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1. Rigid Dualizing Complexes over Rings

1. Rigid Dualizing Complexes over Rings
All rings and algebras in this talk are commutative.

We fix a base ring K, which is finite dimensional, regular and
noetherian (e.g. a field or Z).

Let A be an essentially finite type K-algebra. Recall that this means A
is a localization of a finite type K-algebra. So A is noetherian.

We denote by C(Mod A) the category of complexes of A-modules, and
by D(Mod A) its derived category.

There is a functor
Q@ : C(Mod A) — D(Mod A)

which is the identity on objects. The morphisms in D(Mod A) are all of
the form Q(¢) o Q(v))~!, where 9 is a quasi-isomorphism. Q
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Some of the work discussed here was done with James Zhang several
years ago.

£
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1. Rigid Dualizing Complexes over Rings

Inside D(Mod A) there is the full subcategory DF(Mod A) of bounded
complexes with finitely generated cohomology modules.

We defined a functor
SqA/K : D(Mod A) — D(Mod A)

called the squaring.

It is a quadratic functor: if ¢ : M — N is a morphism in D(Mod A),
and a € A, then

Sk (ad) = a® Sqk(e).

If A is flat over K then there is an easy formula for the squaring:
Sqa/x (M) = RHom g, 4 (A, M @ M).
But in general we have to use DG algebras to define Sq, /x (M). )
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1. Rigid Dualizing Complexes over Rings
A rigidifying isomorphism for M is an isomorphism
p: M — Squ k(M)
in D(Mod A).

If M € D?(Mod A), then the pair (M, p) is called a rigid complex over
A relative to K.

Suppose (N, o) is another rigid complex. A rigid morphism
¢:(M,p) = (N,o)
is a morphism ¢ : M — N in D(Mod A), such that the diagram

p
M ———Sq,/x (M)
é lSQA /x(®)
N —7— Squ/k(N)
is commutative. :?(
Amnon Yekutieli (BGU) Residues 5/ 29

2. Rigid Residue Complexes over Rings

2. Rigid Residue Complexes over Rings

The next definition is from [RD].

A complex M € DP(Mod A) is called dualizing if it has finite injective
dimension, and the canonical morphism A — RHom 4 (M, M) is an
isomorphism.

Grothendieck proved that for a dualizing complex M, the functor
RHom 4 (—, M)

is a duality (i.e. contravariant equivalence) of D?(Mod A)

o
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1. Rigid Dualizing Complexes over Rings

We denote by D(Mod A),,/x the category of rigid complexes, and rigid
morphisms between them.

Here is the important property of rigidity: let (M, p) be a rigid complex,
such that canonical morphism A — RHom (M, M) is an isomorphism.
Then the only automorphism of (M, p) in D(Mod A),;,/k is the identity.
The idea of rigid dualizing complex goes back to M. Van den Bergh’s
paper [VdB]| from 1997. More progress (especially the passage from

base field to base ring) was done in the papers “YZ” in the references.

£
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2. Rigid Residue Complexes over Rings

A rigid dualizing complex over A is a rigid complex (M, p) such that M
is dualizing.

We know that any essentially finite type K-algebra A has a rigid
dualizing complex (M, p).

Moreover, any two rigid dualizing complexes over A are uniquely
isomorphic in D(Mod A).g /-

If A= K is a field, then its rigid dualizing complex M must be
isomorphic to Kd] for an integer d. We define

dimg (K) := d.

If K is a field then
dimg (K) = tr.degg (K),

but in general it could be negative.

£
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2. Rigid Residue Complexes over Rings

For a prime ideal p € Spec A we define
dimg (p) := dimg (k(p)),

where k(p) is the residue field.

The resulting function
dimg : Spec A — Z

is a dimension function (it has the expected property for specialization
of primes).

For any p € Spec A we denote by J(p) the injective hull of the
A-module k(p). This is an indecomposable injective module.

o
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2. