Broccoli curves of genus 0 and maybe 1

Franziska Schroeter

Universität des Saarlandes Saarbrücken, Germany

Tel Aviv, November 1, 2012

Reminder •00 Welschinger invariants 0000000 Broccoli curves of genus 0 0000 Broccoli curves of genus 1 000

Enumerative geometry

Aim is to count geometric objects like curves, surfaces, etc. such that

- they satisfy certain conditions like passing through given points, tangency conditions, have degree *d* and genus *g*, etc.
- their count gives a finite number N(conditions).

Example

- Severi degree N(d, δ): # of complex plane curves C of degree d with δ nodes through 3d − 1 + ((^{d−1}₂) − δ) generic points.
- For $d \ge \delta + 2$ ($\Rightarrow C$ irred.) the Severi degree $N(d, \delta)$ is called Gromov-Witten number.
- Lines (d = 1) through 2 points in \mathbb{P}^2 :

 \rightsquigarrow infinite number of lines!

Reminder	Real enumerative geometry	Welschinger invariants	Broccoli curves of genus 0	Broccoli curves of genus 1
000	00	000000	0000	000

Main feature:

The number $N(d, \delta)$ is invariant, i.e. does not depend on the position of the points as long as they are in general position.

leminder	Real enumerative geometry	Welschinger invariants	Broccoli curves of genus 0	Broccoli curves of genus 1
00	00	000000	0000	000

Theorem (Mikhalkin's Correspondence Theorem)

 $N(d, \delta) = N_{trop}(d, \delta).$

That is: the number of complex plane nodal resp. tropical plane nodal curves of degree *d* with δ nodes through a fixed set ω of $3d - 1 + (\binom{d-1}{2} - \delta)$ points in general position is equal.

Idea:

- Degeneration: complex curves \rightarrow tropical curves
- Define multiplicity mult_ℂ(C) of a tropical curve C combinatorially ~→

$$N_{trop}(d, \delta) = \sum_{C \text{ through } \omega} \operatorname{mult}_{\mathbb{C}}(C) = \sum_{C \text{ through } \omega} \prod_{v \text{ vertex in } C} \operatorname{mult}_{\mathbb{C}}(v).$$

Example

Rem	ind	er	
000	С		

Broccoli curves of genus 0 0000 Broccoli curves of genus 1 000

Real plane curves

Definition

A real plane curve consists

- of the defining polynomial $f \in \mathbb{R}[x, y, z]$
- and the zero set in $\mathbb{P}^2_{\mathbb{C}}$.

Consequences:

- If $z \in \mathbb{P}^2_{\mathbb{C}}$ is in $V(f) \Rightarrow \overline{z} \in V(f)$.
- We can choose real or pairs of complex conjugate points as fixing conditions in a real enumerative problem.

Problem:

Counting nodal real plane curves of degree d with δ nodes through r real points and s pairs of complex conjugate points s.t. $r + 2s = 3d - 1 + \binom{d-1}{2} - \delta$ does not lead to an invariant number!

Reminder	Real enumerative geometry	Welschinger invariants	Broccoli curves of genus 0	Broccoli curves of genus 1
000	0•	000000	0000	000

Example (A. I. Degtyarev, V. M. Kharlamov, 2000)

The number of rational cubics through 8 real points is 8,10 or 12 depending on the position of the points.

Reason: Two different types of real nodes:

Idea (J. Y. Welschinger): Count real rational curves with weights $\pm 1!$

Reminder Real enumerat

al enumerative geometry

Welschinger invariants •000000 Broccoli curves of genus 0 0000 Broccoli curves of genus 1 000

Definition (Welschinger numbers)

C real plane rational curve of degree d through a set ω of r real and s pairs of complex conjugate points in general position.

m(C) := # isolated nodes in C,

$$W(d,r,s) := \sum_{C \text{ through } \omega} (-1)^{m(C)}.$$

Example

$$\swarrow m(C) = 0 \qquad \bullet \left(m(C) = 1 \right)$$

Example (Comparison between complex and real invariants)

d	1	2	3	4
$N(d, \binom{d-1}{2})$	1	1	12	620
W(d, 3d-1, 0)	1	1	8	240

Reminder	Real enumerative geometry	Welschinger invariants	Broccoli curves of genus 0	Broccoli curves of genus 1
000	00	000000	0000	000

Theorem (J. Y. Welschinger, 2005)

The numbers W(d, r, s) are invariant.

