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Effective bounds / Classification

Consider a family F C R[xi, ..., x,]* of systems f = (f1,..., f).

Problem

Find effective bounds on some topological or geometric quantity
of {f =0} C R", for a (general) element f € F. Understand all
members f € F that are maximal with respect to this bound.
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Topology of plane curves
Let f € R[x1, x2, x3] be a homogeneous polynomial of degree d.

Harnack’s curve theorem, 1976

The number ¢ of connected components of the (real) plane curve
X¢(R) = {(x1 : x2 : x3) € RP? : f(x1,x2,x3) = 0} satisfies

#chw-i_l

® For any d these bounds are optimal (Harnack).

e When ¢ = w + 1, X¢(R) is called an M-curve.

® If the complex locus Xf = {f = 0} c CP?

. . o . Xg(R)
is non-singular, it is a (Riemann) surface

(d=1)(d—2)
of genus *—>—=".

c/rs,/'i
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Hilbert's 16th problem

When non-singular, the real curve X¢(R) is a collection of ovals
plus (if d is odd) a pseudo-line positioned in a certain way in RP?.

Hilbert’s 16th problem

For a fixed d classify configurations of connected components of
M-curves of degree d.

® Solved up to degree d = 7 (Hilbert, Rohn, Petrovsky, Rokhlin,
Gudkov, Nikulin, Kharlamov, Viro).

® For d = 6 there are 56 classes of curves, 3 of O
them are M-curves with 11 components each O

(Gudkov). O O

® For d = 4 there is only one M-curve.



In this talk

Optimal bound on the number of singular points on the boundary
of a quintic spectrahedron
S5, = {X€R3 1+ x1A1 + x0Ar + x3A3 = 0},

where A1, A, Az are general 5 X 5 real symmetric matrices.
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S? = {d x d real symmetric matrices}
S% = {d x d complex symmetric matrices}

The convex cone of positive semidefinite matrices :
S = {AeS% : A=0} = {AeS% : v Av >0, v eR%}
A spectrahedron is the slice of S‘; by an affine-linear subspace

L = {A(x) = Ao+ x1A1 + - +x,A, : x cR"} CS?:

Sa = SNL ~ {xeR": A(x) =0}
>

In particular, spectrahedra are convex sets.
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Examples

A spectrahedron is a “nonlinear” generalization of a polyhedron:
& 0 al 0 af 0 a1(x) 0
R N R R
0 g 0 ay 0 al) 0 ag(x)

{x e R" : a1(x),...,aq4(x) >0}

1 X1 X2
Ax) = [x1 1 x3],
x» x3 1

Elliptope

xeRP:1-x2, 1-x3, 1 -x3, 1 —x} —x3 — x5 + 2x1x0x3 > 0}
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Spectrahedra, SOS and optimization

® Sum of squares representations of a real polynomial

142t +32+56% = (1« tz)A(E),A: (& 2)=0

® Semidefine programming

misn €, x) = min{(£,x) : x e R", Ag+ x1A1 + - - + x,A, = 0},

LSy

Spectrahedra are feasible regions of semidefinite programs
(polyhedra) (linear)

Particular case: SOS approach to polynomial optimization

1
trgﬂi@r)ﬂf(t)Zmax{)\eR:f(t)—)\:(l t ~-)A<t_1>,A%O}
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Projective setting
Linear space L C S¢:

L = {A(x) = Agxo + Aix1 + - + xaA, : x € R,
Spectrahedral cone:

LF‘IS‘; ~ {x ¢ R™ : A(x) = 0}

A(x) = 0 for some x € R"! = can take Ag = 1
(LﬂSg_CR”“ is full-dimensional) (orthogonal congruence applied to L)

Projective spectrahedron:

Sa = P(LNSY) ~ {[x] eRP" : A(x) =0o0r — A(x) = 0}
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Algebraic boundary of spectrahedra
The Euclidean boundary of S4 C RP":

9Sa = {[x] € Sa : det(A(x)) = 0}

For generic Ay,..., A, € S? the Zariski closure of 9S4 © CP" is a
degree d hypersurface, called (spectrahedral) symmetroid-

[ Xa = {[x] € CP" : det(xo1 + x1A1 + - - + xnA,) = 0}

'S A ‘
4

Sa C RP" is a polyhedron = X4 C CP" is a set of hyperplanes.
(A1,...,An are diagonal)
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For n > 3 any symmetroid

Xa = {[x] € CP" : det(xol + x1A1 + - - - + xpAp) = 0}

contains points of corank > 2 and hence is singular.
: surface X4 C CP? defined by generic A1, Ay, A3 € S has

(df) — #Sing(X) — deg(%) o) -

singular points, which are all nodal (of multiplicity 2).

