A quadratically enriched Abramovich-Bertram formula

Joint work with Kirsten Wickelgren

Erwan Brugallé
June 6th 2024

Laboratoire de Mathématiques Jean Leray
Nantes Université
A quick overview

- How many lines through 2 points?
A quick overview

- How many lines through 2 points? 1

Theorem (Kass, Levine, Solomon, Wickelgren)
One can count rational curves in del Pezzo surfaces with quadratic forms instead of integers.

In general generality:
L_1, \ldots, L_m extensions of k, such that
\[\sum_i [L_i : k] = 8 \]

\[2^{-1} + 2^{-1} + \sum_i \text{Tr} L_i / k(\langle 1 \rangle) \]

\[2 \]
A quick overview

- How many lines through 2 points? \(1\)
- How many conics through 5 points?
A quick overview

- How many lines through 2 points? 1
- How many conics through 5 points? 1
A quick overview

- How many lines through 2 points? 1
- How many conics through 5 points? 1
- How many rational cubics through 8 points?
A quick overview

- How many lines through 2 points? 1
- How many conics through 5 points? 1
- How many rational cubics through 8 points?
 depends on the *(nice)* base field k

In general: $10 < 1^2 + 8^2 + \sum_{i} \text{Tr} L_i/k(<1)$
A quick overview

- How many lines through 2 points? 1
- How many conics through 5 points? 1
- How many rational cubics through 8 points?
 depends on the (nice) base field k
 $k = \mathbb{C}: 12$
A quick overview

- How many lines through 2 points? 1
- How many conics through 5 points? 1
- How many rational cubics through 8 points? depends on the (nice) base field k

$k = \mathbb{C} : 12 \quad k = \mathbb{R} : 8$
A quick overview

- How many lines through 2 points? 1
- How many conics through 5 points? 1
- How many rational cubics through 8 points?
 depends on the (nice) base field k
 $k = \mathbb{C} : 12 \quad k = \mathbb{R} : 8$
 In general: $10 < 1 > + 2 < -1 >$
A quick overview

- How many lines through 2 points? 1
- How many conics through 5 points? 1
- How many rational cubics through 8 points?
 depends on the *(nice)* base field k
 $k = \mathbb{C}: 12 \quad k = \mathbb{R}: 8$
 In general: $10 < 1 > + 2 < -1 > \in GW(k)$
A quick overview

- How many lines through 2 points? 1
- How many conics through 5 points? 1
- How many rational cubics through 8 points?

 depends on the (nice) base field k

 $k = \mathbb{C}$: 12
 $k = \mathbb{R}$: 8

 In general: $10 < 1 > + 2 < -1 > \in GW(k)$

Theorem (Kass, Levine, Solomon, Wickelgren)

One can count rational curves in del Pezzo surfaces with quadratic forms instead of integers.
A quick overview

- How many lines through 2 points? $< 1 >$
- How many conics through 5 points? $< 1 >$
- How many rational cubics through 8 points? depends on the (nice) base field k
 \[k = \mathbb{C} : 12 \quad k = \mathbb{R} : 8 \]
 In general: $10 < 1 > + 2 < -1 > \in GW(k)$

Theorem (Kass, Levine, Solomon, Wickelgren)
One can count rational curves in del Pezzo surfaces with quadratic forms instead of integers.
A quick overview

- How many lines through 2 points? $< 1 >$
- How many conics through 5 points? $< 1 >$
- How many rational cubics through 8 points?
 depends on the (nice) base field k
 $k = \mathbb{C} : 12 \quad k = \mathbb{R} : 8$
 In general: $10 < 1 > + 2 < -1 > \in GW(k)$

Theorem (Kass, Levine, Solomon, Wickelgren)
One can count rational curves in del Pezzo surfaces with quadratic forms instead of integers.
In general generality: L_1, \ldots, L_m extensions of k, such that
$\sum_i [L_i : k] = 8$
A quick overview

- How many lines through 2 points? \(< 1 >\)
- How many conics through 5 points? \(< 1 >\)
- How many rational cubics through 8 points?
 depends on the (nice) base field \(k\)

 \[
 k = \mathbb{C} : 12 \quad k = \mathbb{R} : 8
 \]

 In general: \(10 < 1 > + 2 < -1 > \in GW(k)\)

Theorem (Kass, Levine, Solomon, Wickelgren)

One can count rational curves in del Pezzo surfaces with quadratic forms instead of integers.

In general generality: \(L_1, \ldots, L_m\) extensions of \(k\), such that

\[
\sum_i [L_i : k] = 8
\]

\(2 < 1 > + 2 < -1 > + \sum_i \text{Tr}_{L_i/k}(< 1 >)\)
A quick overview

- How many lines through 2 points? \(< 1 >\)
- How many conics through 5 points? \(< 1 >\)
- How many rational cubics through 8 points?
 depends on the \((nice)\) base field \(k\)

 \[
k = \mathbb{C} : 12 \quad k = \mathbb{R} : 8 - 2s
 \]

 In general: \(10 < 1 > + 2 < -1 > \in GW(k)\)

Theorem (Kass, Levine, Solomon, Wickelgren)
One can count rational curves in del Pezzo surfaces with quadratic forms instead of integers.

