# Broccoli curves of genus 0 and maybe 1 

Franziska Schroeter

Universität des Saarlandes
Saarbrücken, Germany

Tel Aviv, November 1, 2012

## Enumerative geometry

Aim is to count geometric objects like curves, surfaces, etc. such that

- they satisfy certain conditions like passing through given points, tangency conditions, have degree $d$ and genus $g$, etc.
- their count gives a finite number $N$ (conditions).


## Example

- Severi degree $N(d, \delta)$ : \# of complex plane curves $C$ of degree $d$ with $\delta$ nodes through $3 d-1+\left(\binom{d-1}{2}-\delta\right)$ generic points.
- For $d \geq \delta+2$ ( $\Rightarrow C$ irred.) the Severi degree $N(d, \delta)$ is called Gromov-Witten number.
- Lines $(d=1)$ through 2 points in $\mathbb{P}^{2}$ :

$\rightsquigarrow$ infinite number of lines!

Main feature:
The number $N(d, \delta)$ is invariant, i.e. does not depend on the position of the points as long as they are in general position.


Theorem (Mikhalkin's Correspondence Theorem)

$$
N(d, \delta)=N_{\text {trop }}(d, \delta)
$$

That is: the number of complex plane nodal resp. tropical plane nodal curves of degree $d$ with $\delta$ nodes through a fixed set $\omega$ of $3 d-1+\left(\binom{d-1}{2}-\delta\right)$ points in general position is equal. Idea:

- Degeneration: complex curves $\rightarrow$ tropical curves
- Define multiplicity mult ${ }_{C}(C)$ of a tropical curve $C$ combinatorially $\rightsquigarrow$

$$
N_{\text {trop }}(d, \delta)=\sum_{C \text { through } \omega} \text { mult }_{\mathbb{C}}(C)=\sum_{C \text { through } \omega} \prod_{v \text { vertex in } C} \text { mult }_{\mathbb{C}}(v)
$$

Example

$$
d=3, \delta=1:
$$



mult $_{\mathbb{C}}(C)=4$
$=N_{\text {trop }}(3,1)$

## Real plane curves

## Definition

A real plane curve consists

- of the defining polynomial $f \in \mathbb{R}[x, y, z]$
- and the zero set in $\mathbb{P}_{\mathbb{C}}^{2}$.

Consequences:

- If $z \in \mathbb{P}_{\mathbb{C}}^{2}$ is in $V(f) \Rightarrow \bar{z} \in V(f)$.
- We can choose real or pairs of complex conjugate points as fixing conditions in a real enumerative problem.


## Problem:

Counting nodal real plane curves of degree $d$ with $\delta$ nodes through $r$ real points and $s$ pairs of complex conjugate points s.t. $r+2 s=3 d-1+\binom{d-1}{2}-\delta$ does not lead to an invariant number!

Example (A. I. Degtyarev, V. M. Kharlamov, 2000)
The number of rational cubics through 8 real points is 8,10 or 12 depending on the position of the points.

Reason: Two different types of real nodes:


Idea (J. Y. Welschinger): Count real rational curves with weights $\pm 1$ !

## Definition (Welschinger numbers)

$C$ real plane rational curve of degree d through a set $\omega$ of $r$ real and $s$ pairs of complex conjugate points in general position.

$$
\begin{gathered}
m(C):=\# \text { isolated nodes in } C \\
W(d, r, s):=\sum_{C \text { through } \omega}(-1)^{m(C)}
\end{gathered}
$$

## Example



Example (Comparison between complex and real invariants)

| $d$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $N\left(d,\left({ }^{d-1}\right)\right)$ | 1 | 1 | 12 | 620 |
| $W(d, 3 d-1,0)$ | 1 | 1 | 8 | 240 |

Theorem (J. Y. Welschinger, 2005)
The numbers $W(d, r, s)$ are invariant.
But: No method of computing these numbers.

If we just consider real curves passing through real points $(s=0)$ :
Tropical Welschinger numbers:
Same curves as for $N_{\text {trop }}(d, \delta)$ but new multiplicity mult ${ }_{\mathrm{R}}(C)$. For a fixed point configuration $\omega$ we then have:

$$
W_{\text {trop }}(d, 3 d-1,0):=\sum_{C \text { through } \omega} \operatorname{mult}_{\mathbb{R}}(C) .
$$

## The multiplicity mult $t_{\mathbb{R}}(C)$

## Definition

$\operatorname{mult}_{\mathbb{R}}(C):= \begin{cases}0, & \text { if } \operatorname{mult}_{\mathbb{C}}(C) \equiv 0 \bmod 4, \\ 1, & \text { if } \operatorname{mult}_{\mathbb{C}}(C) \equiv 1 \bmod 4, \\ 0, & \text { if } \operatorname{mult}_{\mathbb{C}}(C) \equiv 2 \bmod 4, \\ -1, & \text { if } \operatorname{mult}_{\mathbb{C}}(C) \equiv 3 \bmod 4 .\end{cases}$
Example

mult $_{C}(C)=27$
mult $_{\mathbb{R}}(C)=-1$

The (bigger) example of cubics...

