# Introduction to Tropical Geometry 

Eugenii Shustin

Tel Aviv University

# "Seminar in Real and Complex Geometry" <br> TAU, October 27, 2022 

## Historical sketch

- 1971 - Bergman: Logarithmic limit sets of algebraic varieties $\Longrightarrow$ Tropical fans
- 1980 - Viro: Patchworking of algebraic varieties $\Longrightarrow$ Tropical polynomials
- 1984 - Bieri, Groves: Valuation images of algebraic varieties $\Longrightarrow$ Affine tropical varieties
- 1990 - Berkovich: Skeleta of analytic varieties over non-Archimedeal fields $\Longrightarrow$ General tropical varieties
- 2000 - Kontsevich: Tropical curves, Kontsevich conjecture
- 2002 - Mikhalkin: Tropical enumerative geometry


## Tropical objects via limit

Various tropical objects appear in the limit of one-parameter families of algebro-geometric objects

where $\mathrm{D}_{\eta}=\{|z|<\eta\}, \mathrm{D}_{\eta}^{*}=\mathrm{D}_{\eta} \backslash\{0\}$, and the central fiber $\widehat{\mathcal{C}_{0}}$ carries some algebraic/geometric/combinatoial structure called the tropicalization (or the tropical limit) of the family $\mathcal{C} \rightarrow \mathrm{D}_{\eta}^{*}$.

## Example: Tropical semifield $\mathbb{T}=(\mathbb{R} \cup\{-\infty\}$, max,+$)$

Consider the family of maps

$$
\begin{aligned}
& \left(\mathbb{R}_{>0},+, \cdot\right) \rightarrow\left(\mathbb{R}, \oplus_{t}, \odot_{t}\right), \quad a \mapsto-\log _{t} a, \quad 0<t<\eta, \\
& u \oplus_{t} v=-\log _{t}\left(t^{-u}+t^{-v}\right), \quad u \odot_{t} v=-\log _{t}\left(t^{-u} t^{-v}\right) .
\end{aligned}
$$

Then

$$
\lim _{t \rightarrow 0}\left(u \oplus_{t} v\right)=\max (u, v), \quad \lim _{t \rightarrow 0}\left(u \odot_{t} v\right)=u+v .
$$

Example: Complex and tropical amoeba of a line

$$
L \subset\left(\mathbb{C}^{*}\right)^{2}\left(\log \mid \underline{|z|, \log |w|)} \mathcal{A}(L) \subset \mathbb{R}^{2}\right.
$$

The complex amoeba $\mathcal{A}(L)$ admits a tropicalization: build a family of maps, then go to the limit

$$
L \subset\left(\mathbb{C}^{*}\right)^{2} \stackrel{\left(-\log _{t}|z|,--\log _{t}|w|\right)}{\Longrightarrow} \mathcal{A}_{t}(L) \underset{t \rightarrow 0}{\Longrightarrow} \operatorname{Trop}(L)
$$

where $\operatorname{Trop}(L)$ is the tropical line

$\mid \lim _{t \rightarrow 0}\left(-\log _{t}|*|\right)$


## Tropical objects via non-Archimedean valuation

Let $\mathbb{K}$ be an algebraically closed field of characteristic zero, possessing a dense real non-Archimedean valuation

$$
\begin{gathered}
\operatorname{val}: \mathbb{K} \rightarrow \mathbb{R} \cup\{-\infty\} \\
\operatorname{val}(a b)=\operatorname{val}(a)+\operatorname{val}(b), \quad \operatorname{val}(a+b) \begin{cases}= & \max (\operatorname{val}(a), \operatorname{val}(b)), \\
\text { if } \operatorname{val}(a) \neq \operatorname{val}(b), \\
\leq & m a x(\operatorname{val}(a), \operatorname{val}(b)), \\
\text { if } \operatorname{val}(a)=\operatorname{val}(b)\end{cases}
\end{gathered}
$$