In general generality: \(L_1, \ldots, L_m\) extensions of \(k\), such that

\[
\sum_i [L_i : k] = 8
\]

\[
2 < 1 > + 2 < -1 > + \sum_i \text{Tr}_{L_i/k}(< 1 >)
\]
A quick overview

Goal

Relate these quadratic invariants for different k-forms on the same underlying surface over \(\overline{k} \).
Goal
Relate these quadratic invariants for different k-forms on the same underlying surface over \overline{k}.

Generalizes previous results over $\mathbb{R} (B)$.
A quick overview

Goal
Relate these quadratic invariants for different k-forms on the same underlying surface over \overline{k}.

Generalizes previous results over $\mathbb{R} \ (B)$

Exemple

• $\mathbb{P}^2(\mathbb{R})$ blown-up at two real points – $\mathbb{P}^2(\mathbb{R})$ blown-up at two complex conjugated points.
A quick overview

Goal
Relate these quadratic invariants for different k-forms on the same underlying surface over \overline{k}.

Generalizes previous results over $\mathbb{R} (B)$

Exemple

- $\mathbb{P}^2(\mathbb{R})$ blown-up at two real points – $\mathbb{P}^2(\mathbb{R})$ blown-up at two complex conjugated points.
- $\mathbb{P}^2(k)$ blown-up at two k-points – $\mathbb{P}^2(k)$ blown-up at a point with residue field a quadratic extension of k.

\[x^2 - y^2 + z^2 - \delta w^2 = 0 \]

$\delta \in k^*/(k^*)^2$
A quick overview

Goal
Relate these quadratic invariants for different k-forms on the same underlying surface over \overline{k}.

Generalizes previous results over \mathbb{R} (B)

Exemple

- $\mathbb{P}^2(\mathbb{R})$ blown-up at two real points – $\mathbb{P}^2(\mathbb{R})$ blown-up at two complex conjugated points.
- $\mathbb{P}^2(k)$ blown-up at two k-points – $\mathbb{P}^2(k)$ blown-up at a point with residue field a quadratic extension of k.
- Quadrics Q_δ in \mathbb{P}^3 with equation

$$x^2 - y^2 + z^2 - \delta w^2 = 0 \quad \delta \in k^*/(k^*)^2$$
Enumerative invariants over \mathbb{R}, as well as several of their properties, generalize to arbitrary nice fields k.
Enumerative invariants over \mathbb{R}, as well as several of their properties, generalize to arbitrary nice fields k.

Proofs over \mathbb{R} generalize to arbitrary nice fields k.
Message to take home

Enumerative invariants over \mathbb{R}, as well as several of their properties, generalize to arbitrary nice fields k.

Proofs over \mathbb{R} generalize to arbitrary nice fields k.

If you proved something in real enumerative geometry, you may proved it in enumerative geometry over any nice field!
Examples

- Blow-up of \mathbb{P}^2 at two points

Theorem (B-Wickelgren)

$$N_{\mathbb{P}^2_{k(\sqrt{\delta})}, \sigma}(dL - aE_1 - aE_2) = N_{\mathbb{P}^2_{k,k}, \sigma}(dL - aE_1 - aE_2)$$
Examples

- Blow-up of \mathbb{P}^2 at two points

Theorem (B-Wickelgren)

\[N_{\mathbb{P}^2_{k(\sqrt{\delta})},\sigma}(dL - aE_1 - aE_2) = N_{\mathbb{P}^2_{k,k'},\sigma}(dL - aE_1 - aE_2) \]
\[- (\langle 2 \rangle - \langle 2\delta \rangle) \sum_{j \geq 1} (-1)^j N_{\mathbb{P}^2_{k,k'},\sigma}(dL - (a + j)E_1 - (a - j)E_2) \]
Examples

- Blow-up of \mathbb{P}^2 at two points

Theorem (B-Wickelgren)

\[
N_{\mathbb{P}^2_{k(\sqrt{\delta})},\sigma}(dL - aE_1 - aE_2) = N_{\mathbb{P}^2_{k,k},\sigma}(dL - aE_1 - aE_2) \\
- (<2> - <2\delta>) \sum_{j \geq 1} (-1)^j N_{\mathbb{P}^2_{k,k},\sigma}(dL - (a + j)E_1 - (a - j)E_2)
\]

- $Q_\delta : \ x^2 - y^2 + z^2 - \delta w^2 = 0 \quad \delta \in k^*/(k^*)^2$

$Q_1 = \mathbb{P}^1 \times \mathbb{P}^1, \quad \text{Pic}(Q_1) = \mathbb{Z}^2$
Examples

• Blow-up of \(\mathbb{P}^2 \) at two points

Theorem (B-Wickelgren)

\[
N_{\mathbb{P}^2, k(\sqrt{\delta}), \sigma}(dL - aE_1 - aE_2) = N_{\mathbb{P}^2, k, \sigma}(dL - aE_1 - aE_2)
- (\langle 2 \rangle - \langle 2\delta \rangle) \sum_{j \geq 1} (-1)^j N_{\mathbb{P}^2, k, \sigma}(dL - (a + j)E_1 - (a - j)E_2)
\]

• \(Q_\delta : x^2 - y^2 + z^2 - \delta w^2 = 0 \quad \delta \in k^*/(k^*)^2 \)

