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Real algebraic geometry

Study properties of real polynomials f ∈ R[x1, . . . , xn], real varieties

X (R) = {x ∈ Rn : f1(x) = · · · = fk(x) = 0}, f1, . . . , fk ∈ R[x1, . . . , xn],

and mappings between real varieties.

Nash-Tognoli theorem, 1976

Any smooth closed manifold is diffeomorphic to a real algebraic variety.
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3 − 1 = 0
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Effective bounds / Classification

Consider a family F ⊂ R[x1, . . . , xn]k of systems f = (f1, . . . , fk).

Problem

Find effective bounds on some topological or geometric quantity
of {f = 0} ⊂ Rn, for a (general) element f ∈ F . Understand all
members f ∈ F that are maximal with respect to this bound.



Topology of plane curves

Let f ∈ R[x1, x2, x3] be a homogeneous polynomial of degree d .

Harnack’s curve theorem, 1976

The number c of connected components of the (real) plane curve
Xf (R) = {(x1 : x2 : x3) ∈ RP2 : f (x1, x2, x3) = 0} satisfies

1− (−1)d

2
≤ c ≤ (d − 1)(d − 2)

2
+ 1

• For any d these bounds are optimal (Harnack).

• When c = (d−1)(d−2)
2 + 1, Xf (R) is called an M-curve.

• If the complex locus Xf = {f = 0} ⊂ CP2

is non-singular

,

it is a (Riemann) surface

of genus (d−1)(d−2)
2 .
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Hilbert’s 16th problem

When non-singular, the real curve Xf (R) is a collection of ovals
plus (if d is odd) a pseudo-line positioned in a certain way in RP2.

Hilbert’s 16th problem

For a fixed d classify configurations of connected components of
M-curves of degree d .

• Solved up to degree d = 7 (Hilbert, Rohn, Petrovsky, Rokhlin,
Gudkov, Nikulin, Kharlamov, Viro).

• For d = 6 there are 56 classes of curves, 3 of
them are M-curves with 11 components each
(Gudkov).

• For d = 4 there is only one M-curve.
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In this talk

Optimal bound on the number of singular points on the boundary
of a quintic spectrahedron

SA = {x ∈ R3 : 1 + x1A1 + x2A2 + x3A3 < 0},

where A1,A2,A3 are general 5× 5 real symmetric matrices.



What are spectrahedra?

Sd = {d × d real symmetric matrices}

SdC = {d × d complex symmetric matrices}

The convex cone of positive semidefinite matrices :

Sd< = {A ∈ SdR : A < 0} = {A ∈ SdR : vTAv ≥ 0, v ∈ Rd}

A spectrahedron is the slice of Sd< by an affine-linear subspace

L = {A(x) = A0 + x1A1 + · · ·+ xnAn : x ∈ Rn} ⊆ Sd :

SA = Sd< ∩ L ' {x ∈ Rn : A(x) < 0}.

In particular, spectrahedra are convex sets.
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Examples

A spectrahedron is a “nonlinear” generalization of a polyhedron:

A(x) =


a0

1 0

. . .

0 a0
d

 + x1


a1

1 0

. . .

0 a1
d

 + xn


an1 0

. . .

0 and

 =


a1(x) 0

. . .

0 ad (x)

 ,

{x ∈ Rn : a1(x), . . . , ad(x) ≥ 0}

A(x) =

 1 x1 x2

x1 1 x3

x2 x3 1

 ,

Elliptope

{x ∈ R3 : 1− x2
1 , 1− x2

2 , 1− x2
3 , 1− x2

1 − x2
2 − x2

3 + 2x1x2x3 ≥ 0}
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Spectrahedra, SOS and optimization

• Sum of squares representations of a real polynomial

1 + 2t + 3t2 + 5t4 = (1 t t2)A

(
1
t

t2

)
, A =

(
1 1 a
1 b 0
a 0 5

)
< 0

• Semidefine programming

min
x∈SA
〈`, x〉 = min{〈`, x〉 : x ∈ Rn, A0 + x1A1 + · · ·+ xnAn < 0},

Spectrahedra
(polyhedra)

are feasible regions of semidefinite
(linear)

programs

Particular case: SOS approach to polynomial optimization

min
t∈Rm

f (t) ≥ max

{
λ ∈ R : f (t)− λ = (1 t1 . . .)A

(
1
t1
.
.
.

