Proper Group Actions in Complex Geometry

Alexander Isaev Australian National University

September 2014

イロト イポト イヨト イヨト

Introduction

Let M be a locally compact Hausdorff topological space and $\mathcal{H}(M)$ the group of homeomorphisms of M. We introduce on $\mathcal{H}(M)$ the compact-open topology, which is the topology with subbase given by all sets of the form $\{f \in \mathcal{H}(M) : f(K) \subset U\}$, where $K \subset M$ is compact and $U \subset M$ is open. $\mathcal{H}(M)$ is a topological group in this topology, if, in addition, M is locally connected. A topological group G is said to act continuously on M by homeomorphisms, if a continuous homomorphism $\Phi : G \to \mathcal{H}(M)$ is specified. The continuity of Φ is equivalent to the continuity of the action map

$$\hat{\Phi}: \ G imes M o M, \quad (g,p) \mapsto \Phi(g)(p) =: gp.$$

By passing to a quotient of G if necessary, we assume that the action is effective (the kernel of Φ is trivial).

The action of G on M is proper, if the map

$$\Psi: G \times M \rightarrow M \times M, \quad (g, p) \mapsto (gp, p),$$

is proper, i.e. for every compact subset $C \subset M \times M$ its inverse image $\Psi^{-1}(C) \subset G \times M$ is compact as well. Actions of compact groups are always proper.

Theorem 1 [van Dantzig, van der Wærden (1928)] If (M, d) is a connected locally compact metric space, then the group $\text{Isom}_d(M)$ of all isometries of M with respect to d (considered with the compact-open topology) is a topological group acting properly on M by homeomorphisms.

We will be interested in actions by diffeomorphisms on smooth manifolds, in which case M is a connected C^{∞} -smooth manifold and Φ maps G into the group $\text{Diff}(M) \subset \mathcal{H}(M)$ of all C^{∞} -smooth diffeomorphisms of M.

The properness of the action implies:

- G is locally compact, hence it carries the structure of a Lie group and the action map Φ̂ is smooth;
- G and $\Phi(G)$ are isomorphic as topological groups;
- $\Phi(G)$ is a closed subgroup of Diff(M).

Thus, we can assume that G is a Lie group acting smoothly and properly on the manifold M, and that it is realized as a closed subgroup of Diff(M) (hence $\Phi = id$).

Riemannian Manifolds

Let (M, g) be a Riemannian manifold. One can define a distance associated to the metric g:

$$d_{g}(p,q):=\inf_{\gamma}\int_{0}^{1}||\gamma'(t)||_{g} dt, \quad p,q\in M,$$

where the inf is taken over all piecewise C^1 -smooth curves $\gamma : [0,1] \to M$, such that $\gamma(0) = p$, $\gamma(1) = q$. The distance d_g is continuous and inner, and hence induces the topology of M. Thus, d_g turns M into a connected locally compact topological space. Therefore, by Theorem 1, the group $\operatorname{Isom}_{d_g}(M)$ (considered with the compact-open topology) acts properly on M by homeomorphisms.

・ロト ・回ト ・ヨト ・ヨト

In 1939 Myers and Steenrod showed that the group $\text{Isom}_{d_g}(M)$ coincides with the group $\text{Isom}(M, g) \subset \text{Diff}(M)$ of all isometries of M with respect to g. Hence they obtained:

Theorem 2 [Myers, Steenrod (1939)] If (M, g) is a Riemannian manifold, then the group Isom(M, g) (considered with the compact-open topology) acts properly on M.

Conversely, the following holds:

Theorem 3 [Palais (1961)] If G acts properly on a smooth manifold M, then M admits a smooth G-invariant Riemannian metric.

Thus, Lie groups acting properly and effectively on a manifold M by diffeomorphisms are precisely closed subgroups of Isom(M,g) for all possible smooth Riemannian metrics g on M.

