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Historical sketch

• 1971 - Bergman: Logarithmic limit sets of algebraic varieties
=⇒ Tropical fans

• 1980 - Viro: Patchworking of algebraic varieties
=⇒ Tropical polynomials

• 1984 - Bieri, Groves: Valuation images of algebraic varieties
=⇒ Affine tropical varieties

• 1990 - Berkovich: Skeleta of analytic varieties over
non-Archimedeal fields =⇒ General tropical varieties

• 2000 - Kontsevich: Tropical curves, Kontsevich conjecture

• 2002 - Mikhalkin: Tropical enumerative geometry
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Tropical objects via limit

Various tropical objects appear in the limit of one-parameter families
of algebro-geometric objects

C ↪→ Ĉ
↓ ↓
D∗

η ↪→ Dη

or
C ↪→ Ĉ
↓ ↓

(0, η) ↪→ [0, η)

where Dη = {|z | < η}, D∗
η = Dη \ {0}, and the central fiber Ĉ0

carries some algebraic/geometric/combinatoial structure called the
tropicalization (or the tropical limit) of the family C → D∗

η.
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Example: Tropical semifield T = (R ∪ {−∞},max,+)

Consider the family of maps

(R>0,+, ·)→ (R,⊕t ,⊙t), a 7→ − logt a, 0 < t < η,

u ⊕t v = − logt(t
−u + t−v ), u ⊙t v = − logt(t

−ut−v ).

Then
lim
t→0

(u ⊕t v) = max(u, v), lim
t→0

(u ⊙t v) = u + v .
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Example: Complex and tropical amoeba of a line

L ⊂ (C∗)2
(log |z|,log |w |)

=⇒ A(L) ⊂ R2

The complex amoeba A(L) admits a tropicalization:
build a family of maps, then go to the limit

L ⊂ (C∗)2
(− logt |z|,− logt |w |)

=⇒ At(L) =⇒
t→0

Trop(L)

where Trop(L) is the tropical line
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L A(L)

Trop(L)

log | ∗ |

limt→0(− logt | ∗ |)
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Tropical objects via non-Archimedean valuation

Let K be an algebraically closed field of characteristic zero,
possessing a dense real non-Archimedean valuation

val : K→ R ∪ {−∞}

val(ab) = val(a) + val(b), val(a + b)


= max(val(a), val(b)),

if val(a) ̸= val(b),

≤ max(val(a), val(b)),

if val(a) = val(b)

Our main example: K =
⋃

m≥1C{t1/m}
the field of complex, locally convergent Puiseux series,

val(a(t)) = −min{q : aq ̸= 0}, a(t) =
∑
r≥r0

ar t
r
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Tropical amoeba as tropicalization of algebraic variety

Definition
Let V ⊂ (K∗)n be an algebraic variety. Define its tropical amoeba (or
tropicalization) by

Trop(V ) = Closure(Val(V )) ⊂ Rn

where Val : (K∗)n → R is the coordinate-wise valuation map.
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Theorem (d’aprés Bieri-Groves)

Let V ⊂ (K∗)n be an algebraic variety of dimension 0 < r < n. Then
Trop(V ) is a finite, rational, connected polyhedral complex of pure
dimension r .
Moreover, its top-dimensional faces σ can be equipped with positive
integral weights ω(σ) (uniquely determined by V ) so that Trop(V )
becomes balanced, i.e., at each face of dimension r − 1 there holds a
balancing condition.

Balancing condition: For each face δ denote by Λ(δ) ⊂ Rn the linear
space of dimension dim δ, parallel to δ. Pick a face τ ⊂ Trop(V ) of
dimension r − 1. For each face σ ⊃ τ of dimension r , pick a
generator aτ (σ) of (Λ(σ) ∩ Zn)/(Λ(τ) ∩ Zn) directed inside σ. Then∑

σ⊃τ, dimσ=r

ω(σ) · aτ (σ) = 0 ∈ Zn/(Λ(τ) ∩ Zn).
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Example: Tropical line in the plane

(1, 1)

(0,−1)

(−1, 0) (−1, 0) + (0,−1) + (1, 1) = 0
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Tropical varieties

Affine tropical hypersurfaces

Let F ∈ K[z1, ..., zn], and V = Z (F ) ⊂ (K∗)n a hypersurface.
Define the tropicalization of the polynomial F as follows:

F (z) =
∑

α∈∆∩Zn

aα(t)z
α =⇒ Trop(F )(x) = max

α∈∆∩Zn
(⟨α, x⟩+val(aα))

Theorem (Kapranov)

Trop(V ) is the corner locus of the tropical polynomial Trop(F ).

