

Counting Curves in \mathbb{P}^r

Carl Lian

Washington University in St. Louis

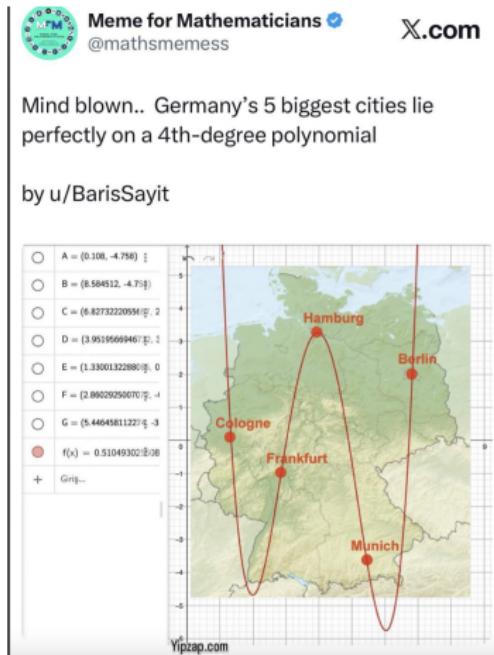
Tel Aviv University, January 8, 2026

Proto-question

How many curves are there in a space X , interpolating through the expected number of points?

Proto-question

How many curves are there in a space X , interpolating through the expected number of points?



Tevelev degrees of \mathbb{P}^r

Tevelev degrees of \mathbb{P}^r

Fix:

- ▶ a general pointed curve (C, p_1, \dots, p_n) of genus g , and
- ▶ general points $x_1, \dots, x_n \in \mathbb{P}^r$.

Tevelev degrees of \mathbb{P}^r

Fix:

- ▶ a general pointed curve (C, p_1, \dots, p_n) of genus g , and
- ▶ general points $x_1, \dots, x_n \in \mathbb{P}^r$.

Question

How many degree d maps $f : C \rightarrow \mathbb{P}^r$ are there, with $f(p_i) = x_i$, for $i = 1, 2, \dots, n$?

Tevelev degrees of \mathbb{P}^r

Fix:

- ▶ a general pointed curve (C, p_1, \dots, p_n) of genus g , and
- ▶ general points $x_1, \dots, x_n \in \mathbb{P}^r$.

Question

How many degree d maps $f : C \rightarrow \mathbb{P}^r$ are there, with $f(p_i) = x_i$, for $i = 1, 2, \dots, n$?

Denote the answer by $\text{Tev}_{g,n,d}^{\mathbb{P}^r}$, the **geometric Tevelev degree** of \mathbb{P}^r .

Tevelev degrees of \mathbb{P}^r

Fix:

- ▶ a general pointed curve (C, p_1, \dots, p_n) of genus g , and
- ▶ general points $x_1, \dots, x_n \in \mathbb{P}^r$.

Question

How many degree d maps $f : C \rightarrow \mathbb{P}^r$ are there, with $f(p_i) = x_i$, for $i = 1, 2, \dots, n$?

Denote the answer by $\text{Tev}_{g,n,d}^{\mathbb{P}^r}$, the **geometric Tevelev degree** of \mathbb{P}^r .

Assume

$$n = \frac{r+1}{r} \cdot d - g + 1$$

to expect a finite answer.

History

Question

How many degree d maps $f : C \rightarrow \mathbb{P}^r$ are there, with $f(p_i) = x_i$, for $i = 1, 2, \dots, n$?

History

Question

How many degree d maps $f : C \rightarrow \mathbb{P}^r$ are there, with $f(p_i) = x_i$, for $i = 1, 2, \dots, n$?

- ▶ Castelnuovo (1889): when $n = r + 2$,

$$\text{Tev}_{g,n,d}^{\mathbb{P}^r} = \#(g_d^r \text{'s on } C) = g! \cdot \frac{1! \cdot 2! \cdots r!}{(\frac{g}{r+1})! (\frac{g}{r+1} + 1)! \cdots (\frac{g}{r+1} + r)!}.$$

History

Question

How many degree d maps $f : C \rightarrow \mathbb{P}^r$ are there, with $f(p_i) = x_i$, for $i = 1, 2, \dots, n$?