If G acts properly on M, then for every $p \in M$ its isotropy subgroup

$$G_p := \{g \in G : gp = p\}$$

is compact in G. Then the isotropy representation

$$\alpha_{p}: \ G_{p} \to GL(\mathbb{R}, T_{p}(M)), \quad g \mapsto dg_{p}$$

is continuous and faithful. In particular, the linear isotropy group

$$LG_p := \alpha_p(G_p)$$

is a compact subgroup of $GL(\mathbb{R}, T_p(M))$ isomorphic to G_p . In some coordinates in $T_p(M)$ the group LG_p becomes a subgroup of the orthogonal group $O_m(\mathbb{R})$, where $m := \dim M$. Hence $\dim G_p \leq \dim O_m(\mathbb{R}) = m(m-1)/2$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Furthermore, the orbit of p

$$G(p) := \{gp : g \in G\}$$

is a closed submanifold of M, and dim $G(p) \leq m$. Thus, we obtain

dim
$$G = \dim G_p + \dim G(p) \le m(m+1)/2$$
.

Theorem 4 [Fubini (1903); E. Cartan (1928); Eisenhart (1933)] If G acts properly on a smooth manifold M of dimension m and dim G = m(m+1)/2, then M is isometric (with respect to a G-invariant metric) either to one of the standard complete simply-connected spaces of constant sectional curvature $(\mathbb{R}^m, S^m, \mathbb{H}^m)$, or to \mathbb{RP}^m .

Theorem 5 [H.-C. Wang (1947); I. P. Egorov (1949); Yano (1953)] *A group G with*

$$m(m-1)/2 + 1 < \dim G < m(m+1)/2$$

cannot act properly on a smooth manifold M of dimension $m \neq 4$.

Theorem 6 [Ishihara (1955)] Let *M* be a smooth manifold of dimension 4. Then a group of dimension 9 cannot act properly on *M*. If *M* admits a proper action of an 8-dimensional group *G*, then *M* has a *G*-invariant complex structure.

There exists also an explicit classification of pairs (M, G), where $m \ge 4$, G is connected, and dim G = m(m-1)/2 + 1, due to Yano (1953) (a local classification), Ishihara (1955) (the case m = 4), Obata (1955), Kuiper (1956).

Further, Kobayashi and Nagano obtained a (reasonably explicit) classification of pairs (M, G), where $m \ge 6$, G is connected, and $(m-1)(m-2)/2 + 2 \le \dim G \le m(m-1)/2$ (1972).

There are many other results (Wu-Yi Hsiang, I. P. Egorov, Ishihara, Mann, Jänich, Wakakuwa, ...), especially for compact subgroups, but no complete classifications exist beyond dimension (m-1)(m-2)/2 + 2.

・ロン ・回 と ・ ヨ と ・ ヨ と

The Complex Case

We will now assume that M is a complex manifold of dimension $n \ge 2$ (hence $m = 2n \ge 4$) and that a (real) Lie group G acts on M by holomorphic transformations, that is,

 $G \subset \operatorname{Aut}(M) \subset \operatorname{Diff}(M),$

where Aut(M) is the group of holomorphic automorphisms of M.

Theorem 7 [Kaup (1967)] If $G \subset Aut(M)$ is closed and preserves a continuous distance on M, then G acts properly on M.

Thus, Lie groups acting properly and effectively on a manifold M by holomorphic transformations are precisely closed subgroups of Aut(M) preserving a continuous distance on M.

イロン イヨン イヨン イヨン

In some coordinates in $T_p(M)$ the group LG_p becomes a subgroup of the unitary group U_n . Hence dim $G_p \leq \dim U_n = n^2$, and therefore

$$\dim G \leq n^2 + 2n.$$

We note that $n^2 + 2n < (m-1)(m-2)/2 + 2$ for m = 2n and $n \ge 5$. Thus, the group dimension range that arises in the complex case, for $n \ge 5$ lies strictly below the dimension range considered in the classical real case and thus is not covered by the existing results. Furthermore, overlaps with these results for n = 3, 4 occur only in relatively easy situations (described in Theorem 8 and statement (i) of Theorem 9 below) and do not lead to any significant simplifications in the complex case.

The only interesting overlap with the real case occurs for n = 2, dim G = 5.

