \quad i=0, \ldots, 3
$$

For a generic triple $A=\left(A_{1}, A_{2}, A_{3}\right) \in\left(\mathbb{S}_{\mathbb{C}}^{5}\right)^{3}$ of complex symmetric matrices, F_{A} has 20 zeros.If we know (can easily find) solutions to a reference system $F_{A^{\prime}}$, can solve the desired system F_{A} using the method of homotopy continuation:

Numerical algebraic geometry

Singular points of $X_{A} \subset \mathbb{C} P^{3}$ are (projective) zeros of the system:

$$
F_{A}: \quad \frac{\partial}{\partial x_{i}} \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}\right)=0, \quad i=0, \ldots, 3
$$

For a generic triple $A=\left(A_{1}, A_{2}, A_{3}\right) \in\left(\mathbb{S}_{\mathbb{C}}^{5}\right)^{3}$ of complex symmetric matrices, F_{A} has 20 zeros.If we know (can easily find) solutions to a reference system $F_{A^{\prime}}$, can solve the desired system F_{A} using the method of homotopy continuation:

Neighboring types

Neighboring types
How to find $X_{A} \subset \mathbb{C P}^{3}$ with desired combinatorial types?

Neighboring types

How to find $X_{A} \subset \mathbb{C P}^{3}$ with desired combinatorial types?
Generically the type can change in one of the following 4 ways:

Neighboring types

How to find $X_{A} \subset \mathbb{C P}^{3}$ with desired combinatorial types?
Generically the type can change in one of the following 4 ways:

$$
\begin{aligned}
& (+,+):(\rho, \sigma) \rightarrow(\rho+2, \sigma+2) \\
& (-,-):(\rho, \sigma) \rightarrow(\rho-2, \sigma-2) \\
& \hline
\end{aligned}
$$

Neighboring types

How to find $X_{A} \subset \mathbb{C} P^{3}$ with desired combinatorial types?
Generically the type can change in one of the following 4 ways:

$$
\begin{array}{ll}
(+,+):(\rho, \sigma) \rightarrow(\rho+2, \sigma+2) & (+, 0):(\rho, \sigma) \rightarrow(\rho+2, \sigma) \\
(-,-):(\rho, \sigma) \rightarrow(\rho-2, \sigma-2) & (-, 0):(\rho, \sigma) \rightarrow(\rho-2, \sigma) \\
\hline
\end{array}
$$

Neighboring types

How to find $X_{A} \subset \mathbb{C} P^{3}$ with desired combinatorial types?
Generically the type can change in one of the following 4 ways:

$$
\begin{array}{ll}
(+,+):(\rho, \sigma) \rightarrow(\rho+2, \sigma+2) & (+, 0):(\rho, \sigma) \rightarrow(\rho+2, \sigma) \\
(-,-):(\rho, \sigma) \rightarrow(\rho-2, \sigma-2) & (-, 0):(\rho, \sigma) \rightarrow(\rho-2, \sigma) \\
\hline
\end{array}
$$

Neighboring types

How to find $X_{A} \subset \mathbb{C} P^{3}$ with desired combinatorial types?
Generically the type can change in one of the following 4 ways:

$$
\begin{array}{ll}
(+,+):(\rho, \sigma) \rightarrow(\rho+2, \sigma+2) & (+, 0):(\rho, \sigma) \rightarrow(\rho+2, \sigma) \\
(-,-):(\rho, \sigma) \rightarrow(\rho-2, \sigma-2) & (-, 0):(\rho, \sigma) \rightarrow(\rho-2, \sigma) \\
\hline
\end{array}
$$

Neighboring types

How to find $X_{A} \subset \mathbb{C} P^{3}$ with desired combinatorial types?
Generically the type can change in one of the following 4 ways:

$$
\begin{array}{ll}
(+,+):(\rho, \sigma) \rightarrow(\rho+2, \sigma+2) & (+, 0):(\rho, \sigma) \rightarrow(\rho+2, \sigma) \\
(-,-):(\rho, \sigma) \rightarrow(\rho-2, \sigma-2) & (-, 0):(\rho, \sigma) \rightarrow(\rho-2, \sigma) \\
\hline
\end{array}
$$

- 20

If we are able to find all possible neighboring types for each (ρ, σ), then all 65 types can be found.