- ▶ Castelnuovo (1889): when $n = r + 2$,

$$\text{Tev}_{g,n,d}^{\mathbb{P}^r} = \#(g_d^r \text{'s on } C) = g! \cdot \frac{1! \cdot 2! \cdots r!}{(\frac{g}{r+1})! (\frac{g}{r+1} + 1)! \cdots (\frac{g}{r+1} + r)!}.$$

- ▶ E. Larson (2016): $\text{Tev}_{g,n,d}^{\mathbb{P}^r} > 0$ as long as $n \geq r + 2$.

History

Question

How many degree d maps $f : C \rightarrow \mathbb{P}^r$ are there, with $f(p_i) = x_i$, for $i = 1, 2, \dots, n$?

- ▶ Castelnuovo (1889): when $n = r + 2$,

$$\text{Tev}_{g,n,d}^{\mathbb{P}^r} = \#(g_d^r \text{'s on } C) = g! \cdot \frac{1! \cdot 2! \cdots r!}{(\frac{g}{r+1})! (\frac{g}{r+1} + 1)! \cdots (\frac{g}{r+1} + r)!}.$$

- ▶ E. Larson (2016): $\text{Tev}_{g,n,d}^{\mathbb{P}^r} > 0$ as long as $n \geq r + 2$.
- ▶ Tevelev (2020): when $r = 1$ and $(n, d) = (g + 3, g + 1)$,

$$\text{Tev}_{g,n,d}^{\mathbb{P}^1} = 2^g.$$

History

Question

How many degree d maps $f : C \rightarrow \mathbb{P}^r$ are there, with $f(p_i) = x_i$, for $i = 1, 2, \dots, n$?

- ▶ Castelnuovo (1889): when $n = r + 2$,

$$\text{Tev}_{g,n,d}^{\mathbb{P}^r} = \#(g_d^r \text{'s on } C) = g! \cdot \frac{1! \cdot 2! \cdots r!}{(\frac{g}{r+1})! (\frac{g}{r+1} + 1)! \cdots (\frac{g}{r+1} + r)!}.$$

- ▶ E. Larson (2016): $\text{Tev}_{g,n,d}^{\mathbb{P}^r} > 0$ as long as $n \geq r + 2$.
- ▶ Tevelev (2020): when $r = 1$ and $(n, d) = (g + 3, g + 1)$,

$$\text{Tev}_{g,n,d}^{\mathbb{P}^1} = 2^g.$$

- ▶ Cela-Pandharipande-Schmitt (2021): complete answer when $r = 1$, recovered by Farkas-L., Cavalieri-Dawson

History

Question

How many degree d maps $f : C \rightarrow \mathbb{P}^r$ are there, with $f(p_i) = x_i$, for $i = 1, 2, \dots, n$?

- ▶ Castelnuovo (1889): when $n = r + 2$,

$$\text{Tev}_{g,n,d}^{\mathbb{P}^r} = \#(g_d^r \text{'s on } C) = g! \cdot \frac{1! \cdot 2! \cdots r!}{(\frac{g}{r+1})! (\frac{g}{r+1} + 1)! \cdots (\frac{g}{r+1} + r)!}.$$

- ▶ E. Larson (2016): $\text{Tev}_{g,n,d}^{\mathbb{P}^r} > 0$ as long as $n \geq r + 2$.
- ▶ Tevelev (2020): when $r = 1$ and $(n, d) = (g + 3, g + 1)$,

$$\text{Tev}_{g,n,d}^{\mathbb{P}^1} = 2^g.$$

- ▶ Cela-Pandharipande-Schmitt (2021): complete answer when $r = 1$, recovered by Farkas-L., Cavalieri-Dawson
- ▶ Bertram-Daskalopoulos-Wentworth (1996) enumerated f **virtually**, recovered by Siebert-Tian, Marian-Oprea, Buch-Pandharipande

Virtual approach (Bertram-Daskalopoulos-Wentworth)

Virtual approach (Bertram-Daskalopoulos-Wentworth)

Let $\overline{\text{Mor}}_d(C, \mathbb{P}^r)$ be a compactified moduli space of maps $C \xrightarrow{f} \mathbb{P}^r$.

