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Talk Atmosphere

No string theory or quantum field theory knowledge is required.

Paraphased from mathoverflow: Philip Candelas once asked Michael
Atiyah how to learn algebraic geometry.

Atiyah responded with “You can't”

Algebraic geometry is such a large subject that understanding it is a
full-time occupation, string theory may very well be the same.

| am a physicist therefore | will occasionally fail to be a bit precise,
please stop me to clarify! The goal of this seminar is to explain some
physical results so that they may one day rigorously clarified.
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Motivation: Nonequilibrium String Theory

Very high level perspective: String theory* is formally an infinite
dimensional calculus** for maps from a punctured Riemann surface
(worldsheet) ¥ to a target space M.

A punctured Riemann surface is interchangable with a compact
complex curve with marked points.

The target space is a specific background that can radically change
the form of stringy calculus and is generically dependent on
geometric data like various additional sections (vector fields, metric
tensors) and even gerbes. More complicated cases are
“non-geometric”.

Once we get to the “topological sigma model”, we will focus on the
case where the target space is a symplectic manifold (X,w) with
some w-compatible almost complex structure J. For now, we keep M
general.
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Motivation: Nonequilibrium String Theory

Figure 1: String Perturbation Theory

The stringy calculus computes “correlators of vertex operators” which
in simple settings, admit a topological expansion in terms of the
worldsheet topology (genus).

The vertex operators correspond to the punctures/marked points on
the Riemann surface.

The problem is therefore reduced to figuring out how to “integrate
over all” punctured Riemann surfaces at fixed genus and fixed
puncture count.
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Motivation: Nonequilibrium String Theory

The "sum over all punctured Riemann surface” is interpreted as
trying to count over all marked complex curves. This is @ moduli
space problem.

A detailed (physics) analysis gives us an idea of which curves to
include. In particular, it tells us which degenerations we should be
considering. It is partially answered by the Deligne-Mumford
compactification.

The DM compactification can identify the correct limiting stable
curves for pinching degenerations but recent results in string theory
have suggested that the story is more complicated. Physics tells us
that we don’t have Riemann surfaces but analytic continuations of
them which are Lorentzian manifolds for backgrounds that are "out
of thermal equilibrium”.

Conclusion: The "true” nonequilibrium formulation of string theory
requires summing over Lorentzian geometries.
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Motivation: Nonequilibrium String Theory

Summing over Lorentzian manifolds generically introduces a wealth
of analytic problems i.e. divergences.

The Schwinger Keldysh formalism of nonequilibrium quantum
mechanics suggest that the correct regularization involves Lorentzian
surfaces that are forward moving and backwards moving combined
in a (currently unknown) way to produce the correct physics.

ﬁ%@
Triple decomposition of ¥. Source: [2009.03940], [2]

There was an observation made by Petr Horava and Christopher
Mogni in [200811685], [3]: Schwinger Keldysh formalism suggests the
worldsheet wedge region X is topologically 2-dimensional but

geometrically (highly) anisotropic. What kind of geometry is this? o/ 5



Motivation: Nonequilibrium Quantum Field Theory

How do we construct this wedge region explicitly?

The wedge region is topologically 2-dimensional but geometrically it
is highly anisotropic i.e. the metric tensor is expected to become
degenerate.

Similar objects in string theory (string networks from M-theory) show
similar collapse — that are described by a balancing condition that
we know from tropical geometry.

We want to see this at the level of the stringy calculus and hence
from we turn over to Mikhalkin's correspondence theorem which
effectively states that the Gromov Witten invariants of fixed degree d
and genus g can be complicated by taking the "tropical limit and
replacing the complex curve counting with corresponding tropical
curves.

For the rest of the talk, we will try to construct this tropical stringy
calculus from first principles and boil it down to a picture that can be
made rigorous. 7/56



Real Algebraic Geometry/ Tropical Geometry in Physics

Tropical geometry has appeared in a wide variety of places.
Borinsky on tropicalized quantum field theory [250814263] [4].

Tourkine on tropical limits/infinite tension limits of string
amplitudes. [1309.3551] [5]

Arkani-Hamed's push on tropical geometry as method to simplify
scattering amplitudes [2309.15913] [6].