)
,A < 0

}
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Projective setting

Linear space L ⊆ Sd :

L = {A(x) = A0x0 + A1x1 + · · ·+ xnAn : x ∈ Rn+1}.

Spectrahedral cone:

L ∩ Sd< ' {x ∈ Rn+1 : A(x) < 0}

Assumption

A(x) � 0 for some x ∈ Rn+1

(L∩Sd<⊂Rn+1 is full-dimensional)

⇒ can take A0 = 1

(orthogonal congruence applied to L)
.

Projective spectrahedron:

SA = P(L ∩ Sd<) ' {[x ] ∈ RPn : A(x) < 0 or − A(x) < 0}
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Algebraic boundary of spectrahedra

The Euclidean boundary of SA ⊂ RPn:

∂SA = {[x ] ∈ SA : det(A(x)) = 0}

For generic A1, . . . ,An ∈ Sd the Zariski closure of ∂SA ⊂ CPn is a
degree d hypersurface, called (spectrahedral) symmetroid:

XA = {[x ] ∈ CPn : det(x01 + x1A1 + · · ·+ xnAn) = 0}

SA ⊂ RPn is a polyhedron
(A1,...,An are diagonal)

⇒ XA ⊂ CPn is a set of hyperplanes.
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Singular points

The variety Σ ⊂ P(SdC) of matrices of corank ≥ 2 has codimension 3.

For n ≥ 3 any symmetroid

XA = {[x ] ∈ CPn : det(x01 + x1A1 + · · ·+ xnAn) = 0}

contains points of corank ≥ 2 and hence is singular.
n=3 : surface XA ⊂ CP3 defined by generic A1,A2,A3 ∈ Sd has(

d + 1

3

)
= #Sing(X ) = deg(Σ)

(
3+1

3

)
= 4

singular points, which are all nodal (of multiplicity 2).

Combinatorial type (ρ, σ), σ ≤ ρ

ρ = #(Sing(X ) ∩ RP3) is the number of real singularities of X .
σ = #(Sing(X )∩∂S) is the number of singularities on ∂S ⊂ X .
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n=3 Questions about real geometry

Does there exist XA ⊂ CP3 defined by generic A1,A2,A3 ∈ Sd

• with
(d+1

3

)
real singular points?

• with
(d+1

3

)
real singular points, all lying on ∂SA?

• with a given combinatorial type (ρ, σ)?

d=3: can have either (ρ, σ) = (4, 4) or (ρ, σ) = (2, 2).

Degtyarev and Itenberg, 2011

(ρ, σ) is a combinatorial type of a generic quartic d=4 spectra-
hedron iff 0 ≤ σ ≤ ρ ≤ 10, both are even and 2 ≤ ρ.

In 2015 Ottem, Ranestad, Sturmfels and Vinzant gave an
alternative proof.

d = 5 : Does a similar classification hold for quintic spectrahedra?
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Main result

Brysiewicz, K. and Kummer, 2020

(ρ, σ) is a combinatorial type of a generic quintic d=5 spectra-
hedron iff 0 ≤ σ ≤ ρ ≤ 20, both are even and 2 ≤ ρ.

Proof strategy:
• Understand restrictions on (ρ, σ) 65 possible types

• Find explicit representatives for each (ρ, σ) numerically
• Certify the numerical answers

(ρ, σ) = (20, 20) (ρ, σ) = (20, 0)
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Restrictions on combinatorial types

Lemma

If (ρ, σ) is the combinatorial type of the surface XA ⊂ CP3 de-
fined by generic matrices A1,A2,A3 ∈ Sd , then

• 0 ≤ σ ≤ ρ ≤
(d+1

3

)
,

• ρ is of the same parity as
(d+1

3

)
= #Sing(XA),

(non-real nodes come in complex conjugate pairs since XA is real and generic),

• σ is even,
(there exist XA with σ = 0 and (generically) nodes can come to SA (or leave it) only in pairs)

• ρ > 0 (for all XA) if and only if d 6= −1, 0, 1 mod 8.
(topological argument a lá Radon-Hurwitz)

Corollary d=5

If (σ, ρ) is a combinatorial type of a quintic spectrahedron, then
0 ≤ σ ≤ ρ ≤ 20, both σ and ρ are even and 2 ≤ ρ.
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Numerical algebraic geometry

Singular points of XA ⊂ CP3 are (projective) zeros of the system:

FA :
∂

∂xi
det(x01 + x1A1 + x2A2 + x3A3) = 0, i = 0, . . . , 3.