Virtual approach (Bertram-Daskalopoulos-Wentworth)

Let $\overline{\text{Mor}}_d(C, \mathbb{P}^r)$ be a compactified moduli space of maps $C \xrightarrow{f} \mathbb{P}^r$.
More precisely,

$$\overline{\text{Mor}}_d(C, \mathbb{P}^r) := \{(\mathcal{L}, [f_0 : \cdots : f_r]) : \mathcal{L} \in \text{Pic}^d(C), f_j \in H^0(C, \mathcal{L})\} / \mathbb{C}^*.$$

Virtual approach (Bertram-Daskalopoulos-Wentworth)

Let $\overline{\text{Mor}}_d(C, \mathbb{P}^r)$ be a compactified moduli space of maps $C \xrightarrow{f} \mathbb{P}^r$.
More precisely,

$$\overline{\text{Mor}}_d(C, \mathbb{P}^r) := \{(\mathcal{L}, [f_0 : \cdots : f_r]) : \mathcal{L} \in \text{Pic}^d(C), f_j \in H^0(C, \mathcal{L})\} / \mathbb{C}^*.$$

(If $d > 2g - 2$), then

$$\overline{\text{Mor}}_d(C, \mathbb{P}^r) \rightarrow \text{Pic}^d(C)$$

is a projective bundle with fibers

$$\mathbb{P}(H^0(C, \mathcal{L})^{r+1}) = \mathbb{P}^{(r+1)(d-g+1)-1},$$

hence **vir dim**($\overline{\text{Mor}}_d(C, \mathbb{P}^r)$) = $g + (r+1)(d-g+1) - 1$.

Virtual approach (Bertram-Daskalopoulos-Wentworth)

Let $\overline{\text{Mor}}_d(C, \mathbb{P}^r)$ be a compactified moduli space of maps $C \xrightarrow{f} \mathbb{P}^r$. More precisely,

$$\overline{\text{Mor}}_d(C, \mathbb{P}^r) := \{(\mathcal{L}, [f_0 : \cdots : f_r]) : \mathcal{L} \in \text{Pic}^d(C), f_j \in H^0(C, \mathcal{L})\} / \mathbb{C}^*.$$

(If $d > 2g - 2$), then

$$\overline{\text{Mor}}_d(C, \mathbb{P}^r) \rightarrow \text{Pic}^d(C)$$

is a projective bundle with fibers

$$\mathbb{P}(H^0(C, \mathcal{L})^{r+1}) = \mathbb{P}^{(r+1)(d-g+1)-1},$$

hence **vir dim**($\overline{\text{Mor}}_d(C, \mathbb{P}^r)$) = $g + (r+1)(d-g+1) - 1$.

In fact, $\overline{\text{Mor}}_d(C, \mathbb{P}^r) \cong \text{Quot}(\mathcal{O}_C^{r+1}, 1, d)$.

Virtual approach, cont.

$$\overline{\text{Mor}}_d(C, \mathbb{P}^r) := \{(\mathcal{L}, [f_0 : \cdots : f_r]) : \mathcal{L} \in \text{Pic}^d(C), f_j \in H^0(C, \mathcal{L})\} / \mathbb{C}^*.$$

Virtual approach, cont.

$$\overline{\text{Mor}}_d(C, \mathbb{P}^r) := \{(\mathcal{L}, [f_0 : \cdots : f_r]) : \mathcal{L} \in \text{Pic}^d(C), f_j \in H^0(C, \mathcal{L})\} / \mathbb{C}^*.$$

Define $\text{Inc}(p, x) \subset \overline{\text{Mor}}_d(C, \mathbb{P}^r)$ to be “the locus where $f(p) = x$.”

Virtual approach, cont.

$$\overline{\text{Mor}}_d(C, \mathbb{P}^r) := \{(\mathcal{L}, [f_0 : \cdots : f_r]) : \mathcal{L} \in \text{Pic}^d(C), f_j \in H^0(C, \mathcal{L})\} / \mathbb{C}^*.$$

Define $\text{Inc}(p, x) \subset \overline{\text{Mor}}_d(C, \mathbb{P}^r)$ to be “the locus where $f(p) = x$.”
e.g. if $x = [1 : 0 : \cdots : 0]$, then

$$\text{Inc}(p, x) := \{f : f_1(p) = \cdots = f_r(p) = 0\} \subset \overline{\text{Mor}}_d(C, \mathbb{P}^r),$$

cut out by r linear equations.