Our main example: $\mathbb{K}=\bigcup_{m \geq 1} \mathbb{C}\left\{t^{1 / m}\right\}$ the field of complex, locally convergent Puiseux series,

$$
\operatorname{val}(a(t))=-\min \left\{q: \quad a_{q} \neq 0\right\}, \quad a(t)=\sum_{r \geq r_{0}} a_{r} t^{r}
$$

## Tropical amoeba as tropicalization of algebraic variety

## Definition

Let $V \subset\left(\mathbb{K}^{*}\right)^{n}$ be an algebraic variety. Define its tropical amoeba (or tropicalization) by

$$
\operatorname{Trop}(V)=\operatorname{Closure}(\operatorname{Val}(V)) \subset \mathbb{R}^{n}
$$

where $\mathrm{Val}:\left(\mathbb{K}^{*}\right)^{n} \rightarrow \mathbb{R}$ is the coordinate-wise valuation map.

## Theorem (d'aprés Bieri-Groves)

Let $V \subset\left(\mathbb{K}^{*}\right)^{n}$ be an algebraic variety of dimension $0<r<n$. Then $\operatorname{Trop}(V)$ is a finite, rational, connected polyhedral complex of pure dimension $r$.
Moreover, its top-dimensional faces $\sigma$ can be equipped with positive integral weights $\omega(\sigma)$ (uniquely determined by $V$ ) so that $\operatorname{Trop}(V)$ becomes balanced, i.e., at each face of dimension $r-1$ there holds a balancing condition.

Balancing condition: For each face $\delta$ denote by $\Lambda(\delta) \subset \mathbb{R}^{n}$ the linear space of dimension $\operatorname{dim} \delta$, parallel to $\delta$. Pick a face $\tau \subset \operatorname{Trop}(V)$ of dimension $r-1$. For each face $\sigma \supset \tau$ of dimension $r$, pick a generator $\bar{a}_{\tau}(\sigma)$ of $\left(\Lambda(\sigma) \cap \mathbb{Z}^{n}\right) /\left(\Lambda(\tau) \cap \mathbb{Z}^{n}\right)$ directed inside $\sigma$. Then

$$
\sum_{\sigma \supset \tau, \operatorname{dim} \sigma=r} \omega(\sigma) \cdot \overline{\boldsymbol{a}}_{\tau}(\sigma)=0 \in \mathbb{Z}^{n} /\left(\Lambda(\tau) \cap \mathbb{Z}^{n}\right)
$$

## Example: Tropical line in the plane



$$
(-1,0)+(0,-1)+(1,1)=0
$$

## Tropical varieties

## Affine tropical hypersurfaces

Let $F \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$, and $V=Z(F) \subset\left(\mathbb{K}^{*}\right)^{n}$ a hypersurface.
Define the tropicalization of the polynomial $F$ as follows:

$$
F(\underline{z})=\sum_{\alpha \in \Delta \cap \mathbb{Z}^{n}} a_{\alpha}(t) \underline{z}^{\alpha} \Longrightarrow \operatorname{Trop}(F)(\underline{x})=\max _{\alpha \in \Delta \cap \mathbb{Z}^{n}}\left(\langle\alpha, \underline{x}\rangle+\operatorname{val}\left(a_{\alpha}\right)\right)
$$

## Theorem (Kapranov)

$\operatorname{Trop}(V)$ is the corner locus of the tropical polynomial $\operatorname{Trop}(F)$.
Example: $L=\{a z+b w+c=0\} \subset\left(\mathbb{K}^{*}\right)^{2}$

$$
\operatorname{Trop}(L)=\operatorname{Corner}(\max \{x+\operatorname{val}(a), y+\operatorname{val}(b), \operatorname{val}(c)\})
$$

Define $\nu_{F}: \Delta \rightarrow \mathbb{R}$ to be the convex, piecewise linear function whose graph is the lower part of

$$
\text { ConvexHull }\left\{\left(\alpha,-\operatorname{val}\left(a_{\alpha}\right)\right) \in \mathbb{R}^{n+1}: \alpha \in \Delta \cap \mathbb{Z}^{n}\right\}
$$

The linearity domains of $\nu_{F}$ define a subdivision $\Sigma_{F}$ of the Newton polytope $\Delta$ into convex lattice polytopes.

