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Proto-question

How many curves are there in a space X , interpolating through the
expected number of points?
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Tevelev degrees of Pr

Fix:

▶ a general pointed curve (C , p1, . . . , pn) of genus g , and

▶ general points x1, . . . , xn ∈ Pr .

Question

How many degree d maps f : C → Pr are there, with f (pi ) = xi ,
for i = 1, 2, . . . , n?

Denote the answer by TevP
r

g ,n,d , the geometric Tevelev degree of
Pr .
Assume

n =
r + 1

r
· d − g + 1

to expect a finite answer.
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History

Question

How many degree d maps f : C → Pr are there, with f (pi ) = xi ,
for i = 1, 2, . . . , n?

▶ Castelnuovo (1889): when n = r + 2,

TevP
r

g ,n,d = #(g r
d ’s on C ) = g !· 1! · 2! · · · r !

( g
r+1)!(

g
r+1 + 1)! · · · ( g

r+1 + r)!
.

▶ E. Larson (2016): TevP
r

g ,n,d > 0 as long as n ≥ r + 2.
▶ Tevelev (2020): when r = 1 and (n, d) = (g + 3, g + 1),

TevP
1

g ,n,d = 2g .

▶ Cela-Pandharipande-Schmitt (2021): complete answer when
r = 1, recovered by Farkas-L., Cavalieri-Dawson

▶ Bertram-Daskalopoulos-Wentworth (1996) enumerated f
virtually, recovered by Siebert-Tian, Marian-Oprea,
Buch-Pandharipande
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Virtual approach (Bertram-Daskalopoulos-Wentworth)

Let Mord(C ,Pr ) be a compactified moduli space of maps C
f−→ Pr .

More precisely,

Mord(C ,Pr ) := {(L, [f0 : · · · : fr ]) : L ∈ Picd(C ), fj ∈ H0(C ,L)}/C∗.

(If d > 2g − 2), then

Mord(C ,Pr ) → Picd(C )

is a projective bundle with fibers

P(H0(C ,L)r+1) = P(r+1)(d−g+1)−1,

hence vir dim(Mord(C ,Pr )) = g + (r + 1)(d − g + 1)− 1.

In fact, Mord(C ,Pr ) ∼= Quot(Or+1
C , 1, d).
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Virtual approach, cont.

Mord(C ,Pr ) := {(L, [f0 : · · · : fr ]) : L ∈ Picd(C ), fj ∈ H0(C ,L)}/C∗.

Define Inc(p, x) ⊂ Mord(C ,Pr ) to be “the locus where f (p) = x .”
e.g. if x = [1 : 0 : · · · : 0], then

Inc(p, x) := {f : f1(p) = · · · = fr (p) = 0} ⊂ Mord(C ,Pr ),

cut out by r linear equations.
Then,

TevP
r

g ,n,d ≈ #
n⋂

i=1

Inc(pi , xi ).
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Virtual approach, cont.

TevP
r

g ,n,d ≈ #
n⋂

i=1

Inc(pi , xi )

≈
∫
Mord (C ,Pr )

n∏
i=1

[Inc(pi , xi )]

=

∫
Mord (C ,Pr )

(c1(Orel(1))
r )n

= · · ·
= (r + 1)g .

However, this calculation is incorrect in general! Rather, it
computes instead the “virtual Tevelev degrees” of Pr :

vTevP
r

g ,n,d = (r + 1)g ,

where

vTevXg ,n,β := virdeg(Mg ,n(X , β) → Mg ,n × X n).
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Virtual count ̸= actual count

Issue

There is excess intersection:

TevP
r

g ,n,d ̸= #
n⋂

i=1

Inc(pi , xi ) ̸=
∫
[Mord (C ,Pr )]vir

n∏
i=1

[Inc(pi , xi )]

Indeed, f0, . . . , fr could all vanish at p1, . . . , pn. Then,
f = [f0 : · · · : fn] would have n base-points. So f ∈

⋂n
i=1 Inc(pi , xi ),

but f is not a map of degree d (merely a quasimap).
However, this can only happen if d ≥ n, and is in some sense the
worst behavior:

Theorem (Farkas-L. 2021)

If d ≥ rg + r , then TevP
r

g ,n,d = (r + 1)g .
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What to do if d < rg + r?

Theorem (Farkas-L. 2021)

If d ≥ rg + r , then TevP
r

g ,n,d = (r + 1)g .

Observation: f0, . . . , fr are most likely to vanish at pi if linearly
dependent.
Brill-Noether theory: space of linear series V ⊂ H0(C ,L) has
expected dimension.
Hope: resolve excess intersection by blowing up Mord(C ,Pr ) along
loci where fj are dependent. This gives the space of “complete
collineations” (Vainsencher, Thaddeus, ...)

Colld(C ,Pr ) → Mord(C ,Pr ).

Consider instead intersection of proper transforms:

n⋂
i=1

Ĩnc(pi , xi ) ⊂ Colld(C ,Pr ).
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Set-theoretic description of Colld(C ,Pr)

Colld(C ,Pr ) → Mord(C ,Pr ).

is the iterated blow-up of the loci of linear dependent [f0 : · · · : fr ],
in increasing order of rank.
A point of Colld(C ,Pr ) consists of the following data:

▶ The (r + 1)-tuple [f0 : · · · : fr ], thought of as a non-zero linear
map up to scaling

ϕ0 : Cr+1 → H0(C ,L)

If ϕ0 injective, then stop. Otherwise, add the data of:

▶ A non-zero linear map up to scaling

ϕ1 : ker(ϕ0) → coker(ϕ0).

If ϕ1 injective, then stop. Otherwise, add the data of:

▶ ...
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Main result

Theorem (L. 2023)

The proper transforms Ĩnc(pi , xi ) intersect transversely, and in the
locus of honest maps of degree d in Colld(C ,Pr ). In particular:

TevP
r

g ,n,d =

∫
Colld (C ,Pr )

n∏
i=1

[Ĩnc(pi , xi )]

=

∫
Gr(r+1,d+1)

σg
1r ·

 ∑
µ⊂(n−r−2)r

σµσµ


λ0≤n−r−1

.

A direct calculation on Colld(C ,Pr ) is difficult. Instead, proceed
by degeneration.
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RSK

Recall that, when d ≥ rg + r , we have TevP
r

g ,n,d = (r + 1)g . Can
we see this from the new formula?

Theorem (L.-Solotko 2025)

TevP
r

g ,n,d =

∫
Gr(r+1,d+1)

σg
1r ·

 ∑
µ⊂(n−r−2)r

σµσµ


λ0≤n−r−1

= #{w : [g ] → [r + 1] | combinatorial constraints }
≤ (r + 1)g .

Completes ideas of Gillespie–Reimer-Berg (2021):

Schubert calculus → count of Young tableaux
RSK−−→ count of words
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Some open directions

▶ How many maps f : C → Pr are incident to
higher-dimensional linear spaces, i.e. f (pi ) ∈ Psi ⊂ Pr?
Done for r = 2, but the proof is much more complicated than
the answer...

points ∈ Pr ⇝ matroid⇝ T -orbit on Gr(r + 1, n)

linear spaces ⊂ Pr ⇝ ?? ⇝ ????

▶ How many maps f : C → X for other varieties X?
We know how to do the virtual enumeration in many cases
(e.g. Grassmannians, hypersurfaces, some toric varieties), but
removing the excess intersections would require better
Brill-Noether results.
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