Virtual approach, cont.

$$\overline{\text{Mor}}_d(C, \mathbb{P}^r) := \{(\mathcal{L}, [f_0 : \cdots : f_r]) : \mathcal{L} \in \text{Pic}^d(C), f_j \in H^0(C, \mathcal{L})\} / \mathbb{C}^*.$$

Define $\text{Inc}(p, x) \subset \overline{\text{Mor}}_d(C, \mathbb{P}^r)$ to be “the locus where $f(p) = x$.”
e.g. if $x = [1 : 0 : \cdots : 0]$, then

$$\text{Inc}(p, x) := \{f : f_1(p) = \cdots = f_r(p) = 0\} \subset \overline{\text{Mor}}_d(C, \mathbb{P}^r),$$

cut out by r linear equations.

Then,

$$\text{Tev}_{g,n,d}^{\mathbb{P}^r} \approx \# \bigcap_{i=1}^n \text{Inc}(p_i, x_i).$$

Virtual approach, cont.

$$\text{Tev}_{g,n,d}^{\mathbb{P}^r} \approx \# \bigcap_{i=1}^n \text{Inc}(p_i, x_i)$$

Virtual approach, cont.

$$\begin{aligned}\text{Tev}_{g,n,d}^{\mathbb{P}^r} &\approx \# \bigcap_{i=1}^n \text{Inc}(p_i, x_i) \\ &\approx \int_{\overline{\text{Mor}}_d(C, \mathbb{P}^r)} \prod_{i=1}^n [\text{Inc}(p_i, x_i)]\end{aligned}$$

Virtual approach, cont.

$$\begin{aligned}\text{Tev}_{g,n,d}^{\mathbb{P}^r} &\approx \# \bigcap_{i=1}^n \text{Inc}(p_i, x_i) \\ &\approx \int_{\overline{\text{Mor}}_d(C, \mathbb{P}^r)} \prod_{i=1}^n [\text{Inc}(p_i, x_i)] \\ &= \int_{\overline{\text{Mor}}_d(C, \mathbb{P}^r)} (c_1(\mathcal{O}_{\text{rel}}(1))^r)^n\end{aligned}$$

Virtual approach, cont.

$$\begin{aligned}\mathrm{Tev}_{g,n,d}^{\mathbb{P}^r} &\approx \# \bigcap_{i=1}^n \mathrm{Inc}(p_i, x_i) \\ &\approx \int_{\overline{\mathrm{Mor}}_d(C, \mathbb{P}^r)} \prod_{i=1}^n [\mathrm{Inc}(p_i, x_i)] \\ &= \int_{\overline{\mathrm{Mor}}_d(C, \mathbb{P}^r)} (c_1(\mathcal{O}_{\mathrm{rel}}(1))^r)^n \\ &= \cdots \\ &= (r+1)^g.\end{aligned}$$

Virtual approach, cont.

$$\begin{aligned}\mathrm{Tev}_{g,n,d}^{\mathbb{P}^r} &\approx \# \bigcap_{i=1}^n \mathrm{Inc}(p_i, x_i) \\ &\approx \int_{\overline{\mathrm{Mor}}_d(C, \mathbb{P}^r)} \prod_{i=1}^n [\mathrm{Inc}(p_i, x_i)] \\ &= \int_{\overline{\mathrm{Mor}}_d(C, \mathbb{P}^r)} (c_1(\mathcal{O}_{\mathrm{rel}}(1))^r)^n \\ &= \cdots \\ &= (r+1)^g.\end{aligned}$$

Virtual approach, cont.

