Tropical floor diagrams

Uriel Sinichkin (TAU)

January 5th, 2022

Outline

Lattice path algorithm

Floor diagrams

Real and refined invariants

Lattice path algorithm

Tropical curves - a reminder

A plane tropical curve is piecewise linear map with rational slopes from a finite metric graph to \mathbb{R}^{2} satisfying the balancing condition. The degree is the multiset of directions of unbounded ends. We have dual subdivision of the Newton polygon. The genus is the first Betti number. The multiplicity $\mu(\Gamma)$ is the product $\prod_{V \in \Gamma^{0}} \mu(V)$ where $\mu(V)$ is the lattice area of the dual cell.

$\mu(p)=4$

Tropical curves - a reminder

A marking of a tropical curve is a choice of finite sequence of points on it.
Marked

A combinatorial type of a tropical curve is the data of the graph, slopes of edges, and for each marking on which edge it resides.

Remark.

For simplicity we will focus on degrees
$\Delta_{d}:=\left\{d \times\binom{-1}{0}, d \times\binom{ 0}{-1}, d \times\binom{ 1}{1}\right\}$ which correspond to
degree d curves in \mathbb{P}^{2}. All the results can be generalized to v-tranverse degrees, which include all main examples, such as $\mathbb{P}^{1} \times \mathbb{P}^{1}$, Hirzebruch surfaces, and del-Pezzo surfaces.

Correspondence theorem

Theorem [Mikhalkin].

Let \boldsymbol{p} be a sequence of $3 d+g-1$ points in \mathbb{R}^{2} in general (tropical) position and let Γ be a tropical curve of genus g and degree Δ_{d} passing through \boldsymbol{p}. For a sequence \boldsymbol{w} of $3 d+g-1$ points in $\left(\mathbb{K}^{\times}\right)^{2}$ that tropicalize to \boldsymbol{p}, there exist $\mu(\Gamma)$ algebraic curves of genus g and degree d in \mathbb{P}^{2} that pass through \boldsymbol{w} and tropicalize to Γ.

Correspondence theorem

Theorem [Mikhalkin].

Let \boldsymbol{p} be a sequence of $3 d+g-1$ points in \mathbb{R}^{2} in general (tropical) position and let Γ be a tropical curve of genus g and degree Δ_{d} passing through \boldsymbol{p}. For a sequence \boldsymbol{w} of $3 d+g-1$ points in $\left(\mathbb{K}^{\times}\right)^{2}$ that tropicalize to \boldsymbol{p}, there exist $\mu(\Gamma)$ algebraic curves of genus g and degree d in \mathbb{P}^{2} that pass through \boldsymbol{w} and tropicalize to Γ.

Corollary: The Gromov-Witten invariants of toric surfaces can be computed tropically.

Problem: Although the computation is finite, it is very hard to perform and analyze.

Correspondence theorem

Theorem [Mikhalkin].

Let \boldsymbol{p} be a sequence of $3 d+g-1$ points in \mathbb{R}^{2} in general (tropical) position and let Γ be a tropical curve of genus g and degree Δ_{d} passing through \boldsymbol{p}. For a sequence \boldsymbol{w} of $3 d+g-1$ points in $\left(\mathbb{K}^{\times}\right)^{2}$ that tropicalize to \boldsymbol{p}, there exist $\mu(\Gamma)$ algebraic curves of genus g and degree d in \mathbb{P}^{2} that pass through w and tropicalize to Γ.

Corollary: The Gromov-Witten invariants of toric surfaces can be computed tropically.

Problem: Although the computation is finite, it is very hard to perform and analyze.
Solution: Put the points in suitable position.

Lattice path

Definition.

A sequence of points $\left\langle p_{i}=\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}\right\rangle$ is called horizontally
stretched if for all $i<j$ we have $x_{i}<x_{j}, y_{i}<y_{j}$ and
$x_{j}-x_{i}>C \cdot\left(y_{j}-y_{i}\right)$ where C is large enough constant
(depending only on Δ).

| x | x |
| :--- | :--- | :--- |
| 2 | |

Definition.

If p_{i} is contained in the interior of an edge of Γ, denote by E_{i} the corresponding edge of the dual subdivision. Denote by $P(\Gamma, \boldsymbol{p}):=\bigcup E_{i}$ the lattice path corresponding to Γ.

Proposition.

If \boldsymbol{p} is horizontally stretched, $P(\Gamma, \boldsymbol{p})$ is homeomorphic to a segment with endpoints $(0,0)$ and $(d, 0)$.

Figure 1: All lattice paths and their multiplicities for degree 4 and genus 1 (credit: Mikhalkin).

Sketch of the proof
the endpoints of E_{i} are smaller than the endpoints of E_{i+1}
The cc of $\Gamma \sum^{p}$ are trees with exactly one unbounded end.