\(Q_1 = \mathbb{P}^1 \times \mathbb{P}^1 \), \(\text{Pic}(Q_1) = \mathbb{Z}^2 \supset \mathbb{Z}(1, 1) = \text{Pic}(Q_\delta) \quad \delta \neq 1 \)
Examples

- Blow-up of \mathbb{P}^2 at two points

Theorem (B-Wickelgren)

\[
N_{\mathbb{P}^2_{k(\sqrt{\delta})},\sigma}(dL - aE_1 - aE_2) = N_{\mathbb{P}^2_{k,k},\sigma}(dL - aE_1 - aE_2)
- (<2> - <2\delta>) \sum_{j \geq 1} (-1)^j N_{\mathbb{P}^2_{k,k},\sigma}(dL - (a + j)E_1 - (a - j)E_2)
\]

- $Q_\delta: \ x^2 - y^2 + z^2 - \delta w^2 = 0 \quad \delta \in k^*/(k^*)^2$
 \[Q_1 = \mathbb{P}^1 \times \mathbb{P}^1, \quad \text{Pic}(Q_1) = \mathbb{Z}^2 \supset \mathbb{Z}(1,1) = \text{Pic}(Q_\delta) \quad \delta \neq 1\]

Theorem (B-Wickelgren)

\[
N_{Q_\delta,\sigma}(a,a) = N_{Q_1,\sigma}(a,a)
\]
Examples

- Blow-up of \mathbb{P}^2 at two points

Theorem (B-Wickelgren)

$$N_{\mathbb{P}^2_{k(\sqrt{\delta})},\sigma}(dL - aE_1 - aE_2) = N_{\mathbb{P}^2_{k,k},\sigma}(dL - aE_1 - aE_2)$$

$$- (<2> - <2\delta>) \sum_{j \geq 1} (-1)^j N_{\mathbb{P}^2_{k,k},\sigma}(dL - (a+j)E_1 - (a-j)E_2)$$

- $Q_\delta: \quad x^2 - y^2 + z^2 - \delta w^2 = 0 \quad \delta \in k^*/(k^*)^2$

 $$Q_1 = \mathbb{P}^1 \times \mathbb{P}^1, \quad Pic(Q_1) = \mathbb{Z}^2 \supset \mathbb{Z}(1,1) = Pic(Q_\delta) \quad \delta \neq 1$$

Theorem (B-Wickelgren)

$$N_{Q_\delta,\sigma}(a,a) = N_{Q_1,\sigma}(a,a) + (<2> - <2\delta>) \sum_{j \geq 1} (-1)^j N_{Q_1,\sigma}(a+j, a-j)$$
Quadratically enriched enumeration

\[x^2 - y^2 = 0 \]
\[\langle 1 \rangle \]

\[x^2 - y^2 = 0 \]
\[\langle 1 \rangle \]

\[x^2 - y^2 = 0 \]
\[\langle 1 \rangle \]
Quadratically enriched enumeration

\[x^2 - y^2 = 0 \]

\[\langle 1 \rangle \]

\[x^2 - y^2 = 0 \]

\[\langle 1 \rangle \]

\[x^2 - y^2 = 0 \]

\[\langle 1 \rangle \]
Quadratically enriched enumeration

\[x^2 - y^2 = 0 \]

\[x^2 - y^2 = 0 \]

\[x^2 - y^2 = 0 \]

\[\langle 1 \rangle + \langle 1 \rangle + \langle 1 \rangle = 3 \]

\[\langle 1 \rangle \]
Quadratically enriched enumeration

\[x^2 - y^2 = 0 \]

\[\langle 1 \rangle \]
Quadratically enriched enumeration

\[x^2 - y^2 = 0 \]
\[<1> \]
Quadratically enriched enumeration

\[x^2 - y^2 = 0 \]

\[<1> \]
Quadratically enriched enumeration

\[x^2 - y^2 = 0 \]
\[<1> \]
Quadratically enriched enumeration

\[x^2 - y^2 = 0 \]

\[<1> \]

\[x^2 - y^2 = 0 \]

\[<1> \]
Quadratically enriched enumeration

\[x^2 - y^2 = 0 \quad <1> \]

\[x^2 - y^2 = 0 \quad + \quad <1> \]

\[x^2 - y^2 = 0 \quad + \quad <1> \]
Quadratically enriched enumeration

\[x^2 - y^2 = 0 \]

\[<1> + <1> + <1> = 3 <1> \]
Quadratically enriched enumeration

\[\text{Gal}(\mathbb{C} : \mathbb{R}) = \{ \text{Id}, \text{conj} \} \]

\[x^2 - y^2 = 0 \quad x^2 - y^2 = 0 \quad x^2 - y^2 = 0 \]

\[<1> \quad <1> \quad <1> \]
Quadratically enriched enumeration

\[\text{Gal}(\mathbb{C} : \mathbb{R}) = \{ \text{id}, \text{conj} \} \]

\[x^2 - y^2 = 0 \]

