Intersection Theory of Compactified Jacobians

1. The problem

1. The problem

For discrete data
$$A = (a_1, ..., a_n)$$
 $\sum_{a_1} = 0$

 $\operatorname{Jac}(C_{q,n}) = \{(C_{n}, x_{1}, \dots, x_{n}, L)\}$ abelian scheme dim (4q-3+n) $O(\int \int a_{jA}(c_{j}, x_{i_{j}}, ..., x_{n})$ $Mg_{in} = O_{c}(Za_{i}, x_{i})$ $dum \quad 3q-3+n$

Setup introduces several cycles
(1) Double Ramification "
locus = aja
$$n \log = \{(c_{j,x_{1j},...,x_n}) \mid \Im(Za_{i,x_{ij}}) \geq 9\}$$

cycle = aja ([0]) $\in CH^{9}(M_{g,n})$

Setup introduces several cycles
(1) Double Ramification "
locus =
$$a_{jA} \cap [o] = \{(c_{x_{i_1},...,x_n}) \mid \Im(Za_{i_i}x_{i_i}) \approx 9\}$$

cycle = $a_{jA} \cap [o] = \{(c_{jX_{i_1},...,X_n}) \mid \Im(Za_{i_i}x_{i_i}) \approx 9\}$
(2) "Higher ramification" $A_{i_1,...,A_k}$
 $\{(c_{jX_{i_1},...,X_n}) \mid \Im(Za_{i_k}x_{i_i}) \approx \Im(Za_{i_k}x_{i_i}) \approx \Im)$
 $\prod_{i=1}^{k} a_{jA_i} ((o)) \in CH^{k}(M_{g,n})$

(3) Brill - Noether cycles
Can change
$$a_{JA} = \omega^{L}(\Sigmaa_{i}, x_{i}), \quad k(2q-2) + \Sigmaa_{i} = d$$

locus $Wg_{,r,A} = \{(C, x_{i}, ..., x_{n}) | h^{\circ}(\omega^{L}(\Sigmaa_{i}, x_{i})) \ge r+i\}$
cycle $w_{g,r,A} = \Delta_{g+r-d}^{r+i} = c(-R\pi_{*}\omega^{L}(\Sigmaa_{i}, x_{i}))$
determinantal formula
 $r=0 \quad i = c_{g-d}(-R\pi_{*}\omega^{L}(\Sigmaa_{i}, x_{i}))$

(CH(Mg,n) membership card) Three Problems (A) Meaningfully extend classes to Mg,n (B) Are extensions in R* (Mg,n) (c) Calculate class of extensions (in terms of standard generators of R*(Mg,n))

(3) Via compactified Jacobians

(3) Via compactified Jacobians (Pagani-Ricolfi-van Zelm 2018)

Caution
(2)
$$DRg, A_{1}, \dots, A_{\ell} \neq \prod_{i=1}^{\ell} DRg, A_{i}$$
 on Mg, n
(3) $w_{g,r,A}$ not determinantal locus on Mg, n

B: (1) was solved by Faber-Pandharipande (2002) (2)-(3) were conjectured

C: (1) solved by Janda-Pandharipande-Pixton-Evonkine (2013) (2)-(3) out of reach

B: (1) was solved by Faber-Pandharipande (2002) (2)-(3) were conjectured C: (1) solved by Janda-Pandharipande-Pixton-Zvonkine (2013) (2)-(3) out of reach Goal for today: - Describe framework in which we can approach all problems on same faiting and solve A, B, C for all (1)-(3).

$$Jac(c_{g,n}) \subset ?$$

 $I \qquad I$
 $M_{g,n} \subset M_{g,n}$

Obvious candidates fail. Not compact, Hausdorff. Less naive canditates don't have aj

1. Thm: (M-Wise, 18?) An optimal compactification exists:

2. Thm: (Holmes-M-Pandharipande-Pixton-Schmitt 22, Abreu-M-Pagani) Soon

There are explicit formulas for all classes (1)-(3)

(or toroidal embedding)

Structures:

1. Log Structure

$$\mathcal{D}_{x}^{*} \subset \mathcal{M}_{x} \subset \mathcal{D}_{x}$$

 $\left\{ f \in \mathcal{D}_{x} \mid f \text{ is a unit on } x - D \right\}$

Structures: 1. Log Structure $D_x^* \subset M_x \subset D_x$ $\{f \in \mathcal{D}_x \mid f \text{ is a whit on } x - D\}$

2. Stratification $\{\overline{M}_{x} = M_{x}/9^{*}_{x} \text{ constant}\}$

Around each $x \in X$, we have (etale) local chart $(X, D) \longrightarrow (V(\sigma_x), V(\sigma_x) - T) = \text{Spec } \mathbb{Z}[M_{X,x}]$ toric variety

Tropicalization
Around each
$$x \in X$$
, we have (etale) local chart
 $(X, D) \longrightarrow (V(\sigma_x), V(\sigma_x) - T) = \text{Spec } \mathbb{Z}[M_{X,x}]$
toric variety

Examples:

• X toric
$$\dots$$
 Strata = T-orbite
 $D = X - T$
 $\sum_{(x,p)} = Fan$
• $\overline{M}_{g,n}, D = \overline{M}_{g,n} - M_{g,n}$
Strata \iff Stable graphs Γ
 $\sum_{\overline{M}_{g,n}} = M_{g,n} \pmod{space of tropical curves}$
 $= \lim_{\overline{M}_{g,n}} \mathbb{R}_{g,n}^{c(r)}$