## Lemma

Trop $(F)$ and $\nu_{F}$ are Legendre dual convex, piecewise linear functions.

## Corollary

There is a duality $\varphi: \operatorname{Cell}\left(\mathbb{R}^{n}, \operatorname{Trop}(V)\right) \leftrightarrow \operatorname{Cell}\left(\Sigma_{F}\right)$ such that

- $\operatorname{dim} \sigma+\operatorname{dim} \varphi(\sigma)=n$,
- $\sigma \perp \varphi(\sigma)$,
- $\tau \subset \sigma \Longleftrightarrow \varphi(\sigma) \subset \varphi(\tau)$.


## Example: Tropical line and tropical conic



Define the weights of the top-dimensional faces of a tropical hypersurface by

$$
\omega(\sigma)=\text { LatticeLength }(\varphi(\sigma))
$$

## Lemma

A tropical hypersurface equipped with the above weights is balanced.

## Theorem

Every connected, rational polyhedral complex in $\mathbb{R}^{n}$ of pure dimension $n-1$, equipped with positive integral weights of the top-dimensional faces and satisfying the balancing condition, is a tropical hypersurface.

Warning: Not true in codimension $>1$ !

## Intersection theory of affine tropical varieties

Let $T_{1}, T_{2} \subset \mathbb{R}^{n}$ be tropical varieties, $\operatorname{dim} T_{1}=r_{1}, \operatorname{dim} T_{2}=r_{2}$, $r_{1}+r_{2} \geq n$. We would like to define the intersection " $T_{1} \cap T_{2}$ " as a tropical variety $T_{1} T_{2}$ of pure dimension $r_{1}+r_{2}-n$.
(1) Pick a generic vector $\bar{c} \in \mathbb{R}^{n} \backslash\{0\}$ and denote $T_{2, \tau}=T_{2}+\tau \bar{c}$, $0<\tau \ll 1$. Then $T_{1}$ and $T_{2, \tau}$ intersect generically, an we can refine the cell structures so that $T_{1} \cap T_{2, \tau}$ will consist of entire cells (of dimension $\leq r_{1}+r_{2}-n$ ). Each cell $\sigma \subset T_{1} \cap T_{2, \tau}$ of dimension $r_{1}+r_{2}-n$ is an intersection $\sigma=\sigma_{1} \cap \sigma_{2}, \sigma_{1} \subset T_{1}, \sigma_{2} \subset T_{2, \tau}$, $\operatorname{dim} \sigma_{1}=r_{1}, \operatorname{dim} \sigma_{2}=r_{2}$. Set

$$
\omega(\sigma)=\omega\left(\sigma_{1}\right) \omega\left(\sigma_{2}\right)\left[\mathbb{Z}^{n} / \Lambda(\sigma):\left(\Lambda\left(\sigma_{1}\right)+\Lambda\left(\sigma_{2}\right)\right) / \Lambda(\sigma)\right]
$$

(2) Let $\tau \rightarrow 0$ summing up the weight of $\left(r_{1}+r_{2}-n\right)$-cells that merge to one cell.

## Theorem

The polyhedral complex $T_{1} T_{2}=\lim _{\tau \rightarrow 0}\left(T_{1} \cap T_{2, \tau}\right)$ is rational, weighted, balanced of pure dimension $r_{1}+r_{2}-n$. It does not depend on the choice of $\bar{c} \in \mathbb{R}^{n} \backslash\{0\}$ and is called the stable intersection of $T_{1}$ and $T_{2}$.

Example: Let $X_{1}, \ldots, X_{n} \subset \mathbb{R}^{n}$ be tropical hypersurfaces.
Then $X_{1} \ldots X_{n}$ is a finite set of weighted points, whose weight sum up to the normalized mixed volume of the Newton polygons $\Delta\left(X_{1}\right), \ldots, \Delta\left(X_{n}\right)$ (Bernstein-Koushnirenko theorem).
Remark: One can define the rational equivalence of affine tropical varieties in $\mathbb{R}^{n}$ and show that it commutes with the intersection. For example, shifts of the same tropical variety are rationally equivalent.