Lattice path algorithm

- We can enumerate all the lattice paths that can occur.
- For each lattice path we can enumerate the subdivisions containing this lattice path, by using the fact such a subdivision has to contain only triangles and parallelograms.
- In the final step we will need to filter reducible curves or curves of the wrong degree.

Example

Floor diagrams

Floor graph

Definition.

Let Γ be a planar tropical curve. A horizontal edge of Γ is called an elevator, a connected component of $\Gamma \backslash \bigcup\{$ elevators $\}$ is called a floor.

Floor graph

Definition.

Let Γ be a planar tropical curve. A horizontal edge of Γ is called an elevator, a connected component of $\Gamma \backslash \bigcup\{$ elevators $\}$ is called a floor. The floor graph of Γ is a weighted directed graph with:

Vertices: Floors of Γ.
Edges: Bounded elevators of Γ oriented from left to right and with the same weight.

Floor diagrams

Definition.

A connected directed weight graph $\mathcal{D}=(V, E, w)$ is called a floor diagram if it is acyclic and for every vertex $v \in V$ it satisfies the divergence condition:

$$
\operatorname{div}(v) \stackrel{\text { def }}{=} \sum_{\circ \xrightarrow{e_{1}} v} w(e)-\sum_{v \xrightarrow{e} 0} w(e) \leq 1
$$

The degree of \mathcal{D} is the cardinality of V, the genus of \mathcal{D} is its first Betti number $g(\mathcal{D})=1-\chi(\mathcal{D})=1+|E|-|V|$.

Floor diagrams

Definition.

A connected directed weight graph $\mathcal{D}=(V, E, w)$ is called a floor diagram if it is acyclic and for every vertex $v \in V$ it satisfies the divergence condition:

$$
\operatorname{div}(v) \stackrel{\text { def }}{=} \sum_{0 \stackrel{e_{e}}{\longrightarrow} v} w(e)-\sum_{v \xrightarrow{e} 0} w(e) \leq 1 .
$$

The degree of \mathcal{D} is the cardinality of V, the genus of \mathcal{D} is its first Betti number $g(\mathcal{D})=1-\chi(\mathcal{D})=1+|E|-|V|$.

A tropical curve is floor decomposed if its floor graph is a floor diagram.

Proposition.

If \boldsymbol{p} is horizontally stretched, every tropical curve (of degree d and genus g) passing through \boldsymbol{p} is floor decomposed.

Example

Marked floor diagrams

Definition.

Let $\mathcal{D}=(V, E, w)$ be a floor diagram. The extended floor diagram $\cong(\widetilde{V}, \widetilde{E}, w)$ is obtained from \mathcal{D} by adding $1-\operatorname{div}(v)$ vertices at infinity for each $v \in V$ and connecting them by an edge of weight 1 to v. A marking on \mathcal{D} is a linear order on $V \cup \widetilde{E}$ s.t. every edge is greater than its source and smaller than its target.

Marked floor diagrams

Definition.

Let $\mathcal{D}=(V, E, w)$ be a floor diagram. The extended floor diagram $\cong(\widetilde{V}, \widetilde{E}, w)$ is obtained from \mathcal{D} by adding $1-\operatorname{div}(v)$ vertices at infinity for each $v \in V$ and connecting them by an edge of weight 1 to v. A marking on \mathcal{D} is a linear order on $V \cup \widetilde{E}$ s.t. every edge is greater than its source and smaller than its target. The multiplicity of a floor diagram is $\mu(\mathcal{D}):=\prod_{e \in E} w(e)^{2}$.

Correspondence

Proposition.

If \boldsymbol{p} are horizontally stretched, there exist a multiplicity preserving bijection between tropical curves through \mathbf{p} and marked floor diagrams (both of degree d and genus g).

Correspondence

Proposition.

If \boldsymbol{p} are horizontally stretched, there exist a multiplicity preserving bijection between tropical curves through \boldsymbol{p} and marked floor diagrams (both of degree d and genus g).

Corollary.

The Gromov-Witten invariant $N_{d, g}$ is equal to

$$
N_{d, g}=\sum_{\mathcal{D}} \mu(\mathcal{D}) \nu(\mathcal{D})
$$

where the sum is over all floor diagrams and $\nu(\mathcal{D})$ denotes the number of markings of \mathcal{D}.

Example - smooth curves

Smooth curves have maximal genus among curves of degree d, namely

$$
g_{\max }(d)=\frac{(d-1)(d-2)}{2} .
$$

There is only one marked floor diagram of degree d : and genus g gax

Example - uninodal curves

There are 2 types of marked floor diagrams of genus $g_{\max }-1$:

1. Floor diagrams with edge of weight 2. There are $1+2+\cdots+(d-2)=\frac{(d-1)(d-2)}{2}$ of those, each with multiplicity 4.