$$\begin{aligned}\mathrm{Tev}_{g,n,d}^{\mathbb{P}^r} &\approx \# \bigcap_{i=1}^n \mathrm{Inc}(p_i, x_i) \\ &\approx \int_{\overline{\mathrm{Mor}}_d(C, \mathbb{P}^r)} \prod_{i=1}^n [\mathrm{Inc}(p_i, x_i)] \\ &= \int_{\overline{\mathrm{Mor}}_d(C, \mathbb{P}^r)} (c_1(\mathcal{O}_{\mathrm{rel}}(1))^r)^n \\ &= \cdots \\ &= (r+1)^g.\end{aligned}$$

However, this calculation is **incorrect** in general! Rather, it computes instead the “**virtual** Tevelev degrees” of \mathbb{P}^r :

$$\mathbf{v}\mathrm{Tev}_{g,n,d}^{\mathbb{P}^r} = (r+1)^g,$$

where

$$\mathrm{vTev}_{g,n,\beta}^X := \mathrm{virdeg}(\overline{\mathcal{M}}_{g,n}(X, \beta) \rightarrow \overline{\mathcal{M}}_{g,n} \times X^n).$$

Virtual count \neq actual count

Issue

There is excess intersection:

$$\text{Tev}_{g,n,d}^{\mathbb{P}^r} \neq \# \bigcap_{i=1}^n \text{Inc}(p_i, x_i) \neq \int_{[\overline{\text{Mor}}_d(C, \mathbb{P}^r)]^{\text{vir}}} \prod_{i=1}^n [\text{Inc}(p_i, x_i)]$$

Virtual count \neq actual count

Issue

There is excess intersection:

$$\text{Tev}_{g,n,d}^{\mathbb{P}^r} \neq \# \bigcap_{i=1}^n \text{Inc}(p_i, x_i) \neq \int_{[\overline{\text{Mor}}_d(C, \mathbb{P}^r)]^{\text{vir}}} \prod_{i=1}^n [\text{Inc}(p_i, x_i)]$$

Indeed, f_0, \dots, f_r could *all* vanish at p_1, \dots, p_n . Then, $f = [f_0 : \dots : f_n]$ would have n **base-points**. So $f \in \bigcap_{i=1}^n \text{Inc}(p_i, x_i)$, but f is *not* a map of degree d (merely a **quasimap**).

Virtual count \neq actual count

Issue

There is excess intersection:

$$\text{Tev}_{g,n,d}^{\mathbb{P}^r} \neq \# \bigcap_{i=1}^n \text{Inc}(p_i, x_i) \neq \int_{[\overline{\text{Mor}}_d(C, \mathbb{P}^r)]^{\text{vir}}} \prod_{i=1}^n [\text{Inc}(p_i, x_i)]$$

Indeed, f_0, \dots, f_r could *all* vanish at p_1, \dots, p_n . Then, $f = [f_0 : \dots : f_n]$ would have n **base-points**. So $f \in \bigcap_{i=1}^n \text{Inc}(p_i, x_i)$, but f is *not* a map of degree d (merely a **quasimap**). However, this can only happen if $d \geq n$, and is in some sense the worst behavior:

Theorem (Farkas-L. 2021)

If $d \geq rg + r$, then $\text{Tev}_{g,n,d}^{\mathbb{P}^r} = (r+1)^g$.

What to do if $d < rg + r$?

Theorem (Farkas-L. 2021)

If $d \geq rg + r$, then $\text{Tev}_{g,n,d}^{\mathbb{P}^r} = (r+1)^g$.

What to do if $d < rg + r$?

Theorem (Farkas-L. 2021)

If $d \geq rg + r$, then $\text{Tev}_{g,n,d}^{\mathbb{P}^r} = (r+1)^g$.

Observation: f_0, \dots, f_r are most likely to vanish at p_i if **linearly dependent**.

What to do if $d < rg + r$?

Theorem (Farkas-L. 2021)

If $d \geq rg + r$, then $\text{Tev}_{g,n,d}^{\mathbb{P}^r} = (r+1)^g$.

Observation: f_0, \dots, f_r are most likely to vanish at p_i if **linearly dependent**.

Brill-Noether theory: space of *linear series* $V \subset H^0(C, \mathcal{L})$ has expected dimension.

What to do if $d < rg + r$?

Theorem (Farkas-L. 2021)

If $d \geq rg + r$, then $\text{Tev}_{g,n,d}^{\mathbb{P}^r} = (r+1)^g$.