< 1 >

< 1 >

< 1 >
Quadratically enriched enumeration

\[\text{Gal}(\mathbb{C} : \mathbb{R}) = \{ \text{Id}, \text{conj} \} \]

\[x^2 - y^2 = 0 \]

\[\langle 1 \rangle \]
Quadratically enriched enumeration

\[\text{Gal}(\mathbb{C} : \mathbb{R}) = \{\text{Id}, \text{conj}\} \]

\[x^2 - y^2 = 0 \]

\[\langle 1 \rangle \]
Quadratically enriched enumeration

\[\text{Gal}(\mathbb{C} : \mathbb{R}) = \{\text{Id}, \text{conj}\} \]

\[x^2 - y^2 = 0 \]
\[x^2 + y^2 = 0 \]
\[x^2 - y^2 = 0 \]
Quadratically enriched enumeration

\[\text{Gal}(\mathbb{C} : \mathbb{R}) = \{ \text{Id}, \text{conj} \} \]

\[x^2 - y^2 = 0 \]
\[x^2 + y^2 = 0 \]
\[x^2 - y^2 = 0 \]

\(<1> \]
\(<-1> \]
Quadratically enriched enumeration

\[\text{Gal}(\mathbb{C} : \mathbb{R}) = \{ \text{id}, \text{conj} \} \]

\[
\begin{align*}
& x^2 - y^2 = 0 \\
& \langle 1 \rangle \\
& x^2 + y^2 = 0 \\
& \langle -1 \rangle \\
& x^2 - y^2 = 0 \\
& \langle 1 \rangle
\end{align*}
\]
Quadratically enriched enumeration

\[Gal(\mathbb{C} : \mathbb{R}) = \{ id, \text{conj} \} \]

\[
\begin{align*}
 x^2 - y^2 &= 0 & x^2 + y^2 &= 0 & x^2 + y^2 &= 0 \\
 <1> & & <1> & & <1> \\
 <1> & & <1> & & <1>
\end{align*}
\]
Quadratically enriched enumeration

\[Gal(\mathbb{C} : \mathbb{R}) = \{ \text{Id}, \text{conj} \} \]

\[
\begin{align*}
 x^2 - y^2 &= 0 \\
 x^2 + y^2 &= 0 \\
 x^2 + y^2 &= 0 \\
\end{align*}
\]

\[
\begin{align*}
 < 1 > &+ < -1 > + < -1 > = < 1 > + 2 < -1 >
\end{align*}
\]
Quadratically enriched enumeration

\[\text{Gal}(\mathbb{C} : \mathbb{R}) = \{ \text{Id}, \text{conj} \} \]

\[x^2 - y^2 = 0 \quad x^2 + y^2 = 0 \quad x^2 + y^2 = 0 \]

\[<1> + <-1> + <-1> = <1> + 2 < -1 > \]
Quadratically enriched enumeration

\[\text{Gal}(\mathbb{R}(i) : \mathbb{R}) = \{ \text{Id}, \text{conj} \} \]

\[x^2 - y^2 = 0 \quad \text{and} \quad x^2 + y^2 = 0 \quad \text{and} \quad x^2 + y^2 = 0 \]

\[<1> + <-1> + <-1> = <1> + 2 < -1 > \]
Quadratically enriched enumeration

\[Gal(k(\sqrt{\delta}) : k) = \{ Id, \sigma \} \]

\[
\begin{align*}
x^2 - y^2 &= 0 \\
<1> &+ <\delta> + <\delta> = <1> + 2 <\delta>
\end{align*}
\]
Quadratically enriched enumeration

\[\text{Gal}(k(\sqrt{\delta}) : k) = \{\text{Id}, \sigma\} \]

\[x^2 - y^2 = 0 \quad \quad x^2 - y^2 = 0 \]

\[<1> + <1> = <1> + <2> + <2\delta> \]
Quadratically enriched enumeration

\[Gal(k(\sqrt{\delta}) : k) = \{ld, \sigma\} \]

\[x^2 - y^2 = 0 \]

\[<1> + <1> = <1> + <2> + <2\delta> \]
Quadratically enriched enumeration

\[Gal(k(\sqrt{\delta}) : k) = \{ id, \sigma \} \]

\[x^2 - y^2 = 0 \]

\[< 1 > + < 1 > = < 1 > + < 2 > + < 2\delta > \]
Quadratically enriched enumeration

\[\text{Gal}(k(\sqrt{\delta}) : k) = \{ Id, \sigma \} \]

\[x^2 - y^2 = 0 \]

\[1^\sigma = 1 + 2\delta \]
Quadratically enriched enumeration

Gal\((k(\sqrt{\delta}) : k) = \{Id, \sigma\} \)

\[x^2 - y^2 = 0 \]

\[<1> + <1> = <1> + <2 > + <2\delta > \]
Quadratically enriched enumeration

\[Gal(k(\sqrt{\delta}) : k) = \{Id, \sigma\} \]

\[x^2 - y^2 = 0 \]

\[\langle 1 \rangle \quad + \quad \langle 1 \rangle + \langle 1 \rangle \quad = \langle 1 \rangle + \langle 2 \rangle + \langle 2\delta \rangle \]
Quadratically enriched enumeration

\[Gal(k(\sqrt{\delta}) : k) = \{ \text{id}, \sigma \} \]

\[x^2 - y^2 = 0 \]

\[<1> \]

\[<\text{Tr}_{k(\sqrt{\delta})/k}(<1>)) = <1> + <2> + <2\delta> \]
Quadratically enriched enumeration

\[\text{Gal}(k(\sqrt{\delta}) : k) = \{\text{Id}, \sigma\} \]

\[x^2 - y^2 = 0 \]

\[\langle 1 \rangle \]

\[x^2 - y^2 = 0 \]

\[\langle 2 \rangle + \langle 2\delta \rangle \]
Quadratically enriched enumeration

\[\text{Gal}(k(\sqrt{\delta}) : k) = \{ \text{Id}, \sigma \} \]

\[x^2 - y^2 = 0 \]

\[\langle 1 \rangle + \langle 2 \rangle + \langle 2\delta \rangle = \langle 1 \rangle + \langle 2 \rangle + \langle 2\delta \rangle \]
Quadratically enriched enumeration

\[\text{Gal}(k(\sqrt{\delta}) : k) = \{ \text{Id}, \sigma \} \]

3 \langle 1 \rangle \quad \langle 1 \rangle + 2 \langle \delta \rangle \quad \langle 1 \rangle + \langle 2 \rangle + \langle 2\delta \rangle
\{\text{non-degenerate quadratic forms on } k\}/\text{equivalence} \text{ is a commutative monoid for the direct sum.}

It can be embedded in the Grothendieck-Witt group $GW(k)$, obtained by adding a formal substraction.
{non-degenerate quadratic forms on \(k \}) /\text{equivalence} \text{ is a commutative monoid for the direct sum.}

It can be embedded in the Grothendieck-Witt group \(GW(k) \), obtained by adding a formal substraction.

\(GW(k) \) is generated by rank 1 quadratic forms \(< a > \), with \(a \in k^*/(k^*)^2 \).
{non-degenerate quadratic forms on }/equivalence is a commutative monoid for the direct sum.

It can be embedded in the Grothendieck-Witt group \(GW(k) \), obtained by adding a formal substraction.

\(GW(k) \) is generated by rank 1 quadratic forms \(<a> \), with \(a \in k^*/(k^*)^2 \).

\(GW(k) \) is a ring for the product generated by

\[<a> = <ab> \].\]
Trace form

Given $[L : k] = m$, there exists an additive map

$$Tr_{L/k} : GW(L) \longrightarrow GW(k)$$

defined by the composition

$$L \xrightarrow{q} L \xrightarrow{tr_{L/k}} k$$

Note: $rk(\text{Tr}_{L/k}(q)) = m \times rk(q)$
Given $[L : k] = m$, there exists an additive map

$$\text{Tr}_{L/k} : \ GW(L) \longrightarrow \ GW(k)$$

defined by the composition

$$k^m = L \xrightarrow{q} L \xrightarrow{\text{tr}_{L/k}} k$$
Given \([L : k] = m\), there exists an additive map

\[
\begin{align*}
\text{Tr}_{L/k} &: \quad GW(L) \longrightarrow GW(k)
\end{align*}
\]

defined by the composition

\[
\begin{align*}
k^m &= L \xrightarrow{q} L \xrightarrow{\text{tr}_{L/k}} k
\end{align*}
\]

Exemple \((\mathbb{C}/\mathbb{R})\)

\[
\begin{align*}
\text{Tr}_{\mathbb{C}/\mathbb{R}}(\langle 1 \rangle) &= \langle 1 \rangle + \langle -1 \rangle
\end{align*}
\]
Trace form

Given \([L : k] = m\), there exists an additive map

\[
Tr_{L/\overline{k}} : \ GW(L) \rightarrow \ GW(k)
\]

defined by the composition

\[
k^m = L \xrightarrow{q} L \xrightarrow{tr_{L/\overline{k}}} k
\]

Exemple \((\mathbb{C}/\mathbb{R})\)

\[
Tr_{\mathbb{C}/\mathbb{R}}(\langle 1 \rangle) = \langle 1 \rangle + \langle -1 \rangle
\]

\[
(x + iy)^2 + (x - iy)^2 = 2x^2 - 2y^2
\]
Given \([L : k] = m\), there exists an additive map

\[Tr_{L/k} : \ GW(L) \rightarrow GW(k) \]

defined by the composition

\[k^m = L \xrightarrow{q} L \xrightarrow{tr_{L/k}} k \]

Exemple (\(\mathbb{C}/\mathbb{R}\))

\[Tr_{\mathbb{C}/\mathbb{R}}(<1>) = <1> + <-1> \]

\[(x + iy)^2 + (x - iy)^2 = 2x^2 - 2y^2 \]

Note: \(rk(Tr_{L/k}(q)) = m \times rk(q)\)
Quadratic multiplicity of a rational curve

- C is a rational nodal curve in $\mathbb{P}^2(k)$ defined by a polynomial $f \in k[x, y]:$

\[
\mu_k(C) = \prod_{\text{nodes } p \text{ of } C \otimes \overline{k}} < -\det(\text{Hess}(f)_p) > \in GW(k)
\]
Quadratic multiplicity of a rational curve

- C is a rational nodal curve in $\mathbb{P}^2(k)$ defined by a polynomial $f \in k[x, y]$

\[
\mu_k(C) = \prod_{\text{nodes } p \text{ of } C \otimes \overline{k}} < -\det(Hess(f)_p) > \in GW(k)
\]