We achieve this goal using the hill-climbing algorithm

Hill-climbing algorithm

Hill-climbing algorithm

Given $A \in\left(\mathbb{S}^{5}\right)^{3}$,

Hill-climbing algorithm

Given $A \in\left(\mathbb{S}^{5}\right)^{3}$, let

- $S_{\mathbb{R}_{+}}(A)$ (resp. $S_{\mathbb{R}_{-}}(A)$) be the set of definite (indefinite) real nodes $\boldsymbol{A}(\boldsymbol{x}) \in \mathbb{S}^{5}$ of $X_{A} \subset \mathbb{C} P^{3}$,

Hill-climbing algorithm

Given $A \in\left(\mathbb{S}^{5}\right)^{3}$, let

- $S_{\mathbb{R}_{+}}(A)$ (resp. $S_{\mathbb{R}_{-}}(A)$) be the set of definite (indefinite) real nodes $\boldsymbol{A}(\boldsymbol{x}) \in \mathbb{S}^{5}$ of $X_{A} \subset \mathbb{C P}^{3}$,
- $S_{\mathbb{C}_{+}}(A)$ (resp. $\left.S_{\mathbb{C}_{-}}(A)\right)$ be the set of those non-real nodes $\boldsymbol{A}(\boldsymbol{x})$ of X_{A} with definite (resp. indefinite) real part $\mathbb{R e}(\boldsymbol{A}(\boldsymbol{x}))$.

Hill-climbing algorithm

Given $A \in\left(\mathbb{S}^{5}\right)^{3}$, let

- $S_{\mathbb{R}_{+}}(A)$ (resp. $\left.S_{\mathbb{R}_{-}}(A)\right)$ be the set of definite (indefinite) real nodes $\boldsymbol{A}(\boldsymbol{x}) \in \mathbb{S}^{5}$ of $X_{A} \subset \mathbb{C P}^{3}$,
- $S_{\mathbb{C}_{+}}(A)$ (resp. $\left.S_{\mathbb{C}_{-}}(A)\right)$ be the set of those non-real nodes $\boldsymbol{A}(\boldsymbol{x})$ of X_{A} with definite (resp. indefinite) real part $\mathbb{R e}(\boldsymbol{A}(\boldsymbol{x}))$. If $X_{A^{\prime}}$ has type (ρ, σ), go for the 4 neighboring types as follows:

Hill-climbing algorithm

Given $A \in\left(\mathbb{S}^{5}\right)^{3}$, let

- $S_{\mathbb{R}_{+}}(A)$ (resp. $\left.S_{\mathbb{R}_{-}}(A)\right)$ be the set of definite (indefinite) real nodes $\boldsymbol{A}(\boldsymbol{x}) \in \mathbb{S}^{5}$ of $X_{A} \subset \mathbb{C P}^{3}$,
- $S_{\mathbb{C}_{+}}(A)$ (resp. $\left.S_{\mathbb{C}_{-}}(A)\right)$ be the set of those non-real nodes $\boldsymbol{A}(\boldsymbol{x})$ of X_{A} with definite (resp. indefinite) real part $\mathbb{R e}(\boldsymbol{A}(\boldsymbol{x}))$.
If $X_{A^{\prime}}$ has type (ρ, σ), go for the 4 neighboring types as follows:
- randomly sample a few A near A^{\prime},

Hill-climbing algorithm

Given $A \in\left(\mathbb{S}^{5}\right)^{3}$, let

- $S_{\mathbb{R}_{+}}(A)$ (resp. $S_{\mathbb{R}_{-}}(A)$) be the set of definite (indefinite) real nodes $\boldsymbol{A}(\boldsymbol{x}) \in \mathbb{S}^{5}$ of $X_{A} \subset \mathbb{C} P^{3}$,
- $S_{\mathbb{C}_{+}}(A)$ (resp. $\left.S_{\mathbb{C}_{-}}(A)\right)$ be the set of those non-real nodes $\boldsymbol{A}(\boldsymbol{x})$ of X_{A} with definite (resp. indefinite) real part $\mathbb{R e}(\boldsymbol{A}(\boldsymbol{x}))$. If $X_{\boldsymbol{A}^{\prime}}$ has type (ρ, σ), go for the 4 neighboring types as follows:
- randomly sample a few A near A^{\prime},
- for each neighboring type that is not found in the sample, as a new A^{\prime} choose that sampled A with the smallest:

$$
\begin{aligned}
(+,+): & \min \left\{\|\mathbb{I m}(\boldsymbol{A}(\boldsymbol{x}))\|: \boldsymbol{A}(\boldsymbol{x}) \in S_{\mathbb{C}_{+}}(A)\right\} \\
(+, 0): & \min \left\{\|\mathbb{I m}(\boldsymbol{A}(\boldsymbol{x}))\|: \boldsymbol{A}(\boldsymbol{x}) \in S_{\mathbb{C}_{-}}(A)\right\} \\
(-,-): & \min \left\{\|\boldsymbol{A}(\boldsymbol{x})-\boldsymbol{A}(\tilde{\boldsymbol{x}})\|: \boldsymbol{A}(\boldsymbol{x}), \boldsymbol{A}(\tilde{\boldsymbol{x}}) \in S_{\mathbb{R}_{+}}(A)\right\} \\
(-, 0): & \min \left\{\|\boldsymbol{A}(\boldsymbol{x})-\boldsymbol{A}(\tilde{\boldsymbol{x}})\|: \boldsymbol{A}(\boldsymbol{x}), \boldsymbol{A}(\tilde{\boldsymbol{x}}) \in S_{\mathbb{R}_{-}}(A)\right\}
\end{aligned}
$$

- repeat until all neighboring types of (ρ, σ) are found

Certification

Certifying the correctness and reality of solutions to a square polynomial system can be usually done via the command certify in HomotopyContinuation.jl:

- its input is a collection S of approximate solutions,
- (when successful) the output is the set of $\#(S)$ bounding boxes, each containing a unique true solution.
Since our system F_{A} is not square we consider a different one:
$G_{A}:\left\{\begin{array}{l}\frac{\partial}{\partial x_{i}} \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}\right)=0, \quad i=1,2,3, \\ \langle\ell, \boldsymbol{x}\rangle=I, \\ \operatorname{det}(\boldsymbol{A}(\boldsymbol{x}))=\delta, \\ {[\boldsymbol{A}(\boldsymbol{x})]_{\iota}=M_{l}, \quad I \subset\{1, \ldots, 5\}, \#(I)=1,2,3,}\end{array}\right.$
where $[\boldsymbol{A}(\boldsymbol{x})]$, are the principal minors indexed by 25 many sets I.
$G_{A}: \quad 30=3+1+1+25$ equations in 30 unknowns $\boldsymbol{x}, \delta, M_{l}$.

Certification

$$
G_{A}:\left\{\begin{array}{l}
\frac{\partial}{\partial x_{i}} \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}\right)=0, \quad i=1,2,3, \\
\langle\boldsymbol{\ell}, \boldsymbol{x}\rangle=I, \\
\operatorname{det}(\boldsymbol{A}(\boldsymbol{x}))=\delta, \\
{[\boldsymbol{A}(\boldsymbol{x})]_{l}=M_{l}, \quad \mid \subset\{1, \ldots, 5\}, \#(I)=1,2,3,}
\end{array}\right.
$$

The first 4 equations have $64=4 \cdot 4 \cdot 4 \cdot 1$ solutions, the value of variables δ and M_{I} are then uniquely determined. 20 out of 64 solutions are nodes of $X_{A} \subset \mathbb{C} P^{3}$. To certify the type of X_{A} :

- Solve G_{A} to obtain the set of 64 solutions
- Run certify to obtain 64 bounding boxes
- Delete those solutions which do not contain 0 in the δ-box
- Put ρ to be the number of real boxes
- For each real box determine the signs of the M_{l}-coordinates
- Put σ to be the number of real boxes with positive M_{l}-boxes

If all this is successful, (ρ, σ) is the certified type of $X_{A} \subset \mathbb{C} P^{3}$.

Conclusion

- We identified 65 combinatorial types of quintic spectrahedra,
- Numerically found representatives, using the hill-climbing algorithm,
- Certified types of the found representatives,
- Produced plots of the associated surfaces.

References

E. A. Degtyarev and I. Itenberg, On real determinantal quartics, Proceedings of the Gökova Geometry-Topology Conference 2010, Int. Press, Somerville, MA, 110-128, 2011

围 J. C. Ottem, K. Ranestad, B. Sturmfels and C. Vinzant, Quartic spectrahedra, Math. Program., 151 (2, Ser. B), 585-612, 2015
P. Breiding and S. Timme, HomotopyContinuation.jl: A package for homotopy continuation in Julia, 458-465 in Mathematical software - ICMS 2018 (South Bend, IN, 2018), edited by J.H. Davenport et al., Lecture Notes in Computer Science 10931, Springer, 2018
囯 T. Brysiewicz, Kh. Kozhasov and M. Kummer, Nodes on quintic spectrahedra, arXiv:2011.13860 [math.AG], 2020

Thank you!