소리가 소문가 소문가 소문가

Theorem 8 [Kaup (1967)] If $G \subset Aut(M)$ acts properly on M and dim $G = n^2 + 2n$, then M is holomorphically isometric (with respect to a G-invariant Hermitian metric) to one of the standard complete simply-connected Kähler spaces of constant holomorphic sectional curvature:

(i) $\mathbb{B}^{n} := \{ z \in \mathbb{C}^{n} : ||z|| < 1 \},$ (ii) \mathbb{C}^{n} , (iii) $\mathbb{C}\mathbb{P}^{n}$.

In particular, the manifold from Theorem 6 is equivalent to one of \mathbb{B}^2 , \mathbb{C}^2 , \mathbb{CP}^2 .

イロト イポト イヨト イヨト

Let F be an equivalence map. Then in case (i) F transforms G into $Aut(\mathbb{B}^n)$ which is the group of all transformations

$$z\mapsto rac{Az+b}{cz+d},$$

where

$$\left(\begin{array}{cc}A&b\\c&d\end{array}\right)\in SU_{n,1}.$$

We have $Aut(\mathbb{B}^n) \simeq PSU_{n,1} := SU_{n,1}/(center)$.

(ロ) (同) (E) (E) (E)

In case (ii) F can be chosen to transform G into the group $G(\mathbb{C}^n)$ of all holomorphic automorphisms of \mathbb{C}^n of the form

$$z\mapsto Uz+a,$$

where $U \in U_n$, $a \in \mathbb{C}^n$. We have $G(\mathbb{C}^n) \simeq U_n \ltimes \mathbb{C}^n$. The group $G(\mathbb{C}^n)$ is the full group of holomorphic isometries of the flat metric on \mathbb{C}^n .

In case (iii) F can be chosen to transform G into the group $G(\mathbb{CP}^n)$ of all holomorphic automorphisms of \mathbb{CP}^n of the form

$\zeta\mapsto U\zeta,$

where ζ is a point in \mathbb{CP}^n given in homogeneous coordinates, and $U \in SU_{n+1}$. We have $G(\mathbb{CP}^n) \simeq PSU_{n+1} := SU_{n+1}/(center)$. The group $G(\mathbb{CP}^n)$ is the full group of holomorphic isometries of the Fubini-Study metric on \mathbb{CP}^n , and is a maximal compact subgroup of the full group of holomorphic automorphisms $Aut(\mathbb{CP}^n) \simeq PSL_{n+1}(\mathbb{C}) := SL_{n+1}(\mathbb{C})/(center).$

Theorem 9 [Isaev (2006)]Let M be a complex manifold of dimension $n \ge 2$ and $G \subset Aut(M)$ a connected Lie group that acts properly on M and has dimension satisfying $n^2 + 3 \le \dim G < n^2 + 2n$. Then one of the following holds:

(i) M is holomorphically equivalent to \mathbb{C}^n by means of a map that transforms G into the group $G_1(\mathbb{C}^n)$ which consists of all maps from $G(\mathbb{C}^n)$ with $U \in SU_n$ (here dim $G = n^2 + 2n - 1$);

(ii) n = 4 and M is holomorphically equivalent to \mathbb{C}^4 by means of a map that transforms G into the group $G_2(\mathbb{C}^4)$ which consists of all maps from $G(\mathbb{C}^4)$ with $U \in e^{i\mathbb{R}}Sp_2$ (here dim $G = n^2 + 3 = 19$).

Proposition 10 [Kaup (1967)]Let M be a connected complex manifold of dimension n and $G \subset Aut(M)$ a Lie group with dim $G > n^2$ that acts properly on M. Then the action of G is transitive.

Thus, the group G from Theorem 9 acts transitively (i.e. for every $p \in M$ we have dim G(p) = 2n) which implies:

$$n^2 - 2n + 3 < \dim LG_p < n^2$$
.

It turns out that a connected closed subgroup of U_n satisfying these inequalities either is SU_n or is conjugate to $e^{i\mathbb{R}}Sp_2$ for n = 4.