For a generic triple A = (A1,A2,A3) ∈ (S5
C)3 of complex

symmetric matrices, FA has 20 zeros.If we know (can easily find)
solutions to a reference system FA′ ,can solve the desired system FA
using the method of homotopy continuation:

A'

A
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Neighboring types

How to find XA ⊂ CP3 with desired combinatorial types?

Generically the type can change in one of the following 4 ways:

(+,+): (ρ, σ)→ (ρ+2, σ+2)

(−,−): (ρ, σ)→ (ρ−2, σ−2)

(+, 0): (ρ, σ)→ (ρ+ 2, σ)

(−, 0): (ρ, σ)→ (ρ− 2, σ)

0
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4

4

6

6

8
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14
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18

18

20

20

If we are able to find all possible

neighboring types for each (ρ, σ),

then all 65 types can be found.

We achieve this goal using

the hill-climbing algorithm
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Hill-climbing algorithm

Given A ∈ (S5)3, let

• SR+(A) (resp. SR−(A)) be the set of definite (indefinite) real
nodes A(x) ∈ S5 of XA ⊂ CP3,

• SC+(A) (resp. SC−(A)) be the set of those non-real nodes
A(x) of XA with definite (resp. indefinite) real part Re(A(x)).

If XA′ has type (ρ, σ), go for the 4 neighboring types as follows:

• randomly sample a few A near A′,

• for each neighboring type that is not found in the sample,
as a new A′ choose that sampled A with the smallest:

(+,+) : min{‖Im(A(x))‖ : A(x) ∈ SC+(A)}
(+, 0) : min{‖Im(A(x))‖ : A(x) ∈ SC−(A)}

(−,−) : min{‖A(x)− A(x̃)‖ : A(x), A(x̃) ∈ SR+(A)}
(−, 0) : min{‖A(x)− A(x̃)‖ : A(x), A(x̃) ∈ SR−(A)}

• repeat until all neighboring types of (ρ, σ) are found
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Certification

Certifying the correctness and reality of solutions to a square
polynomial system can be usually done via the command certify
in HomotopyContinuation.jl:

• its input is a collection S of approximate solutions,

• (when successful) the output is the set of #(S) bounding
boxes, each containing a unique true solution.

Since our system FA is not square we consider a different one:

GA :


∂
∂xi

det(x01 + x1A1 + x2A2 + x3A3) = 0, i = 1, 2, 3,

〈`, x〉 = l ,

det(A(x)) = δ,

[A(x)]I = MI , I ⊂ {1, . . . , 5}, #(I ) = 1, 2, 3,

where [A(x)]I are the principal minors indexed by 25 many sets I .

GA : 30 = 3 + 1 + 1 + 25 equations in 30 unknowns x , δ,MI .



Certification

GA :

{ ∂
∂xi

det(x01 + x1A1 + x2A2 + x3A3) = 0, i = 1, 2, 3,

〈`, x〉 = l,

det(A(x)) = δ,

[A(x)]I = MI , I ⊂ {1, . . . , 5}, #(I ) = 1, 2, 3,

The first 4 equations have 64 = 4 · 4 · 4 · 1 solutions, the value of
variables δ and MI are then uniquely determined. 20 out of 64
solutions are nodes of XA ⊂ CP3. To certify the type of XA:

• Solve GA to obtain the set of 64 solutions

• Run certify to obtain 64 bounding boxes

• Delete those solutions which do not contain 0 in the δ-box

• Put ρ to be the number of real boxes

• For each real box determine the signs of the MI -coordinates

• Put σ to be the number of real boxes with positive MI -boxes

If all this is successful, (ρ, σ) is the certified type of XA ⊂ CP3.



Conclusion
• We identified 65 combinatorial types of quintic spectrahedra,
• Numerically found representatives, using the hill-climbing algorithm,
• Certified types of the found representatives,
• Produced plots of the associated surfaces.
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