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First Part of Hilbert’s 16th Problem (most common in-
terpretation): Find isotopy types of non-singular real alge-
braic curves in RP2 of (each?) given degree.

Easy for degree ≤ 5
Solved by D.A. Gudkov for degree 6
Solved by O.Ya. Viro for degree 7

Harnack bound for the number of connected components:

b0(RA) ≤ g(A) + 1 = 1
2
(m− 1)(m− 2) + 1

where m = deg(A). If “=”, then A is called M-curve

Oleg Viro observed that many restrictions have topological
nature. He gave a precise meaning to this informal assertion.

Definition. (Viro) A flexible curve of degree m in RP2 is a
smooth oriented 2-submanifold in CP2 such that:

• [A] = m[CP1] in H2(CP2) (homological degree m)

• genus(A) = (m− 1)(m− 2)/2

• conj(A) = A (invariance under conjugation)

• CT (RA) ∼ T (A)|RA (R- and C-tangent bundles)

Open question. Do there exist a flexible curve A such that
RA is not isotopic to the real locus of any real algebraic curve
of the same degree?
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Notation:
p = #(even ovals) =encercled by even nb of other ovals
n = #(odd ovals) =encercled by odd nb of other ovals

Examples of topological restrictions for degree m = 2k

• Petrovsky Inequality: |p− n| ≤ 3
8
m2 + . . .

• Gudkov-Rohlin congr.: M -curve ⇒ p− n ≡ k2 mod 8

For any degree:

• (by definition) Harnack bound: p + n ≤ 1
2
m2 + . . .

• Arnold Inequality: #(non-empty ovals) ≤ 1
4
m2 + . . .

• Various improvments of the linear terms in all the above

Non-topological restrictions.
(Formally speaking: not (yet?) known to be topological)

Bezout Theorem for auxiliary curves.

Examples:
A curve of degree m cannot have:
2 nests of depths d1, d2 if 2(d2 + d2) > m (auxiliary line)
5 nests of depths d1, ..., d5 if 2

∑
di > m (auxiliary conic)

(Impossible for m < 14)

Def. A nest of depth d is a union of d nested ovals.

Middle class (between flexible and real algebraic) is
Real pseudoholomorphic curves.

These are Conj-invariant J-holomorphic curves in CP2 where
J is a conj-anti-invariant almost complex structure tamed by
the Fubini-Studi symplectic form.

Being flexible curves, they satisfy all topological restrictions.

Due to Gromov’s theory they satisfy all Bezout restrictions
with rational auxiliary curves.

(I do not know if there are Bezout restrictions with non-
rational curves which cannot be proven with rational ones.)
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Open question (Top vs. Symp) Do there exist flexible
curve A such that RA is not isotopic to the real locus of any
real pseudoholomorphic curve of the same degree?

Open question (Symp vs. Alg) Do there exist a smooth
real pseudoholomorphic curve A such that RA is not isotopic
to the real locus of any real algebraic curve of the same degree?

Weak “Symp vs. Alg” (but it was open a month ago)
Do there exist a smooth real pseudoholomorphic curve A
such that (CP2, A) does not admit any conj-equivariant dif-
feomorhism with (CP2, B) with a real algebraic B?

In this talk I give an affirmative answer.

Remark 1. The weak version of “Top vs. Symp” does not
make much sense because one can always spoil a flexible curve
by gluing a conjugate pair of knotted 2-spheres.

Remark 2. The question “Symp vs. Alg” without the smooth-
ness condition has a positive answer. The simplest exam-
ples are pseudoline arrangements not satisfying Pappus or
Desargues Theorem.

Remark 3. I classified up to isotopy real ps.-hol. M -curves
of degree 8 (subject of my talk in TAU about 20 years ago).

Remark 4. Real ps.-holo. curves serve not only to mark the
limits of restrictions. I used them to prove algebraic unreal-
izability of two oval arrangements by 8th degree M-curves.

End of the introduction

Definition. A real alg. curve A is a complex curve invariant
by (endowed with) a complex conjugation. RA = Fix(conj).

Definition. A is separating or Type I if A\RA = A+tA− is
not connected. A complex orientation of RA is the boundary
orientation from A+ or from A−.

Definition. An oval of a separating odd degree curve A is
positive (negative) if it is oriented w.r.t. the pseudoline of RA
like this:

negativepositive
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Notation.
Λp

+ = number of positive even ovals,
Λp
− = number of negative even ovals,

Λn
+ = number of positive odd ovals,

Λn
− = number of negative odd ovals.

Main Theorem. Let A be a smooth real algebraic separating
curve in P2 of degree m = 2k + 1 with l ovals. Then

Λp
+ + Λn

− + 1 ≥ l − k2 + 2k

2
and Λn

+ + Λp
− ≥

l − k2 + 2k

2
.

Setting l = g − 2s (i.e., saying that A is an (M − 2s)-curve):

Λp
+ + Λn

− + 1 ≥ k2 + k

2
− s and Λn

+ + Λp
− ≥

k2 + k

2
− s.

Corollary. The following complex orientations are unrealiz-
able by a real algebraic curve of degree 9.

. . .

