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Introduction

Let M be a locally compact Hausdorff topological space and H(M)
the group of homeomorphisms of M. We introduce on H(M) the
compact-open topology, which is the topology with subbase given
by all sets of the form {f ∈ H(M) : f (K ) ⊂ U}, where K ⊂ M is
compact and U ⊂ M is open. H(M) is a topological group in this
topology, if, in addition, M is locally connected.
A topological group G is said to act continuously on M by
homeomorphisms, if a continuous homomorphism Φ : G → H(M)
is specified. The continuity of Φ is equivalent to the continuity of
the action map

Φ̂ : G ×M → M, (g , p) 7→ Φ(g)(p) =: gp.

By passing to a quotient of G if necessary, we assume that the
action is effective (the kernel of Φ is trivial).
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The action of G on M is proper, if the map

Ψ : G ×M → M ×M, (g , p) 7→ (gp, p),

is proper, i.e. for every compact subset C ⊂ M ×M its inverse
image Ψ−1(C ) ⊂ G ×M is compact as well. Actions of compact
groups are always proper.

Theorem 1 [van Dantzig, van der Wærden (1928)] If (M, d) is a
connected locally compact metric space, then the group Isomd(M)
of all isometries of M with respect to d (considered with the
compact-open topology) is a topological group acting properly on
M by homeomorphisms.
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We will be interested in actions by diffeomorphisms on smooth
manifolds, in which case M is a connected C∞-smooth manifold
and Φ maps G into the group Diff(M) ⊂ H(M) of all C∞-smooth
diffeomorphisms of M.

The properness of the action implies:

I G is locally compact, hence it carries the structure of a Lie
group and the action map Φ̂ is smooth;

I G and Φ(G ) are isomorphic as topological groups;

I Φ(G ) is a closed subgroup of Diff(M).

Thus, we can assume that G is a Lie group acting smoothly and
properly on the manifold M, and that it is realized as a closed
subgroup of Diff(M) (hence Φ = id).
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Riemannian Manifolds

Let (M, g) be a Riemannian manifold. One can define a distance
associated to the metric g :

dg (p, q) := inf
γ

∫ 1

0
||γ′(t)||g dt, p, q ∈ M,

where the inf is taken over all piecewise C 1-smooth curves
γ : [0, 1]→ M, such that γ(0) = p, γ(1) = q. The distance dg is
continuous and inner, and hence induces the topology of M. Thus,
dg turns M into a connected locally compact topological space.
Therefore, by Theorem 1, the group Isomdg (M) (considered with
the compact-open topology) acts properly on M by homeo-
morphisms.
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In 1939 Myers and Steenrod showed that the group Isomdg (M)
coincides with the group Isom(M, g) ⊂ Diff(M) of all isometries of
M with respect to g . Hence they obtained:

Theorem 2 [Myers, Steenrod (1939)] If (M, g) is a Riemannian
manifold, then the group Isom(M, g)(considered with the
compact-open topology) acts properly on M.

Conversely, the following holds:

Theorem 3 [Palais (1961)] If G acts properly on a smooth manifold
M, then M admits a smooth G -invariant Riemannian metric.

Thus, Lie groups acting properly and effectively on a manifold M
by diffeomorphisms are precisely closed subgroups of Isom(M, g)
for all possible smooth Riemannian metrics g on M.
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If G acts properly on M, then for every p ∈ M its isotropy
subgroup

Gp := {g ∈ G : gp = p}

is compact in G . Then the isotropy representation

αp : Gp → GL(R,Tp(M)), g 7→ dgp

is continuous and faithful. In particular, the linear isotropy group

LGp := αp(Gp)

is a compact subgroup of GL(R,Tp(M)) isomorphic to Gp. In
some coordinates in Tp(M) the group LGp becomes a subgroup of
the orthogonal group Om(R), where m := dimM. Hence
dimGp ≤ dimOm(R) = m(m − 1)/2.
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Furthermore, the orbit of p

G (p) := {gp : g ∈ G}

is a closed submanifold of M, and dimG (p) ≤ m. Thus, we obtain

dimG = dimGp + dimG (p) ≤ m(m + 1)/2.