Let $T \subset \mathbb{R}^{n}$ be a tropical variety of dimension $r>0, f: T \rightarrow \mathbb{R}$ a continuous piecewise linear function with integral gradients. We shall define $\operatorname{div}(f) \subset T$ as a tropical cycle of dimension $r-1$, i.e., a finite rational weighted balanced polyhedral complex with weights of the top-dimensional faces in $\mathbb{Z}$.
We can suppose that the subdivision into linearity domains of $f$ is inscribed into the cellular structure of $T$. Then to each ( $r-1$ )-dimensional face $\tau \subset T$, we assign the weight

$$
\omega(\tau)=\sum_{\tau \subset \sigma, \operatorname{dim} \sigma=r} \omega(\sigma) f_{\sigma}\left(\overline{\mathbf{a}}_{\tau}(\sigma)\right)-f_{\tau}\left(\sum_{\tau \subset \sigma, \operatorname{dim} \sigma-r} \omega(\sigma) \overline{\mathrm{a}}_{\tau}(\sigma)\right)
$$

## Theorem

$\operatorname{div}(f) \stackrel{\text { def }}{=} \bigcup_{\omega(\tau) \neq 0} \omega(\tau) \cdot \tau$ is an $(r-1)$-dimensional tropical cycle.

## Tropical maps

(1) An integral-affine map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called tropical map. That is, $f(\underline{x})=A \underline{x}+\underline{y}_{0}$, where $A \in \operatorname{Mat}_{m \times n}(\mathbb{Z})$.
(2) Let $T \subset \mathbb{R}^{n}$ be a tropical variety of dimension $r$, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ a tropical map such that $\operatorname{dim} f(T)=r$.
Define the push-forward $f_{*} T$ as follows: for each $r$-dimensional cell $\sigma \subset T$ such that $\operatorname{dim} f(\sigma)=r$, set

$$
f_{*} \sigma=\omega\left(f_{*} \sigma\right) \cdot f(\sigma), \quad \omega\left(f_{*} \sigma\right)=\omega(\sigma)\left[\Lambda(f(\sigma)): f_{*} \Lambda(\sigma)\right]
$$

## Lemma

$$
f_{*} T \stackrel{\text { def }}{=} \sum_{\operatorname{dim} \sigma=\operatorname{dim} f(\sigma)=r} f_{*} \sigma
$$

is a tropical variety, called the push-forward of $T$ by $f$.

Example: Degree of the projection
$T \subset \mathbb{R}^{n}$ a tropical variety of dimension $r, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$ the projection.
Then $f_{*} T=d \cdot \mathbb{R}^{r}$, where $d$ is called the degree of $\left.f\right|_{T}$.

## Lemma

Let $q \in \mathbb{R}^{r}$ be a generic point, $\left(\left.f\right|_{T}\right)^{-1}(q)=\left\{p_{1}, \ldots, p_{k}\right\}$, where

$$
p_{i} \in \sigma_{i}, \quad \operatorname{dim} \sigma_{i}=r, \quad i=1, \ldots, k .
$$

Then

$$
\operatorname{deg}\left(\left.f\right|_{T}\right)=\sum_{i=1}^{k}\left(\omega\left(\sigma_{i}\right) \cdot\left|\operatorname{det} D\left(\left.f\right|_{\sigma_{i}}\right)\right|\right) .
$$

## Modification as the tropical blowing-up

Let $T \subset \mathbb{R}^{n}$ be a tropical variety of dimension $r, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ a tropical map.
The map $f: T \rightarrow f_{*} T$ is called a modification if it is one-to-one over open top-dimensional cells of $f_{*} T$, and $\left[\Lambda(f(\sigma)): f_{*} \Lambda(\sigma)\right]=1$ as long as $\operatorname{dim} \sigma=\operatorname{dim} f(\sigma)=r$.
Example: Modification of $\mathbb{R}^{n}$
Let $F \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right], T=\operatorname{Trop}(w-F(\underline{z})=0) \subset \mathbb{R}^{n+1}$ the graph of the tropical polynomial $\operatorname{Trop}(F)$. Then

$$
f: T \rightarrow \mathbb{R}^{n}, \quad f(\underline{z}, w)=\underline{z},
$$

is a modification.