But: No method of computing these numbers.

If we just consider real curves passing through real points (s = 0):

Tropical Welschinger numbers:

Same curves as for $N_{trop}(d, \delta)$ but new multiplicity mult_R(C). For a fixed point configuration ω we then have:

$$W_{trop}(d, 3d-1, 0) := \sum_{C \text{ through } \omega} \text{mult}_{\mathbb{R}}(C).$$

ninder	Real	enumerative	geom
	00		

Broccoli curves of genus 0 0000 Broccoli curves of genus 1 000

The multiplicity $mult_{\mathbb{R}}(C)$

Definition

$$\mathsf{mult}_{\mathbb{R}}(C) := \begin{cases} 0, & \text{if } \mathsf{mult}_{\mathbb{C}}(C) \equiv 0 \mod 4, \\ 1, & \text{if } \mathsf{mult}_{\mathbb{C}}(C) \equiv 1 \mod 4, \\ 0, & \text{if } \mathsf{mult}_{\mathbb{C}}(C) \equiv 2 \mod 4, \\ -1, & \text{if } \mathsf{mult}_{\mathbb{C}}(C) \equiv 3 \mod 4. \end{cases}$$

Example

$$\operatorname{\mathsf{mult}}_{\mathbb{C}}(C) = 27$$

 $\operatorname{\mathsf{mult}}_{\mathbb{R}}(C) = -1$

r	Real	enumerative	geometr
	00		

Broccoli curves of genus 0

Broccoli curves of genus 1 000

The (bigger) example of cubics...

ler	Real	enumerative	geometry	We
	00			00

Velschinger invariants ⊃000●00 Broccoli curves of genus 0 0000 Broccoli curves of genus 1 000

Theorem (Correspondence Thm., G. Mikhalkin, 2005)

$$W(d, 3d-1, 0) = W_{trop}(d, 3d-1, 0).$$

On the complex side we have:

Theorem (A. Gathmann, H. Markwig, 2007)

Tropical proof of the invariance of $N_{trop}(d, \binom{d-1}{2})$.

→ Construction of tropical moduli spaces.

Theorem (I. Itenberg, V. Kharlamov, E. Shustin, 2009)

- Tropical proof of the invariance of the numbers $W_{trop}(d, 3d-1, 0)$
- Caporaso-Harris type formula for $W_{trop}(d, 3d-1, 0)$
- Construction of new tropical invariants

Reminder	Real enumerative geometry	Welschinger invariants	Broccoli curves of genus 0	Broccoli curves of genus 1
000	00	000000	0000	000

Idea behind the local invariance proof

Real enumerative geometry 00 Welschinger invariants

Broccoli curves of genus 0 0000 Broccoli curves of genus 1 000

Complex point conditions

Allow now the curves to pass through complex points (i.e. not necessary s = 0). \rightarrow can define W(d, r, s).

Tropical side: Need new tropical curves to define $W_{trop}(d, r, s)$.

Theorem (J. Y. Welschinger, 2005)

The numbers W(d, r, s) are invariant.

Theorem (Correspondence Thm., E. Shustin, 2006)

$$W(d,r,s) = W_{trop}(d,r,s).$$

But: There is no tropical proof of the invariance of $W_{trop}(d,r,s)$ known yet!

One reason: the local invariance proof fails.

