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Denote the answer by Tevgjnyd, the geometric Tevelev degree of

P

Assume
r+1

n= d—g+1

to expect a finite answer.
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» Cela-Pandharipande-Schmitt (2021): complete answer when
r =1, recovered by Farkas-L., Cavalieri-Dawson

» Bertram-Daskalopoulos-Wentworth (1996) enumerated f
virtually, recovered by Siebert-Tian, Marian-Oprea,
Buch-Pandharipande
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More precisely,

Mory(C,P") :={(L,[fo:---: £]): L € Pic?(C), f; € H(C, £)}/C*.
(If d > 2g — 2), then
Morg(C,P") — Picd(C)
is a projective bundle with fibers
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hence virdim(Mory(C,P")) =g+ (r+1)(d —g+1) — L.

In fact, Mory(C,Pr) = Quot(OL, 1, d).
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eg ifx=[1:0:---:0], then

Inc(p,x) := {F : fi(p) = -~ = £(p) = 0} C Morg(C,P"),

cut out by r linear equations.
Then,

n
Tevgjmd ~ # ﬂ Inc(pi, x;).
i=1
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n
Tevy ,q ~ # ﬂ Inc(pi, x;)
i=1

/1\/[ H [II’IC Pi, XI

org(C,P") 12
- / ((Ora(1))7)"
Mory(C,Pr)

=(r+1)8.
However, this calculation is incorrect in general! Rather, it
computes instead the “virtual Tevelev degrees” of P’:

vTevgjn’d =(r+1)8,
where

vTeV;nﬁ := virdeg(Mg (X, 8) = Mgn x X").
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eVgna 7 # [ | Inc(pi,x) # TTiEnc(er, )]
i=1

Indeed, fy, ..., f, could all vanish at pi,...,p,. Then,
f=1[fo:--: fy] would have n base-points. So f € (_; Inc(pj, xi),
but f is not a map of degree d (merely a quasimap).

However, this can only happen if d > n, and is in some sense the
worst behavior:

Theorem (Farkas-L. 2021)
Ifd > rg + r, then Tevgnd = (r+1)8.
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Theorem (Farkas-L. 2021)

Ifd > rg +r, then Tevgn’d = (r+1)5.

Observation: fy, ..., f, are most likely to vanish at p; if linearly
dependent.

Brill-Noether theory: space of linear series V C H°(C, L) has
expected dimension.

Hope: resolve excess intersection by blowing up Mory(C,P") along
loci where f; are dependent. This gives the space of “complete
collineations” (Vainsencher, Thaddeus, ...)

Colly(C,P") — Morg(C,P").

Consider instead intersection of proper transforms:

() Inc(pi, x;) € Colly(C,P").
i=1



Set-theoretic description of Colly(C,P")



Set-theoretic description of Colly(C,P")

COHd(C, Pr) — md(C, Pr).

is the iterated blow-up of the loci of linear dependent [fy : - -

in increasing order of rank.

L,



Set-theoretic description of Colly(C,P")

COHd(C, Pr) — md(C, Pr).

is the iterated blow-up of the loci of linear dependent [fy : ---: f],
in increasing order of rank.
A point of Colly(C,P") consists of the following data:

» The (r + 1)-tuple [fo : - - - : ], thought of as a non-zero linear
map up to scaling

¢o: C — HO(C, L)

If ¢g injective, then stop. Otherwise, add the data of:



Set-theoretic description of Colly(C,P")

COHd(C, Pr) — md(C, Pr).

is the iterated blow-up of the loci of linear dependent [fy : ---: f],
in increasing order of rank.
A point of Colly(C,P") consists of the following data:

» The (r + 1)-tuple [fo : - - - : ], thought of as a non-zero linear
map up to scaling

¢o: C — HO(C, L)

If ¢g injective, then stop. Otherwise, add the data of:

» A non-zero linear map up to scaling

o1 : ker(¢p) — coker(¢yp).

If ¢1 injective, then stop. Otherwise, add the data of:



Set-theoretic description of Colly(C,P")

COHd(C, Pr) — md(C, Pr).

is the iterated blow-up of the loci of linear dependent [fy : ---: f],
in increasing order of rank.
A point of Colly(C,P") consists of the following data:

» The (r + 1)-tuple [fo : - - - : ], thought of as a non-zero linear
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If ¢1 injective, then stop. Otherwise, add the data of:
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Main result

Theorem (L. 2023)

The proper transforms I?c(p,-, x;) intersect transversely, and in the
locus of honest maps of degree d in Colly(C,P"). In particular:

n

Tev?, , = /C [T tc(or, )]

olly(C,Pr) i1

— g E : _
—/ Opr TuOm
Gr(r+1,d+1)

pC(n—r=2)" Ao<n—r—1

A direct calculation on Colly(C,P") is difficult. Instead, proceed
by degeneration.
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Recall that, when d > rg + r, we have Tev: (r+1)&. Can

g.nd —
we see this from the new formula?
Theorem (L.-Solotko 2025)
Pr g
Tevg,n,d _/G L dat O1r* Z ouoy
r(r+1,d+1) uC(n—r—2)r a<nr1

= #{w : [g] = [r + 1] | combinatorial constraints }
< (r+1)E.

Completes ideas of Gillespie-Reimer-Berg (2021):

RSK
Schubert calculus — count of Young tableaux —— count of words
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Some open directions

» How many maps f : C — P are incident to
higher-dimensional linear spaces, i.e. f(p;) € P% C P"?
Done for r = 2, but the proof is much more complicated than
the answer...

points € P" ~» matroid ~» T-orbit on Gr(r + 1, n)
linear spaces C P ~~ 77 ~ 7777

» How many maps f : C — X for other varieties X7
We know how to do the virtual enumeration in many cases
(e.g. Grassmannians, hypersurfaces, some toric varieties), but
removing the excess intersections would require better
Brill-Noether results.