Theorem 4 [Fubini (1903); E. Cartan (1928); Eisenhart (1933)]
If G acts properly on a smooth manifold M of dimension m and
dimG = m(m + 1)/2, then M is isometric (with respect to a
G -invariant metric) either to one of the standard complete
simply-connected spaces of constant sectional curvature
(Rm, Sm, Hm), or to RPm.
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Theorem 5 [H.-C. Wang (1947); I. P. Egorov (1949); Yano (1953)]
A group G with

m(m − 1)/2 + 1 < dimG < m(m + 1)/2

cannot act properly on a smooth manifold M of dimension m 6= 4.

Theorem 6 [Ishihara (1955)] Let M be a smooth manifold of
dimension 4. Then a group of dimension 9 cannot act properly on
M. If M admits a proper action of an 8-dimensional group G , then
M has a G -invariant complex structure.
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There exists also an explicit classification of pairs (M,G ), where
m ≥ 4, G is connected, and dimG = m(m − 1)/2 + 1, due to
Yano (1953) (a local classification), Ishihara (1955) (the case
m = 4), Obata (1955), Kuiper (1956).

Further, Kobayashi and Nagano obtained a (reasonably explicit)
classification of pairs (M,G ), where m ≥ 6, G is connected, and
(m − 1)(m − 2)/2 + 2 ≤ dimG ≤ m(m − 1)/2 (1972).

There are many other results (Wu-Yi Hsiang, I. P. Egorov,
Ishihara, Mann, Jänich, Wakakuwa, ...), especially for compact
subgroups, but no complete classifications exist beyond dimension
(m − 1)(m − 2)/2 + 2.
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The Complex Case

We will now assume that M is a complex manifold of dimension
n ≥ 2 (hence m = 2n ≥ 4) and that a (real) Lie group G acts on
M by holomorphic transformations, that is,

G ⊂ Aut(M) ⊂ Diff(M),

where Aut(M) is the group of holomorphic automorphisms of M.

Theorem 7 [Kaup (1967)] If G ⊂ Aut(M) is closed and preserves a
continuous distance on M, then G acts properly on M.

Thus, Lie groups acting properly and effectively on a manifold M
by holomorphic transformations are precisely closed subgroups of
Aut(M) preserving a continuous distance on M.
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In some coordinates in Tp(M) the group LGp becomes a subgroup
of the unitary group Un. Hence dimGp ≤ dimUn = n2, and
therefore

dimG ≤ n2 + 2n.

We note that n2 + 2n < (m − 1)(m − 2)/2 + 2 for m = 2n and
n ≥ 5. Thus, the group dimension range that arises in the complex
case, for n ≥ 5 lies strictly below the dimension range considered in
the classical real case and thus is not covered by the existing
results. Furthermore, overlaps with these results for n = 3, 4 occur
only in relatively easy situations (described in Theorem 8 and
statement (i) of Theorem 9 below) and do not lead to any
significant simplifications in the complex case.

The only interesting overlap with the real case occurs for n = 2,
dimG = 5.
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Theorem 8 [Kaup (1967)] If G ⊂ Aut(M) acts properly on M and
dimG = n2 + 2n, then M is holomorphically isometric (with
respect to a G -invariant Hermitian metric) to one of the standard
complete simply-connected Kähler spaces of constant holomorphic
sectional curvature:

(i) Bn := {z ∈ Cn : ||z || < 1},

(ii) Cn,

(iii) CPn.

In particular, the manifold from Theorem 6 is equivalent to one of
B2, C2, CP2.
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Let F be an equivalence map. Then in case (i) F transforms G
into Aut(Bn) which is the group of all transformations

z 7→ Az + b

cz + d
,

where (
A b
c d

)
∈ SUn,1.

We have Aut(Bn) ' PSUn,1 := SUn,1/(center).
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In case (ii) F can be chosen to transform G into the group G (Cn)
of all holomorphic automorphisms of Cn of the form

z 7→ Uz + a,

where U ∈ Un, a ∈ Cn. We have G (Cn) ' Un nCn. The group
G (Cn) is the full group of holomorphic isometries of the flat
metric on Cn.
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In case (iii) F can be chosen to transform G into the group
G (CPn) of all holomorphic automorphisms of CPn of the form

ζ 7→ Uζ,

where ζ is a point in CPn given in homogeneous coordinates, and
U ∈ SUn+1. We have G (CPn) ' PSUn+1 := SUn+1/(center).
The group G (CPn) is the full group of holomorphic isometries of
the Fubini-Study metric on CPn, and is a maximal compact
subgroup of the full group of holomorphic automorphisms
Aut(CPn) ' PSLn+1(C) := SLn+1(C)/(center).
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Theorem 9 [Isaev (2006)]Let M be a complex manifold of
dimension n ≥ 2 and G ⊂ Aut(M) a connected Lie group that acts
properly on M and has dimension satisfying
n2 + 3 ≤ dimG < n2 + 2n. Then one of the following holds:

(i) M is holomorphically equivalent to Cn by means of a map that
transforms G into the group G1(Cn) which consists of all maps
from G (Cn) with U ∈ SUn (here dimG = n2 + 2n − 1);

(ii) n = 4 and M is holomorphically equivalent to C4 by means of a
map that transforms G into the group G2(C4) which consists of all
maps from G (C4) with U ∈ e iRSp2 (here dimG = n2 + 3 = 19).
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Proposition 10 [Kaup (1967)]Let M be a connected complex
manifold of dimension n and G ⊂ Aut(M) a Lie group with
dimG > n2 that acts properly on M. Then the action of G is
transitive.

Thus, the group G from Theorem 9 acts transitively (i.e. for every
p ∈ M we have dimG (p) = 2n) which implies:

n2 − 2n + 3 < dim LGp < n2.

It turns out that a connected closed subgroup of Un satisfying
these inequalities either is SUn or is conjugate to e iRSp2 for n = 4.
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Theorem 11 [Isaev (2006)]Let M be a complex manifold of
dimension n ≥ 2 and G ⊂ Aut(M) a connected Lie group that acts
properly on M and has dimension n2 + 2. Then one of the
following holds:

(i) M is holomorphically equivalent to M ′ ×M ′′, where M ′ is one
of Bn−1, Cn−1, CPn−1, and M ′′ is one of B1, C1, CP1; an
equivalence map can be chosen to transforms G into G ′ × G ′′,
where G ′ is one of Aut(Bn−1), G (Cn−1), G (CPn−1), and G ′′ is
one of Aut(B1), G (C1), G (CP1), respectively;

(ii) n = 4 and M is holomorphically equivalent to C4 by means of
a map that transforms G into the group G3(C4) which consists of
all maps from G (C4) with U ∈ Sp2.

Remark. For n = 2 Case (i) is contained in the classification due
to Ishihara of 4-dimensional real manifolds with transitive actions
of 6-dimensional groups.
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The group G from Theorem 11 also acts transitively, and therefore
for every p ∈ M we have

dim LGp = n2 − 2n + 2.

It turns out that the only connected closed subgroups of Un

satisfying this condition are (up to conjugation) Un−1 × U1 and
Sp2 for n = 4.

Alexander Isaev Australian National University Proper Group Actions in Complex Geometry



Introduction
Riemannian Manifolds

The Complex Case
Kobayashi-Hyperbolic Manifolds

The Case dimG = n2 + 1

Again, the action of G is transitive, and therefore for every p ∈ M
we have

dim LGp = (n − 1)2.

Lemma 12 [Isaev, Kruzhilin (2002)]Let H be a connected closed
subgroup of Un of dimension (n− 1)2, n ≥ 2. Then H is conjugate
in Un to one of the following subgroups:

(i) e iRSO3(R) (here n = 3);

(ii) SUn−1 × U1 for n ≥ 3;

(iii) the subgroup Hn
k1,k2

of all matrices(
A 0
0 a

)
,

for some k1, k2 ∈ Z, (k1, k2) = 1, k2 > 0, where A ∈ Un−1 and
a ∈ (detA)k1/k2 .
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Theorem 13 [Isaev (2006)]Let M be a complex manifold of
dimension 3 and G ⊂ Aut(M) a connected Lie group that acts
properly on M and has dimension 10 = 32 + 1. If for p ∈ M the
group LG 0

p is conjugate to e iRSO3(R), then one of the following
holds:

(i) M is holomorphically equivalent to the Siegel space (the
symmetric classical domain of type (III2))

S :=
{

(z1, z2, z3) ∈ C3 : ZZ � id
}
,

where

Z :=

(
z1 z2
z2 z3

)
;

in this case any equivalence map transforms G into
Aut(S ) ' Sp4(R)/Z2;
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(ii) M is holomorphically equivalent to the complex quadric
Q3 ⊂ CP4 by means of a map that transforms G into the group
SO5(R) (which is a maximal compact subgroup of
Aut(Q3) ' SO5(C));