- $C = \{C_1, \ldots, C_m\}$ is the $Gal(\overline{k} : k)$-orbit of a rational nodal curve C_1 with residue field L

\[
\mu_k(C) = Tr_{L/k}(\mu_L(C_1))
\]
Quadratic multiplicity of a rational curve

- C is a rational nodal curve in $\mathbb{P}^2(k)$ defined by a polynomial $f \in k[x, y]$

$$\mu_k(C) = \prod_{\text{nodes } p \text{ of } C \otimes \overline{k}} < -\det(Hess(f)_p) > \in GW(k)$$

- $C = \{C_1, \ldots, C_m\}$ is the $Gal(\overline{k} : k)$-orbit of a rational nodal curve C_1 with residue field L

$$\mu_k(C) = Tr_{L/k}(\mu_L(C_1))$$

Note: $rk(\mu_k(C)) = m$
\[\text{car}(K) = 0 \]

Let \(d \geq 1 \), and \(\sigma = \{L_1, \ldots, L_n\} \) be \(k \)-extensions such that

\[\sum [L_i : k] = 3d - 1 \]
Quadratically enriched invariants – \mathbb{P}^2

$\text{car}(K) = 0$

Let $d \geq 1$, and $\sigma = \{L_1, \ldots, L_n\}$ be k-extensions such that

$$\sum [L_i : k] = 3d - 1$$

Let p_1, \ldots, p_n be points in \mathbb{P}^2 such that p_i has residue field L_i.
Quadratically enriched invariants – \mathbb{P}^2

$\text{car}(K) = 0$

Let $d \geq 1$, and $\sigma = \{L_1, \ldots, L_n\}$ be k-extensions such that

$$\sum [L_i : k] = 3d - 1$$

Let p_1, \ldots, p_n be points in \mathbb{P}^2 such that p_i has residue field L_i.

Theorem (Kass, Levine, Solomon, Wickelgren)

$$N_{\mathbb{P}^2, \sigma}(d) = \sum_C \mu_k(C)$$

does not depend on a generic choice of the points p_i, where the sum is taken over all $\text{Gal}(\overline{k} : k)$-orbits of rational curves of degree d passing through the points p_1, \ldots, p_n.
Replace \mathbb{P}^2 with a k-rational del Pezzo surface S. Replace d by $D \in \text{Pic}_k(S)$, and let $\sigma = \{L_1, \ldots, L_n\}$ be k-extensions such that

$$\sum [L_i : k] = -K(S) \cdot D - 1$$
Replace \mathbb{P}^2 with a k-rational del Pezzo surface S. Replace d by $D \in \text{Pic}_k(S)$, and let $\sigma = \{L_1, \ldots, L_n\}$ be k-extensions such that

$$\sum [L_i : k] = -K(S) \cdot D - 1$$

Let p_1, \ldots, p_n be points in S such that p_i has residue field L_i.

Theorem (Kass, Levine, Solomon, Wickelgren)

$$N_{S,\sigma}(d) = \sum \mu_k(C)$$

does not depend on a generic choice of the points p_i, where the sum is taken over all $\text{Gal}(k:k)$-orbits of rational curves with class D passing through the points p_1, \ldots, p_n.

Remark

When $k = \mathbb{R}$, this is a reformulation of a weak version of Welschinger invariants.
Replace \(\mathbb{P}^2 \) with a \(k \)-rational del Pezzo surface \(S \). Replace \(d \) by \(D \in \text{Pic}_k(S) \), and let \(\sigma = \{L_1, \ldots, L_n\} \) be \(k \)-extensions such that

\[
\sum [L_i : k] = -K(S) \cdot D - 1
\]

Let \(p_1, \ldots, p_n \) be points in \(S \) such that \(p_i \) has residue field \(L_i \).

Theorem (Kass, Levine, Solomon, Wickelgren)

\[
N_{S, \sigma}(d) = \sum_C \mu_k(C)
\]

does not depend on a generic choice of the points \(p_i \), where the sum is taken over all \(\text{Gal}(\overline{k} : k) \)-orbits of rational curves with class \(D \) passing through the points \(p_1, \ldots, p_n \).
Replace \mathbb{P}^2 with a k-rational del Pezzo surface S. Replace d by $D \in \text{Pic}_k(S)$, and let $\sigma = \{L_1, \ldots, L_n\}$ be k-extensions such that
\[\sum [L_i : k] = -K(S) \cdot D - 1 \]

Let p_1, \ldots, p_n be points in S such that p_i has residue field L_i.

Theorem (Kass, Levine, Solomon, Wickelgren)
\[N_{S,\sigma}(d) = \sum_{C} \mu_k(C) \]

does not depend on a generic choice of the points p_i, where the sum is taken over all $\text{Gal}(\overline{k} : k)$-orbits of rational curves with class D passing through the points p_1, \ldots, p_n.