Eberhardt and Mizera in worldsheet unitarity cuts [220812233] [71.

This list is not exhaustive. It my expectation that real algebraic
geometry is going to become increasingly important as theoretical
physics progresses.
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Where are GWs in "string theory”?

In summary: Quantum field theory can be formally viewed as a
calculus for infinite dimensional maps(fields).

String theory is an special example of a quantum field theory for
maps from a punctured Riemann surface to a target space.

Topological string theory is a special example of a string theory
where the calculus is independent of the target space complex
structure. The computed "observables” are the Gromov Witten
invariants.

Topological string theory is built upon a simpler topological
quantum field theory known as the topological sigma A model, the
observables of this theory give form/classes on some to be specified
moduli space, not yet numbers.

Hence, we will begin at understanding topological sigma A models
from the physicist’'s point of view which is grounded in formal

probability theory.
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Functional Integration

0-dimensional quantum field theory (gft) with 1 random variable:
,] o0
— —5(x) — _ %2
Z= /Rdxe X S(x) = 5 QX + ,;:3 apx". (1)

Correlation functions/observables are defined as
/ dxeSX)xr (2)

Here S(x) is known as a Euclidean action. We can extend this to
obtain a 0D gft with N random variables

Z=[ dx;---dxNe W, (3)
]RN

Observables are then

1
(XiXiXe ... ) = z/d)ﬁ soc dXNe_s(xﬁ)xijx,e e (4)
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Functional Integration

The Euclidean action for N random variables is roughly of the form

S(X) = %%TAX + W(X)
|0 (5)
= 5 ZXiAijf + W(X,‘) 5
i
One might imagine that you can push this analogy to the continuum
by making a formal replacement where X; — X(t) for t € [0, T]. This
defines a 1D gft with effectively oo random variables (1 field)

z- / Dx(t)e=b0 S[x(t)] = % /{w AIXOAL X [ dw].

Physicists are generically motivated in the case where A(t, t') is a
local differential operator e.g,

Att)y=—0(t—t) j—;. (6)
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Functional Integration

Direct calculus yields connections to heat kernels and other objects
eg.

x(T)=y 1 T 1 |X _ y|2
D, —= X()]2dt | = ————— — .7
/x(o)x e ( 2 /o A ) (@nTyr2 P ( 2T ) 2

It turns out that these simple 1D gfts can be made rigorous and is
understood from many different perspectives e.g., Wiener measures,
rough paths theory and stochastic geometric analysis.

The high level problem is that we don’t know a Lebesgue measure on
the infinite dimensional space i.e. Dx does not exist in the usual
sense.

A solution is to interpret the kinetic term as part of the definition of
a Wiener measure on the space of continuous paths Co([0, T]).
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2D Functional Integration

Some attempts have been made using the Gaussian Free field for 2d
gfts and there have been rigorous constructions made e.g. Liouville
guantum gravity.

Some additional recent attempts via stochastic quantization (many
authors) and constructive QFT.

Quantum field theory (QFT) can be viewed as the calculus of these
functional integrals.

We generically extend this to much more complicated maps like
vector fields, connections, spinor fields and other geometric objects.

No common method to rigorously understand quantum field
theories above 2D onwards.

Every dimension above seems to require increasingly more
complicated methods.
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Type A Topological Sigma Model (Relativistic)

Integration theory of maps (fields) ® : ¥ — M (Riemann surface to
symplectic manifold).

The A-model comes equipped with a nilpotent, Grassmann odd
operator Q on the space of fields known as the BRST differential.

We restrict to symplectic geometry target spaces (M, w, /) with a
compatible almost complex structure j} defined as:

Jig = -4, (8)

Hence, a theory of psuedoholomorphic maps ¢ : (X,e) — (M,)).

Known that the topological A model only depends on the target
space symplectic form w.
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For completeness, the action takes the form

1 i
L= 2t/dzz (2911((1’)62(25/82& + ig/ﬂ/}’,Dzw’,
: (9)
! )N 1 I Kol
+2Q/J¢+Dz1/)+ + ARUKW#/)#/LdL .

where by using local complex coordinates on and M, the fields ¢/
can be locally described by functions. If K and K are canonical and
anti canonical line bundles over ¥, then we can construct the square
roots of these.