Real enumerative geometr

Welschinger invariants 0000000 Broccoli curves of genus 0 •000 Broccoli curves of genus 1 000

The origin of broccoli curves

Idea: Modify tropical Welschinger numbers s.t. they equal under certain conditions Welschinger numbers and s.t. their invariance can be proved locally! ~>> Define *broccoli curves* and count them instead!

Corresponding picture in the moduli space $\mathscr{M}^{\mathsf{lab}}_{0,2+3,trop}(\mathbb{R}^2,\Delta_3)$:

Reminder	Real enumerative geometry	Welschinger invariants	Broccoli curves of genus 0	Broccoli curves of genus 1
000	00	0000000	0000	000

Curve which is broccoli and Welschinger:

Definition (Pseudo definitions)

- Welschinger curve: Fat markings lie on vertices or on edge of even weight; the connected component of even edges meets the connected component of odd edges in one vertex,
- broccoli curve: fat markings should lie on vertex s. t. at least one even edge is adjacent to this vertex; if one connected component of even edges meets a component of odd edges in k vertices, then k-1 of them should have a fat marking.

minder	Real	enumerative	geometry
00	00		

Broccoli curves of genus 0 0000

Broccoli curves of genus 1 000

The true definition is based on vertex types:

Reminder	Real enumerative geometry	Welschinger invariants	Broccoli curves of genus 0	Broccoli curves of genus 1
000	OO		000●	000
		Results		

Theorem (A. Gathmann, H. Markwig, F. S., 2011)

The broccoli numbers $N^B(d,r,s)$ are invariant. Certain broccoli invariants equal tropical Welschinger invariants $W_{trop}(d,r,s)$.

Main features of broccoli invariants:

- Classical counterpart not known yet.
- We can define relative broccoli invariants → recursive formulas, e.g. Caporaso-Harris.
- Generalization to higher genus possible.

Broccoli curves of genus 0 0000 Broccoli curves of genus 1 •00

Broccoli curves of genus 1 (work in progress)

Construction:

- Start with broccoli vertex types and construct curves of genus 1, i.e. with a loop.
- Eliminate in the corresponding moduli space cells where the expected dimension $(|\Delta|-1)+1$ does not coincide with the actual dimension of the cell.

is strongly related to the question of

Invariance of the corresponding numbers:

- Are there new vertex types appearing while moving markings around?
- Noninvariance would make broccoli curves of genus 1 useless.

Rem	ind	ler	
000	С		

Broccoli curves of genus 0 0000 Broccoli curves of genus 1 OOO

A very partial result:

Theorem (Local picture)

Let $\Delta \subset \mathbb{R}^2$ be a lattice triangle, whose lattice points are either corners of Δ or in the interior int (Δ) . Assume there are n lattice points in int (Δ) .

Consider a broccoli curve dual to Δ consisting of one 3-valent vertex and passing through one fat marking P and one thin marking P'.

Then it holds for the broccoli multiplicities $mult_B(C_I)/mult_B(C_r)$ of broccoli curves C_I/C_r of genus 1 appearing when moving P' to the left/right hand side and passing through P and P':

$$\sum_{C_l} mult_B(C_l) = \sum_{C_r} mult_B(C_r) \quad \text{and} \quad \left|\sum_{C_l} mult_B(C_l)\right| = \frac{n(n+1)}{2}.$$

Remarks:

- No new vertex types should be introduced for this theorem.
- An analogous statement holds when P is moved instead.

Reminder 000 Real enumerative geometry 00 Welschinger invariants

Broccoli curves of genus 0 0000 Broccoli curves of genus 1

- Codimenson-1 cells in the moduli space correspond to curves with a 4-valent vertex or with a contracted loop.
- *n* equals the number of resolutions of the contracted loop.
- Curves appearing as resolutions may count 0.

Example (n = 2)

-		
Rei		
~~~	~~	

eal enumerative geometry

Welschinger invariants

Broccoli curves of genus 0 0000 Broccoli curves of genus 1 •00

# תודה על תשומת הלב שלך