소리가 소문가 소문가 소문가

Theorem 11 [Isaev (2006)]Let M be a complex manifold of dimension $n \ge 2$ and $G \subset Aut(M)$ a connected Lie group that acts properly on M and has dimension $n^2 + 2$. Then one of the following holds:

(i) *M* is holomorphically equivalent to $M' \times M''$, where *M'* is one of \mathbb{B}^{n-1} , \mathbb{C}^{n-1} , $\mathbb{C}\mathbb{P}^{n-1}$, and *M''* is one of \mathbb{B}^1 , \mathbb{C}^1 , $\mathbb{C}\mathbb{P}^1$; an equivalence map can be chosen to transforms *G* into $G' \times G''$, where *G'* is one of Aut(\mathbb{B}^{n-1}), $G(\mathbb{C}^{n-1})$, $G(\mathbb{C}\mathbb{P}^{n-1})$, and *G''* is one of Aut(\mathbb{B}^1), $G(\mathbb{C}^1)$, $G(\mathbb{C}\mathbb{P}^1)$, respectively;

(ii) n = 4 and M is holomorphically equivalent to \mathbb{C}^4 by means of a map that transforms G into the group $G_3(\mathbb{C}^4)$ which consists of all maps from $G(\mathbb{C}^4)$ with $U \in Sp_2$.

Remark. For n = 2 Case (i) is contained in the classification due to Ishihara of 4-dimensional real manifolds with transitive actions of 6-dimensional groups.

・ロン ・回 と ・ ヨ と ・ ヨ と

The group *G* from Theorem 11 also acts transitively, and therefore for every $p \in M$ we have

$$\dim LG_p = n^2 - 2n + 2.$$

It turns out that the only connected closed subgroups of U_n satisfying this condition are (up to conjugation) $U_{n-1} \times U_1$ and Sp_2 for n = 4.

The Case dim $G = n^2 + 1$

Again, the action of G is transitive, and therefore for every $p \in M$ we have

$$\dim LG_p = (n-1)^2.$$

Lemma 12 [Isaev, Kruzhilin (2002)]Let H be a connected closed subgroup of U_n of dimension $(n-1)^2$, $n \ge 2$. Then H is conjugate in U_n to one of the following subgroups: (i) $e^{i\mathbb{R}}SO_3(\mathbb{R})$ (here n = 3); (ii) $SU_{n-1} \times U_1$ for n > 3; (iii) the subgroup H_{k_1,k_2}^n of all matrices $\begin{pmatrix} A & 0 \\ 0 & a \end{pmatrix}$, for some $k_1, k_2 \in \mathbb{Z}$, $(k_1, k_2) = 1$, $k_2 > 0$, where $A \in U_{n-1}$ and $a \in (\det A)^{k_1/k_2}$. - 4 同 6 4 日 6 4 日 6 Alexander Isaev Australian National University Proper Group Actions in Complex Geometry

Theorem 13 [Isaev (2006)]Let M be a complex manifold of dimension 3 and $G \subset Aut(M)$ a connected Lie group that acts properly on M and has dimension $10 = 3^2 + 1$. If for $p \in M$ the group LG_p^0 is conjugate to $e^{i\mathbb{R}}SO_3(\mathbb{R})$, then one of the following holds:

(i) M is holomorphically equivalent to the Siegel space (the symmetric classical domain of type (III_2))

$$\mathscr{S} := \left\{ (z_1, z_2, z_3) \in \mathbb{C}^3 : Z\overline{Z} \ll id \right\},$$

where

$$Z:=\left(\begin{array}{cc}z_1&z_2\\z_2&z_3\end{array}\right);$$

in this case any equivalence map transforms G into $Aut(\mathscr{S}) \simeq Sp_4(\mathbb{R})/\mathbb{Z}_2;$

(ii) M is holomorphically equivalent to the complex quadric $Q_3 \subset \mathbb{CP}^4$ by means of a map that transforms G into the group $SO_5(\mathbb{R})$ (which is a maximal compact subgroup of $Aut(Q_3) \simeq SO_5(\mathbb{C})$);

(iii) *M* is holomorphically equivalent to \mathbb{C}^3 by means of a map that transforms *G* into the group $G_2(\mathbb{C}^3)$ which consists of all maps from $G(\mathbb{C}^3)$ with $U \in e^{i\mathbb{R}}SO_3(\mathbb{R})$.