Example: L = {az + bw + c = 0} ⊂ (K∗)2

Trop(L) = Corner(max{x + val(a), y + val(b), val(c)})
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Define νF : ∆→ R to be the convex, piecewise linear function whose
graph is the lower part of

ConvexHull{(α,−val(aα)) ∈ Rn+1 : α ∈ ∆ ∩ Zn}.

The linearity domains of νF define a subdivision ΣF of the Newton
polytope ∆ into convex lattice polytopes.

Lemma
Trop(F ) and νF are Legendre dual convex, piecewise linear functions.

Corollary

There is a duality φ : Cell(Rn,Trop(V ))↔ Cell(ΣF ) such that
• dimσ + dimφ(σ) = n,
• σ ⊥ φ(σ),
• τ ⊂ σ ⇐⇒ φ(σ) ⊂ φ(τ).
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Example: Tropical line and tropical conic

1

1

2

2
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Define the weights of the top-dimensional faces of a tropical
hypersurface by

ω(σ) = LatticeLength(φ(σ))

Lemma
A tropical hypersurface equipped with the above weights is balanced.

Theorem
Every connected, rational polyhedral complex in Rn of pure
dimension n − 1, equipped with positive integral weights of the
top-dimensional faces and satisfying the balancing condition, is a
tropical hypersurface.

Warning: Not true in codimension > 1!
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Intersection theory of affine tropical varieties

Let T1,T2 ⊂ Rn be tropical varieties, dimT1 = r1, dimT2 = r2,
r1 + r2 ≥ n. We would like to define the intersection “T1 ∩ T2” as a
tropical variety T1T2 of pure dimension r1 + r2 − n.
(1) Pick a generic vector c ∈ Rn \ {0} and denote T2,τ = T2 + τc ,
0 < τ ≪ 1. Then T1 and T2,τ intersect generically, an we can refine
the cell structures so that T1 ∩ T2,τ will consist of entire cells (of
dimension ≤ r1 + r2 − n). Each cell σ ⊂ T1 ∩ T2,τ of dimension
r1 + r2 − n is an intersection σ = σ1 ∩ σ2, σ1 ⊂ T1, σ2 ⊂ T2,τ ,
dimσ1 = r1, dim σ2 = r2. Set

ω(σ) = ω(σ1)ω(σ2)[Zn/Λ(σ) : (Λ(σ1) + Λ(σ2))/Λ(σ)]

(2) Let τ → 0 summing up the weight of (r1 + r2 − n)-cells that
merge to one cell.
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Theorem
The polyhedral complex T1T2 = limτ→0(T1 ∩ T2,τ ) is rational,
weighted, balanced of pure dimension r1 + r2 − n. It does not depend
on the choice of c ∈ Rn \ {0} and is called the stable intersection of
T1 and T2.

Example: Let X1, ...,Xn ⊂ Rn be tropical hypersurfaces.
Then X1...Xn is a finite set of weighted points, whose weight sum up
to the normalized mixed volume of the Newton polygons
∆(X1), ...,∆(Xn) (Bernstein-Koushnirenko theorem).