' are then sections of the tangent bundle of X pulled back to the
worldsheet i.e. K'/? @ &*(TX)

Doty = 2o, + &’y O T, (10)
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BRST Differential

The BRST differential can be formally understood in terms of
equivariant cohomology.

It is defined by the fact that we require our maps to satisfy a
topological invariance generated by a vector field €.

5.0 =¢ (11)

The standard BRST procedure then replaces the topological
symmetry generated by ¢ with a Grassmann odd vector field ¢/
known as a ghost field which enforces the topological symmetry.

Localization of the functional integral is then via the fixed points of
the BRST differential. This can be concretely understood in
finite-dimensions.
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A finite-dimensional analogy

Let M be a compact manifold with a G-action generated by a vector
field v. In the Cartan model, the equivariant differential is defined as

de=d—1, di=0. (12)
Take an equivariantly closed form « and one asks how to compute
Z:/a. (13)
M
We deform « by an equivariant ds exact deformation and obtain

ot = aeftdcw, Z(t) = / of. (14)
M
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A finite-dimensional analogy

Then, a short calculation and Stokes’ theorem shows

dz
dt

Hence, we can compute Z by taking either asymptotic limits

= 0. (15)

lim Z(t) = lim Z(t). (16)

t—0 t—oo

The t — oo limit is a sum over fixed points and the transverse
fluctuations which can be captured by the equivariant Euler class of
the transverse directions to the fixed point locus.
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Infinite Dimensional Localization

Localization in the context of field theory does this at the functional
integral level. We are usually interested in “observables/correlation
functions” which take the schematic form

(0...0,) = %/mom)---on(@e—s[“’] (17)

Here O is a functional of the fields ®. This generically reduces the
functional integral down to finite-dimensional objects which can be
made rigorous.

The correlation functions in a topological field theory usually
corresponds to topological invariants of the target space.

For A model, it will be the GW invariants.
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Localization for Sigma A Model

Fixed point of BRST differential is the localization locus i.e., —
0d = 0 for all .

Using local complex coordinates on ¥ and M?, the fields are

¢, &Y, Pl

BRST transformation laws (with Grassmann odd parameter «) are:
8¢ = i), 8¢ = i@, (18)
sl =0, &L =0, (19)
Pl = —add — iap T 7, (20)
Sy = —ade — ioap Tl Y. (1)

In particular, localization requires:
¢ = d¢ =0, (22)
P =9 =0. (23)
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Tropical limit of localization - Viro hyperfields

Pick local complex coordinates z,Z on ¥ and Z,Z (¢, ) on 1-complex
dimensional M. The even localization equations are just the
Cauchy-Riemann equations:

b7 = 0. (24)

We use Viro's subtropical deformation [8] (effectively the Maslov
dequantization) of complex numbers:

lz|'V/hL ifz #£0;

Si(z) = 2l (25)
0 ifz=0.
This can be parametrized via polar coordinates as
7 = eH—iQ N Sﬁ(Z) — er/ﬁ+f9. (26)

For the addition operation to be associative, it requires
multi-valuedness.

Do we need to somehow define a multi-valued functional integral?
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Tropical geometry

For real numbers a,b € R and non-negative i € R consider:
a®b= lim ﬁlog{e(‘”b)/h} =a+b, (27)
h—0

a, ifa>b;

a®db=lim ﬁlog{ea/ﬁJreb/ﬁ}: .
=0 b, ifb>a.

This defines the tropical semifield T = R U {—oc} with arithmetic
operations a ® b = max(a,b) and a® b = a+ b. This is known as
Litvinov-Maslov dequantization [0507014] [9].
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Tropicalization of manifolds

For a complex manifold M with equipped with complex coordinates
Z'.

The log map: (Z',...,2") — (hlog|Z|,. .. hlog|Z"
and the resulting image is called an amoeba.

) forgets the phase

The limit & — 0 leads to tropical i.e. piecewise linear coordinates X'.

A complex surface degenerating into its underlying tropical geometry.
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Tropicalization of CP'

X' =-o

LX=-00

z,Z

(@ (b) ©
The tropicalization of CP'. a) The original complex manifold with two
coordinates system covering it. b) The standard tropicalization TP', again

with coordinate systems indicated. c) The representation of TP' with the
coordinate © preserved. We call this the covering space perspective.
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Tropical limit of the localization equation

It turns out that we can get away with the standard formulation of
the functional integral in terms of complex numbers as long as we
allow a gauge symmetry.