$W_{\text {trop }}(3,8,0)=8$

Theorem (Correspondence Thm., G. Mikhalkin, 2005)

$$
W(d, 3 d-1,0)=W_{\text {trop }}(d, 3 d-1,0) .
$$

On the complex side we have:
Theorem (A. Gathmann, H. Markwig, 2007)
Tropical proof of the invariance of $N_{\text {trop }}\left(d,\binom{d-1}{2}\right)$.
$\rightsquigarrow$ Construction of tropical moduli spaces.
Theorem (I. Itenberg, V. Kharlamov, E. Shustin, 2009)

- Tropical proof of the invariance of the numbers $W_{\text {trop }}(d, 3 d-1,0)$
- Caporaso-Harris type formula for $W_{\text {trop }}(d, 3 d-1,0)$
- Construction of new tropical invariants

Idea behind the local invariance proof


## Complex point conditions

Allow now the curves to pass through complex points (i.e. not necessary $s=0$ ). $\rightsquigarrow$ can define $W(d, r, s)$.
Tropical side: Need new tropical curves to define $W_{\text {trop }}(d, r, s)$.


Theorem (J. Y. Welschinger, 2005)
The numbers $W(d, r, s)$ are invariant.
Theorem (Correspondence Thm., E. Shustin, 2006)

$$
W(d, r, s)=W_{\text {trop }}(d, r, s)
$$

But: There is no tropical proof of the invariance of $W_{\text {trop }}(d, r, s)$ known yet!
One reason: the local invariance proof fails.

## The origin of broccoli curves

Idea: Modify tropical Welschinger numbers s.t. they equal under certain conditions Welschinger numbers and s.t. their invariance can be proved locally! $\rightsquigarrow$ Define broccoli curves and count them instead!


Corresponding picture in the moduli space $\mathscr{M}_{0,2+3 \text {,trop }}^{\text {ab }}\left(\mathbb{R}^{2}, \Delta_{3}\right)$ :


Curve which is broccoli and Welschinger:


## Definition (Pseudo definitions)

- Welschinger curve: Fat markings lie on vertices or on edge of even weight; the connected component of even edges meets the connected component of odd edges in one vertex,
- broccoli curve: fat markings should lie on vertex s. t. at least one even edge is adjacent to this vertex; if one connected component of even edges meets a component of odd edges in $k$ vertices, then $k-1$ of them should have a fat marking.

The true definition is based on vertex types:


## Results

Theorem (A. Gathmann, H. Markwig, F. S., 2011)
The broccoli numbers $N^{B}(d, r, s)$ are invariant. Certain broccoli invariants equal tropical Welschinger invariants $W_{\text {trop }}(d, r, s)$.


Main features of broccoli invariants:

- Classical counterpart not known yet.
- We can define relative broccoli invariants $\rightsquigarrow$ recursive formulas, e.g. Caporaso-Harris.
- Generalization to higher genus possible.


## Broccoli curves of genus 1 (work in progress)

## Construction:

- Start with broccoli vertex types and construct curves of genus 1 , i.e. with a loop.
- Eliminate in the corresponding moduli space cells where the expected dimension $(|\Delta|-1)+1$ does not coincide with the actual dimension of the cell.

is strongly related to the question of

Invariance of the corresponding numbers:

- Are there new vertex types appearing while moving markings around?
- Noninvariance would make broccoli curves of genus 1 useless.


## A very partial result:

## Theorem (Local picture)

Let $\Delta \subset \mathbb{R}^{2}$ be a lattice triangle, whose lattice points are either corners of $\Delta$ or in the interior $\operatorname{int}(\Delta)$. Assume there are $n$ lattice points in int $(\Delta)$.

Consider a broccoli curve dual to $\Delta$ consisting of one 3-valent vertex and passing through one fat marking $P$ and one thin marking $P^{\prime}$.

Then it holds for the broccoli multiplicities mult $t_{B}\left(C_{l}\right) /$ mult $_{B}\left(C_{r}\right)$ of broccoli curves $C_{l} / C_{r}$ of genus 1 appearing when moving $P^{\prime}$ to the left/right hand side and passing through $P$ and $P^{\prime}$ :

$$
\sum_{C_{l}} m u l t_{B}\left(C_{l}\right)=\sum_{C_{r}} m u l t_{B}\left(C_{r}\right) \quad \text { and } \quad\left|\sum_{C_{l}} m u l t_{B}\left(C_{l}\right)\right|=\frac{n(n+1)}{2}
$$

## Remarks:

- No new vertex types should be introduced for this theorem.
- An analogous statement holds when $P$ is moved instead.
- Codimenson-1 cells in the moduli space correspond to curves with a 4-valent vertex or with a contracted loop.
- $n$ equals the number of resolutions of the contracted loop.
- Curves appearing as resolutions may count 0 .


## Example ( $n=2$ )



Moving $P^{\prime}$ to the left: Moving $P^{\prime}$ to the right:


## תודה על תשומת הלב שלך