Observation: f_0, \dots, f_r are most likely to vanish at p_i if **linearly dependent**.

Brill-Noether theory: space of *linear series* $V \subset H^0(C, \mathcal{L})$ has expected dimension.

Hope: resolve excess intersection by **blowing up** $\overline{\text{Mor}}_d(C, \mathbb{P}^r)$ along loci where f_j are dependent. This gives the space of “complete collineations” (Vainsencher, Thaddeus, ...)

$$\text{Coll}_d(C, \mathbb{P}^r) \rightarrow \overline{\text{Mor}}_d(C, \mathbb{P}^r).$$

What to do if $d < rg + r$?

Theorem (Farkas-L. 2021)

If $d \geq rg + r$, then $\text{Tev}_{g,n,d}^{\mathbb{P}^r} = (r+1)^g$.

Observation: f_0, \dots, f_r are most likely to vanish at p_i if **linearly dependent**.

Brill-Noether theory: space of *linear series* $V \subset H^0(C, \mathcal{L})$ has expected dimension.

Hope: resolve excess intersection by **blowing up** $\overline{\text{Mor}}_d(C, \mathbb{P}^r)$ along loci where f_j are dependent. This gives the space of “complete collineations” (Vainsencher, Thaddeus, ...)

$$\text{Coll}_d(C, \mathbb{P}^r) \rightarrow \overline{\text{Mor}}_d(C, \mathbb{P}^r).$$

Consider instead intersection of **proper transforms**:

$$\bigcap_{i=1}^n \widetilde{\text{Inc}}(p_i, x_i) \subset \text{Coll}_d(C, \mathbb{P}^r).$$

Set-theoretic description of $\text{Coll}_d(C, \mathbb{P}^r)$

Set-theoretic description of $\text{Coll}_d(C, \mathbb{P}^r)$

$$\text{Coll}_d(C, \mathbb{P}^r) \rightarrow \overline{\text{Mor}}_d(C, \mathbb{P}^r).$$

is the *iterated* blow-up of the loci of linear dependent $[f_0 : \cdots : f_r]$,
in increasing order of rank.

Set-theoretic description of $\text{Coll}_d(C, \mathbb{P}^r)$

$$\text{Coll}_d(C, \mathbb{P}^r) \rightarrow \overline{\text{Mor}}_d(C, \mathbb{P}^r).$$

is the *iterated* blow-up of the loci of linear dependent $[f_0 : \cdots : f_r]$, in increasing order of rank.

A point of $\text{Coll}_d(C, \mathbb{P}^r)$ consists of the following data:

- ▶ The $(r + 1)$ -tuple $[f_0 : \cdots : f_r]$, thought of as a *non-zero linear map up to scaling*

$$\phi_0 : \mathbb{C}^{r+1} \rightarrow H^0(C, \mathcal{L})$$

If ϕ_0 injective, then stop. Otherwise, add the data of:

Set-theoretic description of $\text{Coll}_d(C, \mathbb{P}^r)$

$$\text{Coll}_d(C, \mathbb{P}^r) \rightarrow \overline{\text{Mor}}_d(C, \mathbb{P}^r).$$

is the *iterated* blow-up of the loci of linear dependent $[f_0 : \cdots : f_r]$, in increasing order of rank.

A point of $\text{Coll}_d(C, \mathbb{P}^r)$ consists of the following data:

- ▶ The $(r + 1)$ -tuple $[f_0 : \cdots : f_r]$, thought of as a *non-zero linear map up to scaling*

$$\phi_0 : \mathbb{C}^{r+1} \rightarrow H^0(C, \mathcal{L})$$

If ϕ_0 injective, then stop. Otherwise, add the data of:

- ▶ A non-zero linear map up to scaling

$$\phi_1 : \ker(\phi_0) \rightarrow \text{coker}(\phi_0).$$

If ϕ_1 injective, then stop. Otherwise, add the data of:

Set-theoretic description of $\text{Coll}_d(C, \mathbb{P}^r)$

$$\text{Coll}_d(C, \mathbb{P}^r) \rightarrow \overline{\text{Mor}}_d(C, \mathbb{P}^r).$$

is the *iterated* blow-up of the loci of linear dependent $[f_0 : \cdots : f_r]$, in increasing order of rank.