Theorem 14 [Isaev (2006)]Let M be a complex manifold of dimension $n \ge 3$ and $G \subset Aut(M)$ a connected Lie group that acts properly on M and has dimension $n^2 + 1$. If for $p \in M$ the group LG_p^0 is conjugate to $SU_{n-1} \times U_1$, then M is holomorphically equivalent to $\mathbb{C}^{n-1} \times M'$, where M' is one of \mathbb{B}^1 , \mathbb{C}^1 , \mathbb{CP}^1 , and an equivalence map can be chosen to transform G into $G_1(\mathbb{C}^{n-1}) \times G'$, where G' is one of the groups $Aut(\mathbb{B}^1)$, $G(\mathbb{C}^1)$, $G(\mathbb{CP}^1)$, respectively.

The case LG_p^0 is conjugate to H_{k_1,k_2}^n

A complete classification was obtained in a joint paper with N. Kruzhilin (Israel J. Math. 172(2009), 193–252). The classification is rather lengthy, and I will only give a few examples.

・ロン ・回と ・ヨン・

M is one of the domains

 $\left\{(z', z_n) \in \mathbb{C}^{n-1} \times \mathbb{C} : \operatorname{\mathsf{Re}} z_n > |z'|^2\right\} \simeq \mathbb{B}^n,$

$$\{(z', z_n) \in \mathbb{C}^{n-1} \times \mathbb{C} : \operatorname{Re} z_n < |z'|^2\} \simeq \mathbb{CP}^n \setminus (\overline{\mathbb{B}^n} \cup L),$$

where L is a complex hyperplane tangent to $S^{2n-1} = \partial \mathbb{B}^n$, and G is the group of maps

$$z' \mapsto \lambda U z' + a_z$$

$$z_n \mapsto \lambda^2 z_n + 2\lambda \langle Uz', a \rangle + |a|^2 + i\alpha,$$

where $U \in U_{n-1}$, $a \in \mathbb{C}^{n-1}$, $\lambda > 0$, $\alpha \in \mathbb{R}$, and $\langle \cdot, \cdot \rangle$ is the inner product in \mathbb{C}^{n-1} .

Example 2

$M = \mathbb{CP}^3$ and G consists of all maps from $G(\mathbb{CP}^3)$ with $U \in Sp_2$.

イロン イヨン イヨン イヨン

M is the Hopf manifold $\mathbb{C}^{n*}/\{z \sim dz\}$, for $d \in \mathbb{C}^*$, $|d| \neq 1$, and *G* consists of all maps of the form

 $\left[z\right] \mapsto \left[\lambda Uz\right] ,$

where $U \in U_n$, $\lambda > 0$, and $[z] \in M_d$ denotes the equivalence class of a point $z \in \mathbb{C}^{n*}$.

Let n = 3 and (z : w) be homogeneous coordinates in \mathbb{CP}^3 with $z = (z_1 : z_2)$, $w = (w_1 : w_2)$. Set $M = \mathbb{CP}^3 \setminus \{w = 0\}$ and let G be the group of all maps of the form

$$\begin{array}{rccc} z & \mapsto & Uz + Aw, \\ w & \mapsto & Vw, \end{array}$$

where $U, V \in SU_2$, and

$$A = \left(\begin{array}{cc} a & i\overline{b} \\ b & -i\overline{a} \end{array}\right),$$

for some $a, b \in \mathbb{C}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $M = \mathbb{C}^3$, and G consists of all maps of the form

$$egin{array}{rcl} z' &\mapsto & Uz'+a, \ z_3 &\mapsto & \det U \, z_3 + \left[\left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight) Uz'
ight] \cdot a+b, \end{array}$$

where $z' := (z_1, z_2)$, $U \in U_2$, $a \in \mathbb{C}^2$, $b \in \mathbb{C}$, and \cdot is the dot product in \mathbb{C}^2 .