(iii) M is holomorphically equivalent to C3 by means of a map that
transforms G into the group G2(C3) which consists of all maps
from G (C3) with U ∈ e iRSO3(R).
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Theorem 14 [Isaev (2006)]Let M be a complex manifold of
dimension n ≥ 3 and G ⊂ Aut(M) a connected Lie group that acts
properly on M and has dimension n2 + 1. If for p ∈ M the group
LG 0

p is conjugate to SUn−1 × U1, then M is holomorphically
equivalent to Cn−1 ×M ′, where M ′ is one of B1, C1, CP1, and an
equivalence map can be chosen to transform G into
G1(Cn−1)× G ′, where G ′ is one of the groups Aut(B1), G (C1),
G (CP1), respectively.
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The case LG 0
p is conjugate to Hn

k1,k2

A complete classification was obtained in a joint paper with N.
Kruzhilin (Israel J. Math. 172(2009), 193–252). The classification
is rather lengthy, and I will only give a few examples.
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Example 1

M is one of the domains{
(z ′, zn) ∈ Cn−1 ×C : Re zn > |z ′|2

}
' Bn,

{
(z ′, zn) ∈ Cn−1 ×C : Re zn < |z ′|2

}
' CPn \ (Bn ∪ L),

where L is a complex hyperplane tangent to S2n−1 = ∂Bn, and G
is the group of maps

z ′ 7→ λUz ′ + a,

zn 7→ λ2zn + 2λ〈Uz ′, a〉+ |a|2 + iα,

where U ∈ Un−1, a ∈ Cn−1, λ > 0, α ∈ R, and 〈· , ·〉 is the inner
product in Cn−1.
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Example 2

M = CP3 and G consists of all maps from G (CP3) with U ∈ Sp2.
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Example 3

M is the Hopf manifold Cn∗/{z ∼ dz}, for d ∈ C∗, |d | 6= 1, and G
consists of all maps of the form

[z ] 7→ [λUz ] ,

where U ∈ Un, λ > 0, and [z ] ∈ Md denotes the equivalence class
of a point z ∈ Cn∗.
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Example 4

Let n = 3 and (z : w) be homogeneous coordinates in CP3 with
z = (z1 : z2), w = (w1 : w2). Set M = CP3 \ {w = 0} and let G
be the group of all maps of the form

z 7→ Uz + Aw ,
w 7→ Vw ,

where U,V ∈ SU2, and

A =

(
a ib
b −ia

)
,

for some a, b ∈ C.
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Example 5

M = C3, and G consists of all maps of the form

z ′ 7→ Uz ′ + a,

z3 7→ detU z3 +

[(
0 1
−1 0

)
Uz ′
]
· a + b,

where z ′ := (z1, z2), U ∈ U2, a ∈ C2, b ∈ C, and · is the dot
product in C2.
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Example 6

M = B1 ×C, and G consists of all maps of the form

z1 7→ az1 + b

bz1 + a
,

z2 7→ z2 + cz1 + c

bz1 + a
,

where a, b ∈ C, |a|2 − |b|2 = 1, c ∈ C.
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Example 7

M = Cn−1 × {Re zn > 0} , and for a fixed T ∈ R∗ the group G
consists of all maps of the form

z ′ 7→ λTUz ′ + a,
zn 7→ λzn + ib,

where z ′ := (z1, . . . , zn−1), U ∈ Un−1, a ∈ Cn−1, b ∈ R, λ > 0.
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Kobayashi-Hyperbolic Manifolds

Let ∆ := {z ∈ C : |z | < 1} be the unit disk in C. The Poincaré
distance is defined as

ρ(p, q) :=
1

2
ln

1 +

∣∣∣∣ p − q

1− pq

∣∣∣∣
1−

∣∣∣∣ p − q

1− pq

∣∣∣∣ ,
where p, q ∈ ∆. The Kobayashi pseudodistance on M can now be
introduced as follows:
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KM(p, q) = inf
m∑
j=1

ρ(sj , tj),

for all p, q ∈ M, where the inf is taken over all m ∈ N, all pairs of
points {sj , tj}j=1,...,m in ∆ and all collections of holomorphic maps
{fj}j=1,...,m from ∆ into M such that f1(s1) = p, fm(tm) = q, and
fj(tj) = fj+1(sj+1) for j = 1, . . . ,m − 1. Then KM is a pseudodis-
tance on M, which does not increase under holomorphic maps, i.e.
for any holomorphic map f between two complex manifolds M1

and M2 we have

KM2 (f (p), f (q)) ≤ KM1(p, q),

for all p, q ∈ M1. In particular, KM is Aut(M)-invariant.
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A complex manifold M for which the pseudodistance KM is a
distance is called Kobayashi-hyperbolic or simply hyperbolic. The
Kobayashi pseudodistance is always continuous, hence by Theorem
7, the group Aut(M) acts properly on M, provided M is
hyperbolic.