A point of $\text{Coll}_d(C, \mathbb{P}^r)$ consists of the following data:

- ▶ The $(r + 1)$ -tuple $[f_0 : \cdots : f_r]$, thought of as a *non-zero linear map up to scaling*

$$\phi_0 : \mathbb{C}^{r+1} \rightarrow H^0(C, \mathcal{L})$$

If ϕ_0 injective, then stop. Otherwise, add the data of:

- ▶ A non-zero linear map up to scaling

$$\phi_1 : \ker(\phi_0) \rightarrow \text{coker}(\phi_0).$$

If ϕ_1 injective, then stop. Otherwise, add the data of:

- ▶ ...

Main result

Main result

Theorem (L. 2023)

The proper transforms $\widetilde{\text{Inc}}(p_i, x_i)$ intersect transversely, and in the locus of honest maps of degree d in $\text{Coll}_d(C, \mathbb{P}^r)$. In particular:

Main result

Theorem (L. 2023)

The proper transforms $\widetilde{\text{Inc}}(p_i, x_i)$ intersect transversely, and in the locus of honest maps of degree d in $\text{Coll}_d(C, \mathbb{P}^r)$. In particular:

$$\text{Tev}_{g,n,d}^{\mathbb{P}^r} = \int_{\text{Coll}_d(C, \mathbb{P}^r)} \prod_{i=1}^n [\widetilde{\text{Inc}}(p_i, x_i)]$$

Main result

Theorem (L. 2023)

The proper transforms $\widetilde{\text{Inc}}(p_i, x_i)$ intersect transversely, and in the locus of honest maps of degree d in $\text{Coll}_d(C, \mathbb{P}^r)$. In particular:

$$\begin{aligned} \text{Tev}_{g,n,d}^{\mathbb{P}^r} &= \int_{\text{Coll}_d(C, \mathbb{P}^r)} \prod_{i=1}^n [\widetilde{\text{Inc}}(p_i, x_i)] \\ &= \int_{\text{Gr}(r+1, d+1)} \sigma_{1^r}^g \cdot \left(\sum_{\substack{\mu \subset (n-r-2)^r \\ \lambda_0 \leq n-r-1}} \sigma_\mu \sigma_{\bar{\mu}} \right) \end{aligned}$$

Main result

Theorem (L. 2023)

The proper transforms $\widetilde{\text{Inc}}(p_i, x_i)$ intersect transversely, and in the locus of honest maps of degree d in $\text{Coll}_d(C, \mathbb{P}^r)$. In particular:

$$\begin{aligned} \text{Tev}_{g,n,d}^{\mathbb{P}^r} &= \int_{\text{Coll}_d(C, \mathbb{P}^r)} \prod_{i=1}^n [\widetilde{\text{Inc}}(p_i, x_i)] \\ &= \int_{\text{Gr}(r+1, d+1)} \sigma_{1^r}^g \cdot \left(\sum_{\substack{\mu \subset (n-r-2)^r \\ \lambda_0 \leq n-r-1}} \sigma_\mu \sigma_{\bar{\mu}} \right) \end{aligned}$$

Main result

Theorem (L. 2023)

The proper transforms $\widetilde{\text{Inc}}(p_i, x_i)$ intersect transversely, and in the locus of honest maps of degree d in $\text{Coll}_d(C, \mathbb{P}^r)$. In particular:

$$\begin{aligned} \text{Tev}_{g,n,d}^{\mathbb{P}^r} &= \int_{\text{Coll}_d(C, \mathbb{P}^r)} \prod_{i=1}^n [\widetilde{\text{Inc}}(p_i, x_i)] \\ &= \int_{\text{Gr}(r+1, d+1)} \sigma_{1^r}^g \cdot \left(\sum_{\substack{\mu \subset (n-r-2)^r \\ \lambda_0 \leq n-r-1}} \sigma_\mu \sigma_{\overline{\mu}} \right) . \end{aligned}$$

A direct calculation on $\text{Coll}_d(C, \mathbb{P}^r)$ is difficult. Instead, proceed by *degeneration*.