Remark
When $k = \mathbb{R}$, this is a reformulation of a weak version of Welschinger invariants.
Invariants of quadrics (C–Abramovich-Bertram, R–B-Puignau)

\[Q_\delta : \quad x^2 - y^2 + z^2 - \delta w^2 = 0 \quad \delta \in k^*/(k^*)^2 \]
\[Q_1 = \mathbb{P}^1 \times \mathbb{P}^1, \quad \text{Pic}(Q_1) = \mathbb{Z}^2 \supset \mathbb{Z}(1, 1) = \text{Pic}(Q_\delta) \quad \delta \neq 1 \]

Theorem (B-Wickelgren)

\[N_{Q_\delta, \sigma}(a, a) = N_{Q_1, \sigma}(a, a) + (\langle 2 \rangle - \langle 2\delta \rangle) \sum_{j \geq 1} (-1)^j N_{Q_1, \sigma}(a+j, a-j) \]
Invariants of quadrics (C–Abramovich-Bertram, R–B-Puignau)

\(Q_\delta : \quad x^2 - y^2 + z^2 - \delta w^2 = 0 \quad \delta \in k^*/(k^*)^2 \)

\(Q_1 = \mathbb{P}^1 \times \mathbb{P}^1, \quad \text{Pic}(Q_1) = \mathbb{Z}^2 \supset \mathbb{Z}(1, 1) = \text{Pic}(Q_\delta) \quad \delta \neq 1 \)

Theorem (B-Wickelgren)

\[
N_{Q_\delta, \sigma}(a, a) = N_{Q_1, \sigma}(a, a) + \langle 2 \rangle - \langle 2\delta \rangle \sum_{j \geq 1} (-1)^j N_{Q_1, \sigma}(a+j, a-j)
\]

\[
x^2 - y^2 + z^2 - w^2 \\
Q_1
\]

\[
x^2 - y^2 + z^2 + w^2 \\
Q_{-1}
\]
Invariants of quadrics (C–Abramovich-Bertram, R–B-Puignau)

\[Q_\delta : \quad x^2 - y^2 + z^2 - \delta w^2 = 0 \quad \delta \in k^*/(k^*)^2 \]

\[Q_1 = \mathbb{P}^1 \times \mathbb{P}^1, \quad Pic(Q_1) = \mathbb{Z}^2 \supset \mathbb{Z}(1, 1) = Pic(Q_\delta) \quad \delta \neq 1 \]

Theorem (B-Wickelgren)

\[N_{Q_\delta, \sigma}(a, a) = N_{Q_1, \sigma}(a, a) + \langle 2 \rangle - \langle 2\delta \rangle \sum_{j \geq 1} (-1)^j N_{Q_1, \sigma}(a+j, a-j) \]

Diagram:

- \(Q_1 \): \(x^2 - y^2 + z^2 - w^2 \)
- \(Q_0 \): \(x^2 - y^2 + z^2 \)
- \(Q_{-1} \): \(x^2 - y^2 + z^2 + w^2 \)
Invariants of quadrics (C–Abramovich-Bertram, R–B-Puignau)

\[x^2 - y^2 + z^2 - w^2 \]
\[x^2 - y^2 + z^2 \]
\[x^2 - y^2 + z^2 + w^2 \]

\(Q_1 \)
\(Q_0 \)
\(Q_{-1} \)

Strategy : deduce a curve count in \(Q_\delta \) by counting curves in \(Q_0 \).
Strategy: deduce a curve count in Q_δ by counting curves in Q_0.

Warning: enumeration of curves in Q_0 heavily depends on the points configuration.
Strategy: deduce a curve count in Q_δ by counting curves in Q_0.

Warning: enumeration of curves in Q_0 heavily depends on the points configuration.

Express an invariant quantity in terms of non-invariant quantities.
Invariants of quadrics (C–Abramovich-Bertram, R–B-Puignau)

\[x^2 - y^2 + z^2 - w^2 \]
\[Q_1 \]

\[x^2 - y^2 + z^2 \]
\[Q_0 \]

\[x^2 - y^2 + z^2 + w^2 \]
\[Q_{-1} \]

Strategy: deduce a curve count in \(Q_\delta \) by counting curves in \(Q_0 \).

Warning: enumeration of curves in \(Q_0 \) **heavily** depends on the points configuration.

Express an invariant quantity in terms of non-invariant quantities.

Spectacular fact: a suitable combination of these expressions makes all non-invariant terms disappear!
Consider $x^2 - y^2 + z^2 - \delta w^2 = 0$ as a nodal quadric \mathcal{Q} in \mathbb{A}^4.

$x^2 - y^2 + z^2 - \delta w^2$

$\mathcal{Q}_w = \mathcal{Q}_\delta \ w \neq 0$

$x^2 - y^2 + z^2$

$\mathcal{Q}_0 = \mathcal{Q}_0$
From Q_0 to Q_δ

Consider $x^2 - y^2 + z^2 - \delta w^2 = 0$ as a nodal quadric Q in \mathbb{A}^4.

\[x^2 - y^2 + z^2 - \delta w^2 \]

$Q_w = Q_\delta \ w \neq 0$

$\widetilde{Q} :$ blow up Q at the point 0.
Consider \(x^2 - y^2 + z^2 - \delta w^2 = 0 \) as a nodal quadric \(Q \) in \(\mathbb{A}^4 \).

\[x^2 - y^2 + z^2 - \delta w^2 \]
\[\tilde{Q}_w = Q_\delta \quad w \neq 0 \]

\(\tilde{Q} \) : blow up \(Q \) at the point 0.

\[\tilde{Q}_0 = \mathbb{F}_2 \cup Q_\delta \]
From Q_0 to Q_δ

Consider $x^2 - y^2 + z^2 - \delta w^2 = 0$ as a nodal quadric Q in \mathbb{A}^4.