Remark: One can define the rational equivalence of affine tropical
varieties in Rn and show that it commutes with the intersection. For
example, shifts of the same tropical variety are rationally equivalent.
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Let T ⊂ Rn be a tropical variety of dimension r > 0, f : T → R a
continuous piecewise linear function with integral gradients. We shall
define div(f ) ⊂ T as a tropical cycle of dimension r − 1, i.e., a finite
rational weighted balanced polyhedral complex with weights of the
top-dimensional faces in Z.
We can suppose that the subdivision into linearity domains of f is
inscribed into the cellular structure of T . Then to each
(r − 1)-dimensional face τ ⊂ T , we assign the weight

ω(τ) =
∑

τ⊂σ, dimσ=r

ω(σ)fσ(aτ (σ))− fτ

( ∑
τ⊂σ, dimσ−r

ω(σ)aτ (σ)

)

Theorem

div(f )
def
=
⋃

ω(τ) ̸=0 ω(τ) · τ is an (r − 1)-dimensional tropical cycle.
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Tropical maps

(1) An integral-affine map f : Rn → Rm is called tropical map. That
is, f (x) = Ax + y

0
, where A ∈ Matm×n(Z).

(2) Let T ⊂ Rn be a tropical variety of dimension r , and
f : Rn → Rm a tropical map such that dim f (T ) = r .
Define the push-forward f∗T as follows: for each r -dimensional cell
σ ⊂ T such that dim f (σ) = r , set

f∗σ = ω(f∗σ) · f (σ), ω(f∗σ) = ω(σ)[Λ(f (σ)) : f∗Λ(σ)]

Lemma

f∗T
def
=

∑
dimσ=dim f (σ)=r

f∗σ

is a tropical variety, called the push-forward of T by f .
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Example: Degree of the projection
T ⊂ Rn a tropical variety of dimension r , f : Rn → Rr the projection.
Then f∗T = d · Rr , where d is called the degree of f

∣∣
T
.

Lemma

Let q ∈ Rr be a generic point, (f
∣∣
T
)−1(q) = {p1, ..., pk}, where

pi ∈ σi , dimσi = r , i = 1, ..., k .

Then

deg(f
∣∣
T
) =

k∑
i=1

(
ω(σi) ·

∣∣ detD(f
∣∣
σi
)
∣∣) .
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Modification as the tropical blowing-up

Let T ⊂ Rn be a tropical variety of dimension r , f : Rn → Rm a
tropical map.
The map f : T → f∗T is called a modification if it is one-to-one over
open top-dimensional cells of f∗T , and [Λ(f (σ)) : f∗Λ(σ)] = 1 as long
as dim σ = dim f (σ) = r .

Example: Modification of Rn

Let F ∈ K[z1, ..., zn], T = Trop(w − F (z) = 0) ⊂ Rn+1 the graph of
the tropical polynomial Trop(F ). Then

f : T → Rn, f (z ,w) = z ,

is a modification.
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Example: Modification of the plane along a line
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Tropical curves

Abstract marked tropical curves

An abstract tropical curve with n ≥ 0 markings is a finite, connected,
metric graph having n′ ≥ n univalent vertices among which n vertices
are marked, and such that the edges containing a univalent vertex are
isometric to [0,∞] (where ∞ is the univalent vertex) while the other
edges are isometric to finite closed intervals.
The genus of an abstract tropical curve T is g(T ) = b1(T ).
Abstract marked tropical curves are considered up to the following
equivalence:

• a bivalent vertex which is the intersection of two edges can be
removed,

• A leaf ended at an unmarked univalent vertex can be contracted
(a kind of modification),

• isometry of graphs.
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Examples:

• •

• • •

•

•

•

•

•

•

4

1

3

2

g = 2, n = 0 g = 2, n = 0

g = 0, n = 4 g = 1, n = 0
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Moduli spaces of stable abstract marked tropical curves

Mtrop
g ,n denotes the moduli space of stable abstract marked tropical

curves of genus g with n markings.

dimMtrop
g ,n =


n − 3, g = 0, n ≥ 3,

n + 1, g = 1, n ≥ 0,

3g − 3 + n, g ≥ 2, n ≥ 0

- the parameters are the lengths of finite edges.