Example: Modification of the plane along a line


## Tropical curves

## Abstract marked tropical curves

An abstract tropical curve with $n \geq 0$ markings is a finite, connected, metric graph having $n^{\prime} \geq n$ univalent vertices among which $n$ vertices are marked, and such that the edges containing a univalent vertex are isometric to $[0, \infty]$ (where $\infty$ is the univalent vertex) while the other edges are isometric to finite closed intervals.
The genus of an abstract tropical curve $T$ is $g(T)=b_{1}(T)$.
Abstract marked tropical curves are considered up to the following equivalence:

- a bivalent vertex which is the intersection of two edges can be removed,
- A leaf ended at an unmarked univalent vertex can be contracted (a kind of modification),
- isometry of graphs.


## Examples:


$g=0, n=4$
$g=1, n=0$


$$
g=2, n=0 \quad g=2, n=0
$$

## Moduli spaces of stable abstract marked tropical curves

$\mathcal{M}_{g, n}^{\text {trop }}$ denotes the moduli space of stable abstract marked tropical curves of genus $g$ with $n$ markings.

$$
\operatorname{dim} \mathcal{M}_{g, n}^{\text {trop }}= \begin{cases}n-3, & g=0, n \geq 3 \\ n+1, & g=1, n \geq 0, \\ 3 g-3+n, & g \geq 2, n \geq 0\end{cases}
$$

- the parameters are the lengths of finite edges.


## Theorem (Mikhalkin)

The map $\Phi: \mathcal{M}_{0, n}^{\text {trop }} \rightarrow \mathbb{R}^{n(n-1)(n-2)(n-3)}, n \geq 3$,

$$
\Phi(T)=\left\{\operatorname{SignedLength}\left(\overline{p_{i} p_{j}} \cap \overline{p_{k} p_{l}}\right): i, j, k, I, \in\{1, \ldots, n\}\right\}
$$

defines an embedding of $\mathcal{M}_{0, n}^{\text {trop }}$ onto an affine tropical variety.

## Plane marked tropical curves

Let $\bar{\Gamma}$ be an abstract tropical curve, $\bar{\Gamma}_{\infty}^{0}$ the set of its univalent vertices, $\Gamma=\bar{\Gamma} \backslash \bar{\Gamma}_{\infty}^{0}$, and $\Gamma_{\infty}^{1}$ the set of unbounded edges of $\Gamma$ (called ends). Let $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)$ be a sequence of $n$ distinct points of $\Gamma$ (markings).
A plane marked tropical curve is a map $h:(\Gamma, \boldsymbol{p}) \rightarrow \mathbb{R}^{2}$ such that

- $h$ is integral-affine on each edge of $\Gamma$, and is non-constant on each end;
- at each vertex $V \in \Gamma^{0}$ there holds a balancing condition

$$
\sum_{E \in \Gamma^{1}, V \in E} D\left(\left.h\right|_{E}\right)\left(\bar{e}_{V}(E)\right)=0
$$

where $\bar{e}_{V}(E)$ is the unit tangent vector to $E$ emanating from $V$.

Let $\xi=\left[h:(\Gamma, \boldsymbol{p}) \rightarrow \mathbb{R}^{2}\right]$ be the isomorphism class of a plane marked tropical curve $h:(\Gamma, \boldsymbol{p}) \rightarrow \mathbb{R}^{2}$..
The genus of $\xi$ is $g(\Gamma)=b_{1}(\Gamma)$.
The (tropical) degree of $\xi$ is the multiset

$$
\Delta=\Delta(\xi)=\left\{D\left(\left.h\right|_{E}\right)(\bar{e}(E)): E \in \Gamma_{\infty}^{1}\right\},
$$

where $\bar{e}(E)$ is the unit tangent vector oriented towards infinity. Note that the degree is balanced, i.e.,

$$
\sum_{\bar{a} \in \Delta} \bar{a}=0 .
$$

For simplicity, in what follows we will assume that

$$
\Delta=\{d \times(-1,0), d \times(0,-1), d \times(1,1)\}
$$

that corresponds to plane algebraic curves of degree $d$.