(9 negative ovals)

Indeed, if k = 4, l = 12 and Λp
+ = Λn

− = 0, then
Λp

+ + Λn
− + 1 = 1 6≥ 1

2
(l − k2 + 2k) = 1

2
(12− 16 + 8) = 2

These complex orientations are realizable by a real
pseudoholomorphic curve of degree 9.

There are similar examples for any degree m ≡ 9 mod 12.

Proof of Main Theorem

Definition. f : A→ P1 is separating if f−1(RP2) = RA.

Theorem. (Alexandre Gabard, 2006) Let A be a separating
real algebraic curve. If genus(A) = g and b0(RA) = r, then
there exists a separating morphism of degree ≤ (r + g + 1)/2
(the average of the actual number of components and the
maximal possible number of components of RA).

Remark 1. Thm. with “≤ g+1” was proven by Alfors (1950),
but this is not enough for “Symp vs. Alg”.

Remark 2. The bound 1
2
(r+g+1) is sharp (Coppens, 2013).
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Theorem. (Abel-Jacobi + Poincaré residue). Let:
S be a smooth real alg. surface,
A be a smooth irreducible real separating curve on S,
D = 2D0 +D1 ∈ |A+KS| s.th. A 6⊂ supp(D), D1 is reduced.
We introduce a chess-board orientation of RS \ (RA ∪ RD1)
and its boundary orientation on RA\supp(D). Let f : A→ P1

be a separating morphism and p0 ∈ RP1. Then it is impos-
sible that the chosen orientation coincides with the complex
orientation at each point of f−1(p0) ∩ RA \ supp(D).

Proof. We have D−A ∼ KS. Let Ω be a 2-form with divisor
D − A and let ω be its Poincaré resudue on A.

Locally, if A = {F (x, y) = 0} and Ω = g(x, y) dx ∧ dy, then

ω = (g dx/F ′y)|A.

Then ω is a holomorphic 1-form on A and it defines the chosen
orientation on RA \ supp(D). Let t be a parameter on RP1

at p0, and let {p1(t), . . . , pn(t)} = f−1(t). By Abel-Jacobi,

n∑
k=0

∫
pk([0,t])

ω = 0.

d
dt

at t = 0 yeilds
∑

ω(vk) = 0 for vk = p′k(0) ∈ Tpk(0)A.
The orientations coincide⇒ ω(vk) > 0 when pk(0) 6∈ supp(D).
Q.E.D.

Example 1. Let A be a real hyperbolic quartic curve in RP2

(hyperbolic means: some central projection is a separating
morphism). Then RA has two nested ovals.

Then the theorem implies that a separating morphism f :
A→ P1 cannot have covering degree 1 over the outer oval.

Indeed, if such f exist, we get a contradiction with the thm. by
choosing D = D1 ∈ |A + KP2 | to be a line like this:

p
1
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Example 2. (Proof of Main Theorem in case of the above
ps.-holo curve of degree 9). Suppose it is algebraic.
Let p0 ∈ RP1 and f be a separating morphism of degree

1
2
(r + g + 1) = 1

2
(13 + 7×8

2
+ 1) = 1

2
(13 + 28 + 1) = 21

We choose D = 2D0 ∈ |A + KP2| (a double cubic). Then the
orientations are like this:

. . .

Let J be the pseudoline of RA. We have at least 1 pt of
f−1(p0) on each oval, hence |J ∩f−1(p0)| ≤ 21−12 = 9. Thus
we may choose D passing through J ∩ f−1(p0). Even if we
have less points in this set, we trace D through 9 point of J .
Then f−1(p0) 6⊂ D. Otherwise D cuts each oval twice, then

9× 3 = A.D0 ≥ A.J + A.(ovals) ≥ 9 + 2× 12 (contradiction)

Q.E.D.

The proof of Main Theorem in the general case is the same
but the computations are with polynomials in k and l rather
than with small integers.

Construction of the 9 degree ps.-holo curve
(the 3 nested ovals are not shown but assumed)

c)

b)

a)

Note that the 3 cubics in Fig.(b) contradict Abel-Jacobi.
This was the initial hint that the obtained 9 degree ps-holo
curve might be algebraically unrealizable.
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If we swap the orientations of any two consecutive nested
ovals, the 9th degree curve is algebraically realizable:

The braiding construction (Auroux-Donaldson-Katzarkov, 2003)
always allows us to swap the complex orientations of any two
nested ovals of a separating real ps.-holo curve provided there
are no other ovals between them:

Here is the ADK braiding construction transforming A to A′:

y
2

x
2

V1

V−1

y
1

y
2

x
2

y
1

A−1

A1
A1

A−1

B B

V

V−1

1

Sections x1 = const of A ∪B and A′ ∪B

By Weinstein Neighbourhood Theorem we identify the annu-
lus B between the ovals V±1 with the annulus −1 ≤ x2 ≤ 1 in
the real locus of C/Z×C with coordinates z1 = x1 + iy1 and
z2 = x2 + iy2 (then x1 is defined mod Z).

Construction for any degree m ≡ 9 mod 12

The 1st stage is a particular case of the classical Hilbert’s con-
struction of M -curves with a deep nest, but we pay attention
to the complex orientations.

− −

−

−
−

−

−

+

+

+

+

+

+
+

−

7



...

...

...
...

+

+

+

−−

+ +
−

−

−

+

...

...

...

+

+

+

−

−

−...

+

Then we apply the same tripling construction as for deg 9.
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