RSK

Recall that, when $d \geq rg + r$, we have $\text{Tev}_{g,n,d}^{\mathbb{P}^r} = (r+1)^g$. Can we see this from the new formula?

RSK

Recall that, when $d \geq rg + r$, we have $\text{Tev}_{g,n,d}^{\mathbb{P}^r} = (r+1)^g$. Can we see this from the new formula?

Theorem (L.-Solotko 2025)

$$\begin{aligned}\text{Tev}_{g,n,d}^{\mathbb{P}^r} &= \int_{\text{Gr}(r+1,d+1)} \sigma_{1^r}^g \cdot \left(\sum_{\mu \subset (n-r-2)^r} \sigma_\mu \sigma_{\bar{\mu}} \right)_{\lambda_0 \leq n-r-1} \\ &= \#\{w : [g] \rightarrow [r+1] \mid \text{combinatorial constraints} \} \\ &\leq (r+1)^g.\end{aligned}$$

Recall that, when $d \geq rg + r$, we have $\text{Tev}_{g,n,d}^{\mathbb{P}^r} = (r+1)^g$. Can we see this from the new formula?

Theorem (L.-Solotko 2025)

$$\begin{aligned}\text{Tev}_{g,n,d}^{\mathbb{P}^r} &= \int_{\text{Gr}(r+1,d+1)} \sigma_{1^r}^g \cdot \left(\sum_{\mu \subset (n-r-2)^r} \sigma_\mu \sigma_{\bar{\mu}} \right)_{\lambda_0 \leq n-r-1} \\ &= \#\{w : [g] \rightarrow [r+1] \mid \text{combinatorial constraints} \} \\ &\leq (r+1)^g.\end{aligned}$$

Completes ideas of Gillespie–Reimer–Berg (2021):

Schubert calculus \rightarrow count of Young tableaux $\xrightarrow{\text{RSK}}$ count of words

Some open directions

Some open directions

- ▶ How many maps $f : C \rightarrow \mathbb{P}^r$ are incident to
higher-dimensional linear spaces, i.e. $f(p_i) \in \mathbb{P}^{s_i} \subset \mathbb{P}^r$?

Some open directions

- ▶ How many maps $f : C \rightarrow \mathbb{P}^r$ are incident to *higher-dimensional linear spaces*, i.e. $f(p_i) \in \mathbb{P}^{s_i} \subset \mathbb{P}^r$?
Done for $r = 2$, but the proof is much more complicated than the answer...

points $\in \mathbb{P}^r \rightsquigarrow$ matroid \rightsquigarrow T -orbit on $\text{Gr}(r+1, n)$
linear spaces $\subset \mathbb{P}^r \rightsquigarrow ?? \rightsquigarrow ????$

Some open directions

- ▶ How many maps $f : C \rightarrow \mathbb{P}^r$ are incident to *higher-dimensional linear spaces*, i.e. $f(p_i) \in \mathbb{P}^{s_i} \subset \mathbb{P}^r$?
Done for $r = 2$, but the proof is much more complicated than the answer...

points $\in \mathbb{P}^r \rightsquigarrow$ matroid \rightsquigarrow T -orbit on $\text{Gr}(r+1, n)$

linear spaces $\subset \mathbb{P}^r \rightsquigarrow ?? \rightsquigarrow ????$

- ▶ How many maps $f : C \rightarrow X$ for other varieties X ?

Some open directions

- ▶ How many maps $f : C \rightarrow \mathbb{P}^r$ are incident to *higher-dimensional linear spaces*, i.e. $f(p_i) \in \mathbb{P}^{s_i} \subset \mathbb{P}^r$?
Done for $r = 2$, but the proof is much more complicated than the answer...

points $\in \mathbb{P}^r \rightsquigarrow$ matroid \rightsquigarrow T -orbit on $\text{Gr}(r+1, n)$

linear spaces $\subset \mathbb{P}^r \rightsquigarrow ?? \rightsquigarrow ????$

- ▶ How many maps $f : C \rightarrow X$ for other varieties X ?
We know how to do the **virtual** enumeration in many cases (e.g. Grassmannians, hypersurfaces, some toric varieties), but removing the excess intersections would require better **Brill-Noether** results.