・ロン ・回と ・ヨン ・ヨン

 $M = \mathbb{B}^1 imes \mathbb{C}$, and G consists of all maps of the form

$$z_1 \mapsto \frac{az_1+b}{\overline{b}z_1+\overline{a}},$$

$$z_2 \mapsto \frac{z_2 + cz_1 + \overline{c}}{\overline{b}z_1 + \overline{a}},$$

where $a,b\in\mathbb{C}$, $|a|^2-|b|^2=1$, $c\in\mathbb{C}$.

イロト イロト イヨト イヨト 二日

 $M = \mathbb{C}^{n-1} \times \{ \operatorname{Re} z_n > 0 \}$, and for a fixed $T \in \mathbb{R}^*$ the group G consists of all maps of the form

$$\begin{array}{rccc} z' & \mapsto & \lambda^T U z' + a, \\ z_n & \mapsto & \lambda z_n + ib, \end{array}$$

where $z' := (z_1, \ldots, z_{n-1})$, $U \in U_{n-1}$, $a \in \mathbb{C}^{n-1}$, $b \in \mathbb{R}$, $\lambda > 0$.

Kobayashi-Hyperbolic Manifolds

Let $\Delta := \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk in \mathbb{C} . The Poincaré distance is defined as

$$ho(p,q) := rac{1}{2} \ln rac{1 + \left| rac{p-q}{1 - \overline{p}q}
ight|}{1 - \left| rac{p-q}{1 - \overline{p}q}
ight|},$$

where $p, q \in \Delta$. The Kobayashi pseudodistance on *M* can now be introduced as follows:

・ロット (四) (日) (日)

$$\mathcal{K}_{\mathcal{M}}(p,q) = \inf \sum_{j=1}^m
ho(s_j,t_j),$$

for all $p, q \in M$, where the inf is taken over all $m \in \mathbb{N}$, all pairs of points $\{s_j, t_j\}_{j=1,...,m}$ in Δ and all collections of holomorphic maps $\{f_j\}_{j=1,...,m}$ from Δ into M such that $f_1(s_1) = p$, $f_m(t_m) = q$, and $f_j(t_j) = f_{j+1}(s_{j+1})$ for j = 1, ..., m-1. Then K_M is a pseudodistance on M, which does not increase under holomorphic maps, i.e. for any holomorphic map f between two complex manifolds M_1 and M_2 we have

$$K_{M_2}(f(p),f(q))\leq K_{M_1}(p,q),$$

for all $p, q \in M_1$. In particular, K_M is Aut(M)-invariant.

A complex manifold M for which the pseudodistance K_M is a distance is called Kobayashi-hyperbolic or simply hyperbolic. The Kobayashi pseudodistance is always continuous, hence by Theorem 7, the group Aut(M) acts properly on M, provided M is hyperbolic.

From now on we assume that M is hyperbolic and $G = \operatorname{Aut}(M)^0$. In this situation, in addition to the results for general proper actions, there are complete explicit classifications for dim $G = n^2$, and dim $G = n^2 - 1$.

소리가 소문가 소문가 소문가

Theorem 15 [Kim, Verdiani (2004)] Let M be a simply-connected complete hyperbolic manifold of dimension $n \ge 2$, and dim $G = n^2$. Then M is holomorphically equivalent to one of the following domains:

(i) a Thullen domain

 $\left\{\left(z',z_{n}
ight)\in\mathbb{C}^{n-1} imes\mathbb{C}:||z'||^{2}+|z_{n}|^{lpha}<1
ight\},$

with $\alpha > 0$, $\alpha \neq 2$;

(ii) $\mathbb{B}^1 \times \mathbb{B}^1 \times \mathbb{B}^1$ (here n = 3);

(iii) $\mathbb{B}^2 \times \mathbb{B}^2$ (here n = 4).

Observe that in cases (ii) and (iii) the action of G is transitive, whereas in case (i) it is not.