Combinatorial type (p,0), 0 <p

p = #(Sing(X) NRP3) is the number of real singularities of X.
o = #(Sing(X) N IS) is the number of singularities on S C X.
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Does there exist X4 C CP3 defined by generic A1, As, A3 € S¢
o with (“37) real singular points?
® with (d;rl) real singular points, all lying on 0547

e with a given combinatorial type (p,0)?

can have either (p, o) = (4,4) or (p,0) = (2,2).

Degtyarev and Itenberg, 2011

(p, o) is a combinatorial type of a generic quartic spectra-
hedron iff 0 < ¢ < p < 10, both are even and 2 < p.

In 2015 Ottem, Ranestad, Sturmfels and Vinzant gave an
alternative proof.

Does a similar classification hold for quintic spectrahedra?
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Main result

Brysiewicz, K. and Kummer, 2020

(p,0) is a combinatorial type of a generic quintic spectra-
hedron iff 0 < o < p < 20, both are even and 2 < p.

Proof strategy:
¢ Understand restrictions on (p, o) |65 possible types
e Find explicit representatives for each (p, o) numerically

o Certify the numerical answers

o

3

(p, o) = (20, 20) (p, o) = (20,0)
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(non-real nodes come in complex conjugate pairs since X4 is real and generic),

® o is even,

(there exist X4 with o = 0 and (generically) nodes can come to S (or leave it) only in pairs)

® p >0 (for all Xa) if and only if d # —1,0,1 mod 8.

(topological argument a I3 Radon-Hurwitz)

If (0, p) is a combinatorial type of a quintic spectrahedron, then
0 <0< p<20, both ¢ and p are even and 2 < p.
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Singular points of X4 C CP? are (projective) zeros of the system:

d
Fa: e det(xl + x1A1 + A2 +x3A3) = 0, i=0,...,3.

For a generic triple A = (A1, A2, A3) € (S%)* of complex
symmetric matrices, F4 has 20 zeros.If we know (can easily find)
solutions to a reference system Fy4s,can solve the desired system Fpu
using the method of homotopy continuation:

L
L,
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If we are able to find all possible
neighboring types for each (p,o),
then all 65 types can be found.

We achieve this goal using

the hill-climbing algorithm
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Hill-climbing algorithm
Given A € (S°)3, let
® Sg,(A) (resp. Sg_(A)) be the set of definite (indefinite) real
nodes A(x) € S® of X4 C CP?,
® Sc,(A) (resp. Sc_(A)) be the set of those non-real nodes
A(x) of X with definite (resp. indefinite) real part Re(A(x)).
If Xa has type (p, o), go for the 4 neighboring types as follows:
¢ randomly sample a few A near A',

e for each neighboring type that is not found in the sample,
as a new A’ choose that sampled A with the smallest:

(+:+) . min{[[Im(A(x))[| - A(x) € Sc,(A)}
(++,0) - min{[Tm(A(x))[| : A(x) € Sc_(A)}
(= =) min{|A(x) = AX)| : A(x), A(X) € Sk, (A)}
(=0): min{|A(x) — A(X)| : A(x), A(X) € Se_(A)}

® repeat until all neighboring types of (p, o) are found



Certification

Certifying the correctness and reality of solutions to a square

polynomial system can be usually done via the command

in HomotopyContinuation.jl.
® its input is a collection S of approximate solutions,

® (when successful) the output is the set of #(S) bounding
boxes, each containing a unique true solution.

Since our system F4 is not square we consider a different one:

8%,- det(xol + x1A; + x0A2 + x343) = 0, i=1,23,
£, x) =1,

det(A(x)) =9,

[A(X)]; =M, 1c{l,...,5}, #(I)=1,2,3,

where [A(x)], are the principal minors indexed by 25 many sets /.

Ga :

[GA : 30=3+41+4 1+ 25 equations in 30 unknowns x, §, M. ]




Certification

{ 5% det(xo1 + x1 A + x0As + x3A3) = 0, i=1,2,3,
Ga (&, x) =1,

det(A(x)) = 4,

A =M, 1cC{1,..., 5}, #(/)=1,2,3,

The first 4 equations have 64 = 4 -4 -4 .1 solutions, the value of
variables § and M, are then uniquely determined. 20 out of 64
solutions are nodes of X4 C CP3. To certify the type of Xj:

® Solve G4 to obtain the set of 64 solutions

® Run to obtain 64 bounding boxes

® Delete those solutions which do not contain 0 in the §-box
® Put p to be the number of real boxes

® For each real box determine the signs of the M,-coordinates
[ ]

Put o to be the number of real boxes with positive M;-boxes

[If all this is successful, (p, o) is the certified type of X4 C CP3. ]




Conclusion

We identified 65 combinatorial types of quintic spectrahedra,
Numerically found representatives, using the hill-climbing algorithm,
Certified types of the found representatives,

Produced plots of the associated surfaces.
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