Tropical floor diagrams

Uriel Sinichkin (TAU) January 5th, 2022 Lattice path algorithm

Floor diagrams

Real and refined invariants

Lattice path algorithm

A plane tropical curve is piecewise linear map with rational slopes from a finite metric graph to \mathbb{R}^2 satisfying the balancing condition. The degree is the multiset of directions of unbounded ends. We have *dual subdivision* of the Newton polygon. The genus is the first Betti number. The multiplicity $\mu(\Gamma)$ is the product $\prod_{V \in \Gamma^0} \mu(V)$ where $\mu(V)$ is the lattice area of the dual cell.

A marking of a tropical curve is a choice of finite sequence of points on it. A combinatorial type of a tropical curve is the data of the graph, slopes of edges, and for each marking on which edge it resides.

Remark.

For simplicity we will focus on degrees $\Delta_d := \left\{ d \times \begin{pmatrix} -1 \\ 0 \end{pmatrix}, d \times \begin{pmatrix} 0 \\ -1 \end{pmatrix}, d \times \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \text{ which correspond to}$ degree d curves in \mathbb{P}^2 . All the results can be generalized to *v*-tranverse degrees, which include all main examples, such as $\mathbb{P}^1 \times \mathbb{P}^1$, Hirzebruch surfaces, and del-Pezzo surfaces.

Theorem [Mikhalkin].

Let \mathbf{p} be a sequence of 3d + g - 1 points in \mathbb{R}^2 in general (tropical) position and let Γ be a tropical curve of genus g and degree Δ_d passing through \mathbf{p} . For a sequence \mathbf{w} of 3d + g - 1 points in $(\mathbb{K}^{\times})^2$ that tropicalize to \mathbf{p} , there exist $\mu(\Gamma)$ algebraic curves of genus g and degree d in \mathbb{P}^2 that pass through \mathbf{w} and tropicalize to Γ .

Theorem [Mikhalkin].

Let \mathbf{p} be a sequence of 3d + g - 1 points in \mathbb{R}^2 in general (tropical) position and let Γ be a tropical curve of genus g and degree Δ_d passing through \mathbf{p} . For a sequence \mathbf{w} of 3d + g - 1 points in $(\mathbb{K}^{\times})^2$ that tropicalize to \mathbf{p} , there exist $\mu(\Gamma)$ algebraic curves of genus g and degree d in \mathbb{P}^2 that pass through \mathbf{w} and tropicalize to Γ .

Corollary: The Gromov-Witten invariants of toric surfaces can be computed tropically.

Problem: Although the computation is finite, it is very hard to perform and analyze.

Theorem [Mikhalkin].

Let \mathbf{p} be a sequence of 3d + g - 1 points in \mathbb{R}^2 in general (tropical) position and let Γ be a tropical curve of genus g and degree Δ_d passing through \mathbf{p} . For a sequence \mathbf{w} of 3d + g - 1 points in $(\mathbb{K}^{\times})^2$ that tropicalize to \mathbf{p} , there exist $\mu(\Gamma)$ algebraic curves of genus g and degree d in \mathbb{P}^2 that pass through \mathbf{w} and tropicalize to Γ .

- **Corollary:** The Gromov-Witten invariants of toric surfaces can be computed tropically.
- **Problem:** Although the computation is finite, it is very hard to perform and analyze.
- **Solution:** Put the points in suitable position.

Lattice path

Definition.

A sequence of points $\langle p_i = (x_i, y_i) \in \mathbb{R}^2 \rangle$ is called horizontally stretched if for all i < j we have $x_i < x_j$, $y_i < y_j$ and $x_j - x_i > C \cdot (y_j - y_i)$ where *C* is large enough constant (depending only on Δ).

Definition.

If p_i is contained in the interior of an edge of Γ , denote by E_i the corresponding edge of the dual subdivision. Denote by $P(\Gamma, \mathbf{p}) := \bigcup E_i$ the lattice path corresponding to Γ .

Proposition.

If **p** is horizontally stretched, $P(\Gamma, \mathbf{p})$ is homeomorphic to a segment with endpoints (0,0) and (d,0).

Examples

× ۶ * $\underbrace{}_{\mu_{1}}^{*} \underbrace{}_{\mu_{2}}^{*} \underbrace{}_{\mu_{1}}^{*} \underbrace{}_{\mu_{1}}$

Figure 1: All lattice paths and their multiplicities for degree 4 and genus 1 (credit: Mikhalkin).