Theorem 16 [Isaev (2005)]Let M be a hyperbolic manifold of dimension $n \ge 2$, and dim $G = n^2$. Then M is holomorphically equivalent either to one of the domains listed in Theorem 15 or to one of:

(i)
$$\{z \in \mathbb{C}^{n} : r < ||z|| < 1\}/\mathbb{Z}_{k}, 0 \le r < 1, k \in \mathbb{N};$$

(ii) $\{(z', z_{n}) \in \mathbb{C}^{n-1} \times \mathbb{C} : ||z'|| < 1, |z_{n}| < (1 - ||z'||^{2})^{\alpha}\}, \alpha < 0;$
(iii) $\{(z', z_{n}) \in \mathbb{C}^{n-1} \times \mathbb{C} : ||z'|| < 1, r (1 - ||z'||^{2})^{\alpha} < |z_{n}| < (1 - ||z'||^{2})^{\alpha}\}, with either \alpha \ge 0, 0 \le r < 1, or \alpha < 0, r = 0;$

ヘロン 人間 とくほど くほとう

(iv)
$$\{(z', z_n) \in \mathbb{C}^{n-1} \times \mathbb{C} : ||z'|| < 1, r (1 - ||z'||^2)^{\alpha} < \exp(\operatorname{Re} z_n) < (1 - ||z'||^2)^{\alpha} \}$$
, with either $\alpha = 1, 0 \le r < 1$, or $\alpha = -1, r = 0$ (the universal covers of domains (iii) for $\alpha \neq 0$);

(v)
$$\{(z', z_n) \in \mathbb{C}^{n-1} \times \mathbb{C} : r \exp(\alpha ||z'||^2) < |z_n| < \exp(\alpha ||z'||^2)\},$$

with either $\alpha = 1, 0 < r < 1$, or $\alpha = -1, r = 0;$

(vi)
$$\{(z', z_n) \in \mathbb{C}^{n-1} \times \mathbb{C} : -1 + ||z'||^2 < \operatorname{Re} z_n < ||z'||^2\}$$

(the universal cover of domains (v) for $\alpha = 1$).

In all these cases the action of G is not transitive.

イロン イボン イモン イモン 三日

Theorem 17 [Isaev (2005)]Let M be a hyperbolic manifold of dimension $n \ge 3$, and dim $G = n^2 - 1$. Then M is holomorphically equivalent to one of the following:

(i) $\mathbb{B}^{n-1} \times S$, where S is a hyperbolic Riemann surface with discrete automorphism group;

(ii)
$$\{(z_1, z_2, z_3, z_4) \in \mathbb{C}^4 : (Re z_1)^2 + (Re z_2)^2 + (Re z_3)^2 - (Re z_4)^2 < 0, Re z_4 > 0\}.$$

In case (ii) the action of G is transitive, whereas in case (i) it is not. The domain in case (ii) is the symmetric classical domain of type $(I_{2,2})$ with $G = SU_{2,2}/\mathbb{Z}_4$.

ヘロン 人間 とくほど くほとう

The classification for n = 2, dim G = 3 (Isaev (2005-06)) includes the following domains:

$$\begin{array}{l} (i) \ \left\{ (z:w:\zeta) \in \mathbb{CP}^2 : s|z^2 + w^2 + \zeta^2| < |z|^2 + |w|^2 + |\zeta|^2 < \\ t|z^2 + w^2 + \zeta^2| \right\}, \ 1 \leq s < t < \infty; \\ (ii) \ \left\{ (z,w) \in \mathbb{C}^2 : s|z^2 + w^2 - 1| < |z|^2 + |w|^2 - 1 < \\ t|z^2 + w^2 - 1| \right\}, \ -1 \leq s < t \leq 1; \\ (iii) \ \left\{ (z,w) \in \mathbb{C}^2 : s|1 + z^2 - w^2| < 1 + |z|^2 - |w|^2 < \\ t|1 + z^2 - w^2|, \ Im(z(1 + \overline{w})) > 0 \right\}, \ 1 \leq s < t \leq \infty. \end{array}$$

イロン イヨン イヨン イヨン

æ