## Moduli space of plane marked tropical curves

Denote by $\mathcal{M}_{g, n}^{\text {trop }}\left(\Delta, \mathbb{R}^{2}\right)$ the moduli space of plane $n$-marked tropical curves of genus $g$ and degree $\Delta$. There are finitely many combinatorial types of plane $n$-marked tropical curves of genus $g$ and degree $\Delta$. Each combinatorial type is parameterized either by a point, or by an open convex polyhedron.
From the enumerative point of view it is natural to choose $n=3 d+g-1$.
The evaluation map

$$
\mathrm{Ev}: \mathcal{M}_{g, n}^{\text {trop }}\left(\Delta, \mathbb{R}^{2}\right) \rightarrow \mathbb{R}^{2 n}, \quad \operatorname{Ev}\left(h:(\Gamma, \boldsymbol{p}) \rightarrow \mathbb{R}^{2}\right)=h(\boldsymbol{p})
$$

is a tropical map, i.e., it is integral-affine in the parameters of each cell of $\mathcal{M}_{g, n}^{\text {trop }}\left(\Delta, \mathbb{R}^{2}\right)$.

## Lemma (Mikhalkin)

(1) $\operatorname{dim} \mathcal{M}_{g, n}^{\text {trop }}\left(\Delta, \mathbb{R}^{2}\right)=6 d+2 g-2=2 n$.
(2) Each $2 n$-dimensional cell $\Sigma$ of $\mathcal{M}_{g, n}^{\text {trop }}\left(\Delta, \mathbb{R}^{2}\right)$ such that $\operatorname{dim} \operatorname{Ev}(\Sigma)=2 n$ parameterizes elements $\left[h:(\Gamma, \boldsymbol{p}) \rightarrow \mathbb{R}^{2}\right]$ such that

- $\Gamma$ is trivalent,
- $\boldsymbol{p} \cap \Gamma^{0}=\emptyset$,
- no edge of $\Gamma$ is contracted,
- any component of $\Gamma \backslash \boldsymbol{p}$ is a tree containing exactly one end.

Such $2 n$-cells are called enumeratively essential.
$(2 n-1)$-cells in the boundary of enumeratively essential $2 n$-cell (d'aprés Gathmann-Markwig):
(1) Either exactly one vertex of $\Gamma$ is four-valent,
(2) or $\boldsymbol{p} \cap \Gamma^{0}$ is one point,
(3) or (in case $g>0$ ) the image of a four-leg cycle collapses to a segment.

Example: The star of a $(2 n-1)$-cell of type (1)


## Theorem (Gathmann-Markwig)

(1) The star of each $(2 n-1)$-cell as above admits an embedding onto an affine tropical variety in some $\mathbb{R}^{N}$. (2) There is a well-defined push-forward $\operatorname{Ev}_{*} \mathcal{M}_{g, n}^{\text {trop }}\left(\Delta, \mathbb{R}^{2}\right)$ and $\operatorname{deg}\left(E v: \mathcal{M}_{g, n}^{\text {trop }}\left(\Delta, \mathbb{R}^{2}\right)\right)$ such that, for a generic point $\boldsymbol{q} \in \mathbb{R}^{2 n}$ with $\mathrm{Ev}^{-1}(\boldsymbol{q})=\left\{\xi_{1}, \ldots, \xi_{s}\right\}$,

$$
\operatorname{deg} E v=\sum_{i=1}^{s} \prod_{V \in \Gamma_{i}^{0}} \mu(V)
$$

where

$$
\xi_{i}=\left[h_{i}:\left(\Gamma_{i}, \boldsymbol{p}_{i}\right) \rightarrow \mathbb{R}^{2}\right], \quad \mu(V)=\left|D\left(h_{i}\right)\left(\bar{e}_{1}\right) \wedge D\left(h_{i}\right)\left(\bar{e}_{2}\right)\right|
$$