Example - uninodal curves

There are 2 types of marked floor diagrams of genus $g_{\max }-1$:

1. Floor diagrams with edge of weight 2. There are $1+2+\cdots+(d-2)=\frac{(d-1)(d-2)}{2}$ of those, each with multiplicity 4.
2. Floor diagrams with edge of "length" 2. There are

$$
3+5+\odot+\underset{6 / 7 / 8 / 9 / 10}{(2 d-1)}=d^{2}-1 \text { of those. }
$$

Example - uninodal curves

There are 2 types of marked floor diagrams of genus $g_{\max }-1$:

1. Floor diagrams with edge of weight 2. There are $1+2+\cdots+(d-2)=\frac{(d-1)(d-2)}{2}$ of those, each with multiplicity 4.
2. Floor diagrams with edge of "length" 2. There are

$$
3+5+\cdots+(2 d-1)=d^{2}-1 \text { of those.s }
$$

Summing all the contributions we get the well known formula for the degree of the discriminant:

$$
N_{d, g_{\max }-1}=3(d-1)^{2} .
$$

Node polynomials

Using the same ideas it is possible to prove: Theorem [Fomin, Mikhalkin, '09].
For a fixed $\delta \in \mathbb{Z}_{\geq 0}$ there exist a polynomial $N_{\delta}(d) \in \mathbb{Q}[d]$ of degree 2δ s.t. $N_{d, g_{\max }-\delta}=N_{\delta}(d)$ for all d large enough.

$$
\delta \varepsilon \leq 2 \delta
$$

Real and refined invariants

Welschinger invariants

- It is possible to compute the Welschinger weight of a floor decomposed tropical curve from its marked floor diagram.
- For totally real configuration of points we will get

$$
\mu^{\mathbb{R}}(\mathcal{D})=\left\{\begin{array}{ll}
0 & \mu(\mathcal{D}) \in 2 \mathbb{Z} \\
1 & \mu(\mathcal{D}) \in 1+2 \mathbb{Z}
\end{array}\right. \text { and in particular does not }
$$ depend on the marking. We get

$$
W_{d}=\sum_{\mu(\mathcal{D}) \equiv 1} \nu(\mathcal{D}) .
$$

- For configuration of points containing conjugate pairs, the real multiplicity depends on the marking.

Welschinger invariants

- It is possible to compute the Welschinger weight of a floor decomposed tropical curve from its marked floor diagram.
- For totally real configuration of points we will get

$$
\begin{aligned}
& \mu^{\mathbb{R}}(\mathcal{D})=\left\{\begin{array}{ll}
0 & \mu(\mathcal{D}) \in 2 \mathbb{Z} \\
1 & \mu(\mathcal{D}) \in 1+2 \mathbb{Z}
\end{array}\right. \text { and in particular does not } \\
& \text { depend on the marking. We get } \\
& W_{d}=\sum_{\mu(\mathcal{D})=1} \bmod 2 \nu(\mathcal{D}) .
\end{aligned}
$$

- For configuration of points containing conjugate pairs, the real multiplicity depends on the marking.

Theorem [Arroyo, Brugalle, de Medrano, '08].

There exist a recursive formula that computes Welschinger invariants for any number of conjugate pair of points.

Block-Göttsche invariants

- All this discussion transfers as is to the computation of Block-Göttsche invariants (i.e. refined invariants without points of high multiplicity).
- The refined weight of a floor diagram is

$$
\mu_{y}(\mathcal{D}):=\prod_{e \in E}\left([w(e)]_{y}\right)^{2} .
$$

Theorem [Block, Göttsche, '16].

There exist a polynomial $N_{\delta}(d ; y) \in \mathbb{Q}\left[y^{ \pm 1}\right][d]$ of degree 2δ in d s.t.

$$
B G_{y}\left(d, g_{\max }-\delta\right)=N_{\delta}(d ; y)
$$

for all large enough values of d.

Bibliography

E. Aubin Arroyo, Erwan Brugalle, and Lucia Lopez de Medrano, Recursive formulas for welschinger invariants of the projective plane, International Mathematics Research Notices 2011 (2008).

Elorian Block and Lothar Göttsche, Refined curve counting with tropical geometry, Compositio Mathematica 152 (2016), no. 1, 115-151.
E. Erwan Brugalle and Grigory Mikhalkin, Floor decompositions of tropical curves: the planar case, 2008, pp. 1-27.
E. Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, Journal of the European Mathematical Society 12 (2009).
Erigory Mikhalkin, Counting curves via lattice paths in polygons, Comptes Rendus Mathematique 336 (2003), no. 8,