Sketch of the proof

- We can enumerate all the lattice paths that can occur.
- For each lattice path we can enumerate the subdivisions containing this lattice path, by using the fact such a subdivision has to contain only triangles and parallelograms.
- In the final step we will need to filter reducible curves or curves of the wrong degree.

Example

Floor diagrams

Definition.

Let Γ be a planar tropical curve. A horizontal edge of Γ is called an elevator, a connected component of $\Gamma \setminus \bigcup \{\text{elevators}\}$ is called a floor.

Definition.

Let Γ be a planar tropical curve. A horizontal edge of Γ is called an elevator, a connected component of $\Gamma \setminus \bigcup \{\text{elevators}\}\$ is called a floor. The floor graph of Γ is a weighted directed graph with:

Vertices: Floors of Γ.

Edges: Bounded elevators of Γ oriented from left to right and with the same weight.

Floor diagrams

Definition.

A connected directed weight graph $\mathcal{D} = (V, E, w)$ is called a floor diagram if it is acyclic and for every vertex $v \in V$ it satisfies the divergence condition:

$$\operatorname{div}(v) \stackrel{\operatorname{def}}{=} \sum_{\circ \stackrel{e_{\bullet}}{\longrightarrow} v} w(e) - \sum_{v \stackrel{e}{\longrightarrow} \circ} w(e) \leq 1.$$

The degree of \mathcal{D} is the cardinality of V, the genus of \mathcal{D} is its first Betti number $g(\mathcal{D}) = 1 - \chi(\mathcal{D}) = 1 + |\mathcal{E}| - |V|$.

Floor diagrams

Definition.

A connected directed weight graph $\mathcal{D} = (V, E, w)$ is called a floor diagram if it is acyclic and for every vertex $v \in V$ it satisfies the divergence condition:

$$\operatorname{div}(v) \stackrel{\operatorname{def}}{=} \sum_{\circ \stackrel{e_e}{\longrightarrow} v} w(e) - \sum_{v \stackrel{e}{\longrightarrow} \circ} w(e) \leq 1.$$

The degree of \mathcal{D} is the cardinality of V, the genus of \mathcal{D} is its first Betti number $g(\mathcal{D}) = 1 - \chi(\mathcal{D}) = 1 + |\mathcal{E}| - |V|$.

A tropical curve is floor decomposed if its floor graph is a floor diagram.

Proposition.

If **p** is horizontally stretched, every tropical curve (of degree d and genus g) passing through **p** is floor decomposed.

13/23

Example

Definition.

Let $\mathcal{D} = (V, E, w)$ be a floor diagram. The extended floor diagram $\cong (\widetilde{V}, \widetilde{E}, w)$ is obtained from \mathcal{D} by adding $1 - \operatorname{div}(v)$ vertices at infinity for each $v \in V$ and connecting them by an edge of weight 1 to v. A marking on \mathcal{D} is a linear order on $V \cup \widetilde{E}$ s.t. every edge is greater than its source and smaller than its target.

Definition.

Let $\mathcal{D} = (V, E, w)$ be a floor diagram. The extended floor diagram $\cong (\tilde{V}, \tilde{E}, w)$ is obtained from \mathcal{D} by adding $1 - \operatorname{div}(v)$ vertices at infinity for each $v \in V$ and connecting them by an edge of weight 1 to v. A marking on \mathcal{D} is a linear order on $V \cup \tilde{E}$ s.t. every edge is greater than its source and smaller than its target. The multiplicity of a floor diagram is $\mu(\mathcal{D}) := \prod_{e \in E} w(e)^2$.

Proposition.

If p are horizontally stretched, there exist a multiplicity preserving bijection between tropical curves through p and marked floor diagrams (both of degree d and genus g).

Proposition.

If p are horizontally stretched, there exist a multiplicity preserving bijection between tropical curves through p and marked floor diagrams (both of degree d and genus g).

Corollary.

The Gromov-Witten invariant $N_{d,g}$ is equal to

$$N_{d,g} = \sum_{\mathcal{D}} \mu(\mathcal{D}) \nu(\mathcal{D})$$

where the sum is over all floor diagrams and $\nu(\mathcal{D})$ denotes the number of markings of \mathcal{D} .

Example - smooth curves

Smooth curves have maximal genus among curves of degree d, namely

$$g_{\max}(d)=\frac{(d-1)(d-2)}{2}.$$

There is only one marked floor diagram of degree d: and genus f.