$x^2 - y^2 + z^2 - \delta w^2$

$\tilde{Q}_w = Q_\delta \ w \neq 0$

$\tilde{Q}_0 = \mathbb{F}_2 \cup Q_\delta$

$\tilde{Q} :$ blow up Q at the point 0.

In \tilde{Q}_0 : choose p_1, \ldots, p_n in \mathbb{F}_2, which doesn’t know about δ.
From Q_0 to Q_δ

Consider $x^2 - y^2 + z^2 - \delta w^2 = 0$ as a nodal quadric Q in \mathbb{A}^4.

\[x^2 - y^2 + z^2 - \delta w^2 \]
\[\tilde{Q}_w = Q_{\delta} \; w \neq 0 \]

\[\tilde{Q}_0 = \mathbb{F}_2 \cup Q_{\delta} \]

\tilde{Q} : blow up Q at the point 0.

In \tilde{Q}_0 : choose p_1, \ldots, p_n in \mathbb{F}_2, which doesn’t know about δ. The Q_{δ} component of \tilde{Q}_0 knows about δ but not about p_1, \ldots, p_n.
1. An enlightening geometric proof?
1. An enlightning geometric proof?

\[N_{Q_δ,σ}(a, a)−N_{Q_γ,σ}(a, a) = (χ(Q_δ/k)−χ(Q_γ/k)) \sum_{j \geq 1} (-1)^j N_{Q_1,σ}(a+j, a−j) \]
1. An enlightening geometric proof?

\[N_{Q_\delta,\sigma}(a, a) - N_{Q_\gamma,\sigma}(a, a) = (\chi(Q_\delta/k) - \chi(Q_\gamma/k)) \sum_{j \geq 1} (-1)^j N_{Q_1,\sigma}(a+j, a-j) \]

2. The field \(k \) doesn’t play much role in known values of \(N_{S,\sigma} \).
Comments – speculations

1. An enlightening geometric proof?

\[N_{Q_\delta,\sigma}(a, a) - N_{Q_\gamma,\sigma}(a, a) = (\chi(Q_\delta/k) - \chi(Q_\gamma/k)) \sum_{j \geq 1} (-1)^j N_{Q_1,\sigma}(a+j, a-j) \]

2. The field \(k \) doesn’t play much role in known values of \(N_{S,\sigma} \).

Vague conjecture: There exist universal expressions for \(N_{S,\sigma} \) in terms of the action of \(Gal(\overline{k} : k) \) on \(Pic(S \otimes \overline{k}) \) and \(\{ k \subset L \subset \overline{k} \} \).
Comments – speculations

1. An enlightening geometric proof?

\[N_{Q_\delta,\sigma}(a, a) - N_{Q_\gamma,\sigma}(a, a) = (\chi(Q_\delta/k) - \chi(Q_\gamma/k)) \sum_{j \geq 1} (-1)^j N_{Q_1,\sigma}(a+j, a-j) \]

2. The field \(k \) doesn’t play much role in known values of \(N_{S,\sigma} \).

Vague conjecture: There exist universal expressions for \(N_{S,\sigma} \) in terms of the action of \(Gal(\overline{k} : k) \) on \(Pic(S \otimes \overline{k}) \) and \(\{ k \subset L \subset \overline{k} \} \).

- ✓ \(k = \mathbb{R} \) (B)
- ✓ \(S \) toric and \(\sigma = \{k, \ldots, k\} \) (Jaramillo Puentes - Pauli)
- ✓ \(Q_\delta \) and \(\sigma = \{k, \ldots, k\} \) (B - Wickelgren)
Comments – speculations

1. An enlightening geometric proof?

\[N_{Q_\delta,\sigma}(a, a) - N_{Q_\gamma,\sigma}(a, a) = (\chi(Q_\delta/k) - \chi(Q_\gamma/k)) \sum_{j \geq 1} (-1)^j N_{Q_1,\sigma}(a+j, a-j) \]

2. The field \(k \) doesn’t play much role in known values of \(N_{S,\sigma} \).

Vague conjecture: There exist universal expressions for \(N_{S,\sigma} \) in terms of the action of \(Gal(k \mid k) \) on \(Pic(S \otimes k) \) and \(\{ k \subset L \subset \bar{k} \} \).

\(\checkmark \) \(k = \mathbb{R} \) (B)

\(\checkmark \) \(S \) toric and \(\sigma = \{ k, \ldots, k \} \) (Jaramillo Puentes - Pauli)

\(\checkmark \) \(Q_\delta \) and \(\sigma = \{ k, \ldots, k \} \) (B - Wickelgren)

Exemple \(N_{\mathbb{P}^2,\{k^5,\mathbb{S}_6\}}(4) = 218 < 1 > + 190 < -1 > + 17 \text{Tr}(L^5) \)

(B-Rau-Wickelgren) \(+ 4 \text{Tr}(L^{4,2}) + \text{Tr}(L^4) + \text{Tr}(L^{3,3}) \)