• $S = Spec C[[t]], C \rightarrow S$ degeneration of curves

Better: {Log Blowups}
$$\longleftrightarrow \begin{cases} Subdivisions \\ \Sigma(x', p') \rightarrow \Sigma(x, p) \end{cases}$$

4.
$$\log CH^*(X, D) = \lim_{X' \to X} CH^*(X')$$

log blowups

4.
$$\log CH^*(X, D) = \lim_{x \to X} CH^*(X')$$

 $X' \to X$
log blowups

. A class TelogCH(X,D) is a collection of classes Jy ECH(Y) for sufficiently fine y→x, s.t Jy | w = J= | w for all Y _ _ Z

In general, full understanding way out of reach.

Nevertheless, we can work with it. Large supply of classes come from combinatorics Thm (M-Pandharipande-Schmitt, M-Ranganathan) 3 degrée preserving homomorphism $\phi: PP(\Sigma_{(X,D)}) \longrightarrow \log CH^*(X)$ (analogue of non-equivariant limit CH_(V)→CH(V))

Example

[-]+[.] + X j*[c(N(2ix)] *y + (x+y)2

γ

If CH*(X) has distinguished R*(X) CCH*(X) log R*(X) = (R*(X), PP(ZX)) cbgCH*(X) often large enough for applications

Jacobians

For tropical geometers Twistors = PL(Zc) = { Chip firmg mores] Established Solution

Established Solution

Solve (2) by stability condition: Fix small
set of allowed multidegrees (*stable multidegrees")
and twist limit to unique
$$\partial$$
-stable one.
 $\chi_n \simeq \mathcal{D}(\mathcal{D}_n) \longrightarrow \mathcal{D}(\mathcal{D}_n) \otimes \mathcal{A}$
 ∂ -stable

For example, if
$$\overline{D}_n$$
 is Cartier, of
multidegree
 $-3 \swarrow 3$, stable limit is
 $\overline{D(\overline{D}_n) \otimes D((\bigcirc 1))} \simeq -1 \swarrow 1$
 $\overline{D(-E)}$

For every (generic)
$$\hat{\Theta}$$
, there is a proper, smooth
 $\{c, L\} = Jac \subset Jac = \{c', L\}$
 $\int \int f = \int \partial stable$
 $Mg_{in} \subset Mg_{in}$ quasi-stable mdeg

Xog Solution
Morally, problem is as follows.
Xn determined by transition functions
uij e
$$\mathcal{D}_{e_n}^*$$

Over s, uij may acquire zeroes and poles
But uij e J_{*} $\mathcal{D}_{e_n}^* = \mathcal{M}_{e_n}^{gp}$ canonically.

_

How to think about it?
1. Algebraically:
$$\log \operatorname{Jac}(c/s) = \lim_{l \to \infty} \operatorname{Jac}(c')/\operatorname{PL(Zc')}$$

 $\log \operatorname{blowups}$
 $c' \rightarrow c$
Muracle Invariance: $\operatorname{H'(C}, \operatorname{M_c^{\operatorname{SP}}}) = \operatorname{H'(C'}, \operatorname{M_c'^{\operatorname{SP}}})$
Toistor Nanishing:
 $-3 \bigvee_{l \to \infty} 3 = -3 \bigvee_{l \to \infty} 4 \operatorname{m} \operatorname{LogPie}$

Recall our dragsam $J_{ac}(C_{q,n}) = \{(C_{1,x_{1,-1},x_{n}},L)\}$ ° () ajA Mg,n

mes Got DR, HR, BN on Mg, n out of this 1 2 3

For DR problem (1)
Want:
$$a_{j,n}$$
: $CH(X_{og} Jac) \longrightarrow CH(M_{g,n})$
 $[o] \longrightarrow DR_{g,A} = a_{j,A}^{*}([o])$

but cannot.

Settle:
$$a_{A}^{*}: \log CH(X_{og}J_{uc}) \longrightarrow \log CH(\overline{M}_{g,u})$$

 $[o] \longrightarrow a_{A}^{*}([o]):= \log DR_{g,A}$

In practice : For every 8 (also Abreu-Pacini)

The collection
$$(a_{j,A}^{\bullet})^{*}([o]) = DR_{g,A}^{\bullet}$$
 is the logDR.
Fact $(A)^{*}$ DRg, $A = ret_{x}(logDRg, A)$
Thus $(C)^{*}(Holmes - M - Pand havipande - Pixton - Schmitt)$
There exists explicit formula (can implement on computer)
 $logDRg, A = F(\psi_{i,j}K, Q) \in logR^{*}(Mg, n)$
 $\in R^{*}(Mg, n) \in P(ZM_{g, n})$

What has been gained?
• Product Formula restored in
$$\log CH^*(\overline{M}_{g,n})$$

($\mathring{A}z$) $DR_{g,A,...,A_{Q}} = (ret)_*(\prod_{i=1}^{L} \log DR_{g,A_i}) \in CH^{-1}(\overline{M}_{g,n})$

The Brill-Noether loci can also be handled.

.

- Properties of the formulas (Invariance, Nall-crossing)

- Study of BN relations (structure, completeness)

Thank you for your attention!