## Mikhalkin's correspondence theorem

## Theorem (Mikhalkin)

Let $w$ be sequence of $n=3 d+g-1$ points in $\left(\mathbb{K}^{*}\right)^{2}$ such that $\operatorname{Val}(\boldsymbol{w})=\boldsymbol{q}$ is a generic point of $\mathbb{R}^{2 n}$.
Then, for each $\xi=\left[h:(\Gamma, \boldsymbol{p}) \rightarrow \mathbb{R}^{2}\right] \in \mathcal{M}_{g, n}^{\text {trop }}\left(\Delta, \mathbb{R}^{2}\right)$ such that $\operatorname{Ev}(\xi)=h(\boldsymbol{p})=\boldsymbol{q}$, there exist exactly

$$
\prod_{V \in \Gamma^{0}} \mu(V)
$$

irreducible algebraic curves $C \subset \mathbb{P}_{\mathbb{K}}^{2}$ of genus $g$ and degree $d$ such that

$$
C \supset w \quad \text { and } \quad \operatorname{Trop}(C)=h_{*} \Gamma
$$

## Sketch of the proof

Let $\left[\boldsymbol{n}:(\widehat{C}, \boldsymbol{p}) \rightarrow \mathbb{P}_{\mathbb{K}}^{2}\right] \in \mathcal{M}_{g, n}\left(d, \mathbb{P}_{\mathbb{K}}^{2}\right), \boldsymbol{n}(\boldsymbol{p})=\boldsymbol{w}$. Then

where $\boldsymbol{X}_{0}$ is a certain complex surface, a flat limit of $\mathbb{P}_{\mathbb{C}}^{2}$, and $\boldsymbol{n}_{0}: \widehat{C}_{0} \rightarrow \boldsymbol{X}_{0}$ is a map of a connected nodal complex curve $\widehat{C}_{0}$ of arithmetic genus $g$ to $\boldsymbol{X}_{0}$.

The first approximation to $\boldsymbol{n}_{0}: \widehat{C}_{0} \rightarrow \boldsymbol{X}_{0}$
Let $C=\boldsymbol{n}(\widehat{C}) \cap\left(\mathbb{K}^{*}\right)^{2}$ be given by a polynomial $F \in \mathbb{K}[x, y]$. We can write

$$
F(\underline{z})=\sum_{(i, j) \in \Theta_{d} \cap \mathbb{Z}^{2}} a_{i j}(t) x^{i} y^{j}=\sum_{(i, j) \in \Theta_{d} \cap \mathbb{Z}^{2}} t^{\nu(i, j)}\left(a_{i j}^{0}+O(t)\right) x^{i} y^{j}
$$

where $\Theta_{d}=\operatorname{conv}\{(0,0),(d, 0),(0, d)\}$ is the Newton triangle, $\nu: \theta_{d} \rightarrow \mathbb{R}$ a convex, piecewise linear function Legendre dual to Trop $(F)$. Then we define a flat family of surfaces

$$
\begin{aligned}
\boldsymbol{X}^{\prime} & =\operatorname{Tor}(O G(\nu)) \rightarrow \mathrm{D} \\
O G(\nu)=\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\right. & \left.\in \mathbb{R}^{3}:\left(\lambda_{1}, \lambda_{2}\right) \in \Theta_{d}, \lambda_{3} \geq \nu\left(\lambda_{1}, \lambda_{2}\right)\right\}
\end{aligned}
$$

## We have

- $\boldsymbol{X}_{0}^{\prime}=\bigcup_{i=1}^{N} \operatorname{Tor}\left(\theta_{i}\right)$, where $\theta_{i}$ 's are linearity domains of $\nu$.
- The embedded plane tropical curve defined by $\operatorname{Trop}(F)$ is $h_{*}^{\prime} \Gamma^{\prime}$, where $\Gamma^{\prime}$ is an abstract trivalent tropical curve of genus $g$.
- The polygons $\theta_{i}$ are triangles and parallelograms.
- The family of curves $C=\boldsymbol{n}(\widehat{C}) \rightarrow \mathrm{D}_{\eta}^{*}$ flatly extends to the central point with $C_{0}^{\prime}=\bigcup_{k=1}^{N} C^{(k)}$,

$$
C^{(k)}=\left\{\sum_{(i, j) \in \theta_{k} \cap \mathbb{Z}^{2}} a_{i j}^{0} x^{i} y^{j}=0\right\} \subset \operatorname{Tor}\left(\theta_{k}\right), \quad k=1, \ldots, N,
$$

if $\theta_{k}$ is a triangle, then $C^{(k)}$ is a rational curve touching each toric divisor at one point, if $\theta_{k}$ is a parallelogram, then $C^{(k)}$ is the union of two multiple rational curves given by powers of binomial,

- the family of maps $\left[\boldsymbol{n}:(\widehat{C}, \boldsymbol{p}) \rightarrow\left(\mathbb{P}_{\mathbb{C}}^{2} \times \mathrm{D}_{\eta}^{*}\right)\right] \rightarrow \mathrm{D}_{\eta}^{*}$ flatly extends to the central point with the fiber $\boldsymbol{n}_{0}^{\prime}: \widehat{C}_{0}^{\prime} \rightarrow \boldsymbol{X}_{0}^{\prime}$, where $\widehat{C}_{0}^{\prime}$ is a connected union of rational curves of arithmetic genus $g$; for example, over the curve $C_{k} \subset \operatorname{Tor}\left(\theta_{k}\right), \theta_{k}$ a parallelogram, we have two disjoint components of $\widehat{C}_{0}^{\prime}$ isomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$ which multiply cover the components of $C_{k}$ with ramification at the intersection points with toric divisors; the incidence graph of $\widehat{C}_{0}^{\prime}$ is $\widetilde{\Gamma}^{\prime}$, the graph obtained from $\Gamma^{\prime}$ by contracting ends and inserting binodal vertices - a pair of binodal vertices over each self-intersection point of $h_{*}^{\prime} \Gamma^{\prime}$.
Warning: For a given tropical curve $h: \Gamma \rightarrow \mathbb{R}^{2}$ of degree $d$ and genus $g$ passing through $\boldsymbol{q}$, the number of ways to recover the central fiber $\boldsymbol{n}_{0}^{\prime}:\left(\widehat{C}_{0}^{\prime}, \boldsymbol{p}_{0}\right) \rightarrow \boldsymbol{X}_{0}^{\prime}$ matching the points $\boldsymbol{w}_{0} \subset \boldsymbol{X}_{0}^{\prime}$ equals
$\prod_{V \in\left(\Gamma^{\prime}\right)^{0}} \mu(V) \cdot\left(\prod_{E \in\left(\Gamma^{\prime}\right)^{1}} L L\left(D\left(\left.h^{\prime}\right|_{E}\right)\right)\right)^{-1} \cdot\left(\prod_{E \in\left(\Gamma^{\prime}\right)^{1}, E \cap \boldsymbol{p} \neq \emptyset} L L\left(D\left(\left.h^{\prime}\right|_{E}\right)\right)\right)^{-1}$


## Correction via modifications



## References

L. Allermann and J. Rau. First Steps in Tropical Intersection Theory. Math. Z. 264 (2010), no. 3, 633-670.
G. M. Bergman. The logarithmic limit-set of an algebraic variety. Trans. AMS 157 (1971), 459-469.
R. Bieri and J. Groves. The geometry of the set of characters induced by valuations. J. reine angew. Math. 347 (1984), 168-195.
M. Chan. Lectures on tropical curves and their moduli spaces. Preprint at arXiv:1606.02778.
M. Chan, S. Galatius, and S. Payne. The tropicalization of the moduli space of curves II: Topology and applications. Preprint at arXiv:1604.03176.
M. Chan, S. Galatius, and S. Payne. Topology of moduli spaces of tropical curves with marked points. Preprint at arXiv:1903.07187.

Maclagan D. and Sturmfels B. Introduction to tropical geometry. AMS, 2015.
G. Mikhalkin. Enumerative tropical algebraic geometry in $\mathbb{R}^{2}$. J. Amer. Math. Soc. 18 (2005), 313-377.
Mikhalkin G. and Rau J. Tropical Geometry. Draft of the monograph, 2014.