Following Viro's subtropical deformation, the target space local
coordinates become:

7 = eX/ﬁ+ie. (29)

In the new variables, the localization equations is now:

Z

07 = = (arx — 090 + iﬁ(aex + ﬁza,@)) =0. (30)

Formally taking & — 0 leads to a tropicalized version of
Cauchy-Riemann equations:

OX— 90 =0, OgX=0. (31)



Solution for tropical localization equation

From the definition @ ~ 6 + 27 and © ~ © 4 27.

Global solutions to localization equations on a sleeve | x S" are

X(r,0) = xo + nr, (32)
O(r,0) = ©y(r) + no, (33)

with n € Z and ©q(r) is an arbitrary projectable function of r only.

Repeating the argument across many local patches gives that the
solution for X is given by piece-wise linear functions.
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Symmetries of tropicalized target space

“Tropical manifolds” exhibit only discrete symmetries.

Since tropical coordinates are (locally) given by piecewise linear
function, the most general transformation is given by

X'=n'x 4+ a, (34)

with n" being a matrix of integer coefficients.

Therefore, the symmetry group G has to be a subgroup of:
G C GL(n,Z). (35)

The important consequence is that this effectively allows us to
consider only free field theories.
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Covariant form of localization equation

In the relativistic topological sigma model, the localization equation
in covariant form is

,0sY —J0,Y =0, (36)

where &/ and ij are complex structure on ¥ and M respectively.

In the tropical limit ¢, ) become nilpotent endomorphisms:
e=0, f=0. (37)

We call these Jordan structures and using the adapted coordinates:
0 1 ; 0 1
B — J= : 38
e (0 0) 4 (O O) (38)
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Covariant form of localization equation

The tropical limit of the localization equations then become
E) =e,0sY —J'0.Y . (39)

In adapted coordinates (r,6) and (X, ©) we recover the coordinate
result:

EX=—E°=00X, E®°=000-0X ES=0. (40)
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Induced foliation on manifold

In the relativistic case, the worldsheet complex structure
decomposes the tangent space as a direct sum

v=TE =700 ¢ 75N (41)
In the non-relativistic tropical limit, the Jordan structure 2 = 0 will
induce a natural 2-step filtration on the tangent space.
Instead of direct sum, we now have a flag structure

FOv=0c F'Vvc Fv=V. (42)
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Induced foliation on manifold

The filtration due to Jordan structure induces an integrable
distribution of the tangent bundle of ¥ through the Frobenius
theorem (up to singular points)

However, we begin by solving the tropological sigma model
equations on a patch so we stay away from singular points.

The foliation is an equivalence relation on X with leaves of foliation
being equivalence classes.

Examples of non-singular foliations. Source: [1]
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Symmetries of the Jordan structure

In the adapted basis, one can show that the infinitesimal
transformations that preserve Jordan structure are:

sr=f(r), (43)
60 = F(r) + 09£(r), (44)

where f(r) and F(r) are real-valued projectable functions.

One can show that you can arrive at the same set of symmetries by
considering the tropical limit of the metric g,5 and its inverse h*?; in
this limit, they now satisfy a mutual invisibility condition:

gaph?’ =0, (45)

we find that symmetries of Jordan structure arrive as the intersection
of a conformal rescaling of g and h (with opposite weight).
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Symmetries of localization equations

The localization equations in adapted coordinates suggest an
additional symmetry

OX—0p© =0, 09X =0. (46)
They are invariant under:

8X = on(r), (47)
60 = ag(r) + 09au(r). (48)

In the process of canonical quantization, when we treat r as time, «
is interpreted as gauge symmetry imposing constraints on momenta.
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Admissible singularities

To formulate theory on higher genus %, we have to consider singular
foliations.

Examples of singular junctions of sleeves. Source [1].

- Introduce new local coordinates so that localization equations
can be extended.