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}$$

Example - uninodal curves

There are 2 types of marked floor diagrams of genus $g_{max} - 1$:

1. Floor diagrams with edge of weight 2. There are $1+2+\cdots+(d-2)=\frac{(d-1)(d-2)}{2}$ of those, each with multiplicity 4.

Example - uninodal curves

There are 2 types of marked floor diagrams of genus $g_{max} - 1$:

- 1. Floor diagrams with edge of weight 2. There are $1+2+\cdots+(d-2)=\frac{(d-1)(d-2)}{2}$ of those, each with multiplicity 4.
- $2. \ \mbox{Floor}$ diagrams with edge of "length" $2. \ \mbox{There}$ are

There are 2 types of marked floor diagrams of genus $g_{max} - 1$:

- 1. Floor diagrams with edge of weight 2. There are $1+2+\cdots+(d-2)=\frac{(d-1)(d-2)}{2}$ of those, each with multiplicity 4.
- 2. Floor diagrams with edge of "length" 2. There are $3+5+\cdots+(2d-1)=d^2-1$ of those.s

Summing all the contributions we get the well known formula for the degree of the discriminant:

$$N_{d,g_{\max}-1} = 3(d-1)^2.$$

Using the same ideas it is possible to prove: **Theorem [Fomin, Mikhalkin, '09].** For a fixed $\delta \in \mathbb{Z}_{\geq 0}$ there exist a polynomial $N_{\delta}(d) \in \mathbb{Q}[d]$ of degree 2δ s.t. $N_{d,g_{max}-\delta} = N_{\delta}(d)$ for all d large enough. $\delta \in \mathbb{Q}_{\delta}$

Real and refined invariants

Welschinger invariants

- It is possible to compute the Welschinger weight of a floor decomposed tropical curve from its marked floor diagram.
- For totally real configuration of points we will get

 $\mu^{\mathbb{R}}(\mathcal{D}) = egin{cases} 0 & \mu(\mathcal{D}) \in 2\mathbb{Z} \ 1 & \mu(\mathcal{D}) \in 1+2\mathbb{Z} \ depend on the marking. We get \end{cases}$ and in particular does not

$$W_d = \sum_{\mu(\mathcal{D}) \equiv 1 \mod 2}
u(\mathcal{D}).$$

 For configuration of points containing conjugate pairs, the real multiplicity depends on the marking.

Welschinger invariants

- It is possible to compute the Welschinger weight of a floor decomposed tropical curve from its marked floor diagram.
- For totally real configuration of points we will get

 $\mu^{\mathbb{R}}(\mathcal{D}) = \begin{cases} 0 & \mu(\mathcal{D}) \in 2\mathbb{Z} \\ 1 & \mu(\mathcal{D}) \in 1 + 2\mathbb{Z} \end{cases} \text{ and in particular does not} \\ \text{depend on the marking. We get} \end{cases}$

$$W_d = \sum_{\mu(\mathcal{D}) \equiv 1 \mod 2}
u(\mathcal{D})$$

 For configuration of points containing conjugate pairs, the real multiplicity depends on the marking.

Theorem [Arroyo, Brugalle, de Medrano, '08].

There exist a recursive formula that computes Welschinger invariants for any number of conjugate pair of points.

Block-Göttsche invariants

- All this discussion transfers as is to the computation of Block-Göttsche invariants (i.e. refined invariants without points of high multiplicity).
- The refined weight of a floor diagram is

$$\mu_{y}(\mathcal{D}) := \prod_{e \in E} \left([w(e)]_{y} \right)^{2}.$$

Theorem [Block, Göttsche, '16]. There exist a polynomial $N_{\delta}(d; y) \in \mathbb{Q}[y^{\pm 1}][d]$ of degree 2δ in d s.t.

$$BG_y(d, g_{\max} - \delta) = N_{\delta}(d; y)$$

for all large enough values of d.

Bibliography

- Aubin Arroyo, Erwan Brugalle, and Lucia Lopez de Medrano, Recursive formulas for welschinger invariants of the projective plane, International Mathematics Research Notices 2011 (2008).
- Florian Block and Lothar Göttsche, Refined curve counting with tropical geometry, Compositio Mathematica 152 (2016), no. 1, 115–151.
- Erwan Brugalle and Grigory Mikhalkin, Floor decompositions of tropical curves: the planar case, 2008, pp. 1–27.
- Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, Journal of the European Mathematical Society 12 (2009).
- Grigory Mikhalkin, *Counting curves via lattice paths in polygons*, Comptes Rendus Mathematique **336** (2003), no. 8,