Theorem (Mikhalkin)

The map Φ :Mtrop
0,n → Rn(n−1)(n−2)(n−3), n ≥ 3,

Φ(T ) = {SignedLength(pipj ∩ pkpl) : i , j , k , l ,∈ {1, ..., n}}

defines an embedding ofMtrop
0,n onto an affine tropical variety.
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Plane marked tropical curves

Let Γ be an abstract tropical curve, Γ
0

∞ the set of its univalent

vertices, Γ = Γ \ Γ0∞, and Γ1∞ the set of unbounded edges of Γ (called
ends). Let p = (p1, ..., pn) be a sequence of n distinct points of Γ
(markings).
A plane marked tropical curve is a map h : (Γ,p)→ R2 such that

• h is integral-affine on each edge of Γ, and is non-constant on
each end;

• at each vertex V ∈ Γ0 there holds a balancing condition∑
E∈Γ1, V∈E

D
(
h
∣∣
E

)
(eV (E )) = 0,

where eV (E ) is the unit tangent vector to E emanating from V .
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Let ξ = [h : (Γ,p)→ R2] be the isomorphism class of a plane marked
tropical curve h : (Γ,p)→ R2..
The genus of ξ is g(Γ) = b1(Γ).
The (tropical) degree of ξ is the multiset

∆ = ∆(ξ) = {D
(
h
∣∣
E

)
(e(E )) : E ∈ Γ1∞},

where e(E ) is the unit tangent vector oriented towards infinity. Note
that the degree is balanced, i.e.,∑

a∈∆

a = 0.

For simplicity, in what follows we will assume that

∆ = {d × (−1, 0), d × (0,−1), d × (1, 1)}

that corresponds to plane algebraic curves of degree d .
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Moduli space of plane marked tropical curves

Denote byMtrop
g ,n (∆,R2) the moduli space of plane n-marked tropical

curves of genus g and degree ∆. There are finitely many
combinatorial types of plane n-marked tropical curves of genus g and
degree ∆. Each combinatorial type is parameterized either by a
point, or by an open convex polyhedron.
From the enumerative point of view it is natural to choose
n = 3d + g − 1.
The evaluation map

Ev :Mtrop
g ,n (∆,R2)→ R2n, Ev(h : (Γ,p)→ R2) = h(p)

is a tropical map, i.e., it is integral-affine in the parameters of each
cell ofMtrop

g ,n (∆,R2).
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Lemma (Mikhalkin)

(1) dimMtrop
g ,n (∆,R2) = 6d + 2g − 2 = 2n.

(2) Each 2n-dimensional cell Σ ofMtrop
g ,n (∆,R2) such that

dimEv(Σ) = 2n parameterizes elements [h : (Γ,p)→ R2] such that

• Γ is trivalent,

• p ∩ Γ0 = ∅,
• no edge of Γ is contracted,

• any component of Γ \ p is a tree containing exactly one end.

Such 2n-cells are called enumeratively essential.
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(2n − 1)-cells in the boundary of enumeratively essential 2n-cell
(d’aprés Gathmann-Markwig):

(1) Either exactly one vertex of Γ is four-valent,

(2) or p ∩ Γ0 is one point,

(3) or (in case g > 0) the image of a four-leg cycle collapses to a
segment.
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Example: The star of a (2n − 1)-cell of type (1)

−→

↗

↘

(a) (b)

←−

↖

↙

Σ0

Σ1

Σ2

Σ3

µ1

µ2

µ3 µ4

µ5

µ6

µ1µ2 = µ3µ4 + µ5µ6
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Theorem (Gathmann-Markwig)

(1) The star of each (2n − 1)-cell as above admits an embedding
onto an affine tropical variety in some RN .
(2) There is a well-defined push-forward Ev∗Mtrop

g ,n (∆,R2) and

deg
(
Ev :Mtrop

g ,n (∆,R2)
)
such that, for a generic point q ∈ R2n with

Ev−1(q) = {ξ1, ..., ξs},

deg Ev =
s∑

i=1

∏
V∈Γ0i

µ(V )

where

ξi = [hi : (Γi ,pi)→ R2], µ(V ) =
∣∣D(hi)(e1) ∧ D(hi)(e2)

∣∣
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Mikhalkin’s correspondence theorem

Theorem (Mikhalkin)

Let w be sequence of n = 3d + g − 1 points in (K∗)2 such that
Val(w) = q is a generic point of R2n.
Then, for each ξ = [h : (Γ,p)→ R2] ∈Mtrop

g ,n (∆,R2) such that
Ev(ξ) = h(p) = q, there exist exactly∏

V∈Γ0
µ(V )

irreducible algebraic curves C ⊂ P2
K of genus g and degree d such

that
C ⊃ w and Trop(C ) = h∗Γ
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Sketch of the proof

Let [n : (Ĉ ,p)→ P2
K] ∈Mg ,n(d ,P2

K), n(p) = w . Then

(Ĉ ∗,p) → (P2
C × D∗

η,w)
↓ ↓
D∗

η = D∗
η

t 7→tM
=⇒

(Ĉ ,p) → (X ,w)
↓ ↓
Dη = Dη

where X 0 is a certain complex surface, a flat limit of P2
C, and

n0 : Ĉ0 → X 0 is a map of a connected nodal complex curve Ĉ0 of
arithmetic genus g to X 0.
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The first approximation to n0 : Ĉ0 → X 0

Let C = n(Ĉ ) ∩ (K∗)2 be given by a polynomial F ∈ K[x , y ]. We
can write

F (z) =
∑

(i ,j)∈Θd∩Z2

aij(t)x
iy j =

∑
(i ,j)∈Θd∩Z2

tν(i ,j)(a0ij + O(t))x iy j

where Θd = conv{(0, 0), (d , 0), (0, d)} is the Newton triangle,
ν : θd → R a convex, piecewise linear function Legendre dual to
Trop(F ). Then we define a flat family of surfaces

X ′ = Tor(OG (ν))→ D,

OG (ν) = {(λ1, λ2, λ3) ∈ R3 : (λ1, λ2) ∈ Θd , λ3 ≥ ν(λ1, λ2)}
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We have

• X ′
0 =

⋃N
i=1 Tor(θi), where θi ’s are linearity domains of ν.

• The embedded plane tropical curve defined by Trop(F ) is h′∗Γ
′,

where Γ′ is an abstract trivalent tropical curve of genus g .

• The polygons θi are triangles and parallelograms.

• The family of curves C = n(Ĉ )→ D∗
η flatly extends to the

central point with C ′
0 =

⋃N
k=1 C

(k),

C (k) =

 ∑
(i ,j)∈θk∩Z2

a0ijx
iy j = 0

 ⊂ Tor(θk), k = 1, ...,N ,

if θk is a triangle, then C (k) is a rational curve touching each
toric divisor at one point, if θk is a parallelogram, then C (k) is
the union of two multiple rational curves given by powers of
binomial,
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• the family of maps
[
n : (Ĉ ,p)→ (P2

C × D∗
η)
]
→ D∗

η flatly

extends to the central point with the fiber n′
0 : Ĉ

′
0 → X ′

0, where

Ĉ ′
0 is a connected union of rational curves of arithmetic genus g ;

for example, over the curve Ck ⊂ Tor(θk), θk a parallelogram,

we have two disjoint components of Ĉ ′
0 isomorphic to P1

C which
multiply cover the components of Ck with ramification at the
intersection points with toric divisors; the incidence graph of Ĉ ′

0

is Γ̃′, the graph obtained from Γ′ by contracting ends and
inserting binodal vertices - a pair of binodal vertices over each
self-intersection point of h′∗Γ

′.

Warning: For a given tropical curve h : Γ→ R2 of degree d and
genus g passing through q, the number of ways to recover the central
fiber n′

0 : (Ĉ
′
0,p0)→ X ′

0 matching the points w 0 ⊂ X ′
0 equals

∏
V∈(Γ′)0

µ(V )·

 ∏
E∈(Γ′)1

LL(D(h′
∣∣
E
))

−1

·

 ∏
E∈(Γ′)1, E∩p ̸=∅

LL(D(h′
∣∣
E
))

−1
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Correction via modifications

•

•

•
−1 1 −1 1

ℓ ℓ
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