From now on we assume that M is hyperbolic and G = Aut(M)0.
In this situation, in addition to the results for general proper
actions, there are complete explicit classifications for dimG = n2,
and dimG = n2 − 1.
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Theorem 15 [Kim, Verdiani (2004)] Let M be a simply-connected
complete hyperbolic manifold of dimension n ≥ 2, and dimG = n2.
Then M is holomorphically equivalent to one of the following
domains:

(i) a Thullen domain{
(z ′, zn) ∈ Cn−1 ×C : ||z ′||2 + |zn|α < 1

}
,

with α > 0, α 6= 2;

(ii) B1 × B1 × B1 (here n = 3);

(iii) B2 × B2 (here n = 4).

Observe that in cases (ii) and (iii) the action of G is transitive,
whereas in case (i) it is not.
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Theorem 16 [Isaev (2005)]Let M be a hyperbolic manifold of
dimension n ≥ 2, and dimG = n2. Then M is holomorphically
equivalent either to one of the domains listed in Theorem 15 or to
one of:

(i) {z ∈ Cn : r < ||z || < 1}/Zk , 0 ≤ r < 1, k ∈ N;

(ii)
{

(z ′, zn) ∈ Cn−1 ×C : ||z ′|| < 1, |zn| <
(
1− ||z ′||2

)α}
, α < 0;

(iii)
{

(z ′, zn) ∈ Cn−1 ×C : ||z ′|| < 1, r
(
1− ||z ′||2

)α
< |zn| <(

1− ||z ′||2
)α}

, with either α ≥ 0, 0 ≤ r < 1, or α < 0, r = 0;
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(iv)
{

(z ′, zn) ∈ Cn−1 ×C : ||z ′|| < 1, r
(
1− ||z ′||2

)α
<

exp (Re zn) <
(
1− ||z ′||2

)α}
, with either α = 1, 0 ≤ r < 1, or

α = −1, r = 0 (the universal covers of domains (iii) for
α 6= 0);

(v)
{

(z ′, zn) ∈ Cn−1 ×C : r exp
(
α||z ′||2

)
< |zn| < exp

(
α||z ′||2

)}
,

with either α = 1, 0 < r < 1, or α = −1, r = 0;

(vi)
{

(z ′, zn) ∈ Cn−1 ×C : −1 + ||z ′||2 < Re zn < ||z ′||2
}

(the universal cover of domains (v) for α = 1).

In all these cases the action of G is not transitive.
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Theorem 17 [Isaev (2005)]Let M be a hyperbolic manifold of
dimension n ≥ 3, and dimG = n2 − 1. Then M is holomorphically
equivalent to one of the following:

(i) Bn−1 × S , where S is a hyperbolic Riemann surface
with discrete automorphism group;

(ii)
{

(z1, z2, z3, z4) ∈ C4 : (Re z1)2 + (Re z2)2 +

(Re z3)2− (Re z4)2 < 0, Re z4 > 0
}
.

In case (ii) the action of G is transitive, whereas in case (i) it is
not. The domain in case (ii) is the symmetric classical domain of
type (I2,2) with G = SU2,2/Z4.
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The classification for n = 2, dimG = 3 (Isaev (2005-06)) includes
the following domains:

(i)
{

(z : w : ζ) ∈ CP2 : s|z2 + w2 + ζ2| < |z |2 + |w |2 + |ζ|2 <
t|z2 + w2 + ζ2|

}
, 1 ≤ s < t <∞;

(ii)
{

(z ,w) ∈ C2 : s|z2 + w2 − 1| < |z |2 + |w |2 − 1 <
t|z2 + w2 − 1|

}
, −1 ≤ s < t ≤ 1;

(iii)
{

(z ,w) ∈ C2 : s|1 + z2 − w2| < 1 + |z |2 − |w |2 <
t|1 + z2 − w2|, Im (z(1 + w)) > 0

}
, 1 ≤ s < t ≤ ∞.
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