- Construct global solutions with an appropriate gluing.
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Junctions of sleeves

Recall the global solution we found on I x S™
X=nr, ©=0g(r)+nd, (49)

a gauge symmetry is used to adjust r and ©g to glue solutions on the
overlap region.

In the case of four sleeves meeting at a
junction. The total winding number at the
singular point can be shown to satisfy

Na+Ns +no+ny =0. (50)

This is precisely the balancing condition at a
vertex that appears in tropical geometry.
Punctures can be treated similarly.

Junction of 4 sleeves.
Source: [1].
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BRST construction of Tropological Sigma Model

We introduce Grassmann odd vector fields known as ghost fields
(v, V). The grading is known as ghost number degree. We assign
ghost degree 1to both ¢ and ¥

We then group fields into components of a field vector that
transform under the BRST symmetry known as BRST multiplet

In the adapted coordinates, the BRST multiplets satisfy:

[O’X] =1, {Q/(/]} =0, (51)
[Q,0]=Wv, {Q,Vv}=0. (52)
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Covariant action

In the BRST construction, the action is still a grade 0 object and
hence we introduce a grade (-1,0) BRST multiplet known as the
antighost-auxiliary multiplet (y, B).

Under the BRST differential, they satisfy

{Oa Xai} = Baiv (53)
[Q,B%] = 0. (54)

Then a BRST representative for the action can be constructed as
/ PoBE] (5)
p

modulo quadratic terms in B which can be integrated out.
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Covariant action

The action is invariant under an additional gauge symmetry:

0B =f%(o), oY =0, (56)
with Y/ = (X, ©) and gauge parameter satisfying self dual equation
egfoi(o) = J7f5
One can check that a fully covariant (on worldsheet) gauge fixing
that preserves worldsheet conformal invariance is

BaX = O (57)

In the adapted coordinates the leftover components are denoted as:

B'o=8, Blg=-5. (58)
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Covariant action

One can show that there is a term consistent with all these
symmetries that one can add to the action in the adapted
coordinates which is

—% / dtdeB?, (59)

which can be used to integrate out B. However, no such term can be
added for g.

The antighosts follow the same pattern so we denote remaining
components as:

¥%=0, Xo=% xlo=-x (60)
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Action for cohomological field theories

It is easy to see that this action may be written as

1
5 E,/ Po{Q, V1, (61)

with e a coupling constant and V a ghost degree -1 term chosen so
that we get non-degenerate kinetic term. One can then show that
this action satisfies is BRST invariant QS = 0.

Physical observables satisfy [Q, O] = 0. Any variation of metric can
be be written as {Q, §V}. Hence, any “interesting” observables are
topologically invariant in the sense that they do not depend on the
metric (Jordan structure) up to a BRST cohomology class.
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Action for tropological sigma model

Explicitly, the action is now
S= g/drde{Q, X(0p© — OX — %B) + xpX} (62)
_ g/drdé){B(ag@ — 0X) + BOpX — %BZ X85V — 8,6) — xOe).
Integrating out the B field, the action becomes:
5= g / drde{%(aee — O+ BOuX — X(94V — 016) — X ). (6)

the bosonic part of the action is minimized by the tropical
localization equations.
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Observables

Physical observables satisfy BRST invariance: [Q, 0] = 0 up to BRST
exact terms.

In fact, we are able to identify the correct observables by mapping
the target space deRham cohomology to the BRST cohomology i.e,

W=W, _,dX" A AdXP € QM) (64)
we associate the operator
(PO) _ 7. i i
O =W, iy"...9" € Ho(F) (65)

where F is the space of fields. This operator has ghost number p and
deRham degree 0.
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Observables

Since {Q, v} = 0 we find
{0,087} = =9, Wi,.., 9" ...wP = —O%™, (66)
which implies that O{0)

- is a physical observable if W is closed,
- is a BRST commutator only if W is exact.

One can show that you can construct a hierarchy of observables via
the descent equations

doP9 (x) = {o, o§5‘“>(x)}. (67)
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Tropical CP" model

We view TP' as a foliated manifold diffeomorphic to CP'.

The real cohomology of TP' is two dimensional spanned by zero form
- Tand two form - [wr] = 5-dX A d©.

In the tropical limit, the notion of finite-dim integration measure
changes. We recover the correct instanton number by using the

definition
D 1 D 27
/ WT:f/ dX/ do =1, (68)
P! 2m Jo

where fR@ f(X)dX = max(f(X), X € R). Alternatively, we can use the
distribution-valued two form [wr] = ‘Z(—fr)dX/\ de.
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Tropical CP" model

We construct correlation functions using the TP' cohomology.

The correlation function vanishes unless ghost zero modes are
saturated. Similar to the relativistic case, we find that

0, if n=2k

. (69)
NI n=2kR+1,

(OL(P)OL(P) ... 0 (Pn)) = {

where k is the instanton number given by the pullback ®*(wr). This
can be realized on genus zero X with a fixed, generic Jordan structure.
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Correlation functions at genus zero

To get an unique instanton
solution without moduli,

we map:
- k points (Pq,...,Pg) to
X=—00

- k points (Pryq, -, Pa)
toX=
- single point Ppto X =0

Such map will have desired

value of instanton number: Instanton contribution to 2k 4 1 correlation
k given by the pullback of function. Source: [1].
w.
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Correlation functions at higher genus

We can construct handle operators W, to increase the genus by 1.

In the case of tropological models this can be only represented by a
torus with one finite sleeve attached and generic foliation structure.

Handle operator which raises the genus by one. Source: [1]

The balancing condition imposes that the total winding number at
the juncture is n = 0 and it can be shown that this implies the
handle operator can be mapped to a point.
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Correlation functions at higher genus

Therefore, W is represented by an insertion of a local operator:
W =20,. (70)

In particular, the partition function can be calculated from the torus
one point correlation function evaluated at all loop orders i.e,,

2
29— 2 29— 2 g - =
E 9s E 95" HOW? o = 7y (71)

This is precisely the same result as the relativistic case for higher
genus correlation functions matching the well known result of the
CP' model.
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Further Results



Analytic continuation to real time

We set a real worldsheet time to run along the leaves of the
foliation. Then we compactify r on a circle with periodicity r ~ r + 2.
If we expand the generators of the worldsheet conformaal
symmetries in terms of Fourier modes

fry = Lme™, Fr)=7) Jne™. (72)
Z Z
The generators result in the BMS; algebra
[Lon, L] = (M — N)Lonn + %m(mz — Vomino, (73)
UmsJa] =0,
Ly Jn] = (M = N)Jmin + %m(m2 )omeno-

This also appears in the study of asymptotic symmetries of gravity,
flat space holography and other nonrelativistic limits of string theory.
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Tropical Branes

One can investigate the boundary conditions for the tropological
sigma models and find an new boundary conformal algebra
[241212337], [10]

- . i - -

(L, Ll = 5 ((m — M — (M + n)Lm,n) :

Um,/n] - 07

Lo Jn] = —é (M = NYmsn — (M + NYJn) + %m(m2 — 1)(men0 + 6—mino)

The canonical quantization of the boundary states result in a
Hamiltonian that produces an infinite number of free particles with
increasingly mass which is precisely the behavior we expect from
string amplitudes. Mathematicians [11] have begun studying this
algebra in [2508.21603] showing a connection to Carrollian physics.
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Coupling to Tropological Gravity

A natural question is what sort of dynamical worldsheet gravity is
appropriate for topological sigma models?

Can one create a quantum field theory of dynamical Jordan
structures/foliations?

A construction was discussed in an unreleased paper where we
instead replace the kinematics of Jordan structures with einbeins e2
and a Galilean connection wg,.

The construction yields some direct connections to Novikov Morse
theory and is suggestive of a deeper connection to Ricci flow.
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Future Directions

From here, many directions (and some preliminary answers) to study:
Is there a natural notion of tropological B model?

What occurs in higher dimensional target spaces? Filtered
geometries and Nil-equivariance [2507.23072], [12].

Can we develop an anisotropic conformal field theory for the
observables we've written down?

Are there other tropical limits of topological field theory that might
yield something? [2503.15856], [13].

What is the connection to other nonrelativistic limit of string theory?
e.g. Newton Cartan, Galilean, ambitwistor and Carollian strings?
[2311.10565], [14].

.many more, limited time.
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Thank you! Any questions?

Long form questions via andresfranco@berkeley.edu.

I'd be very happy to answer!
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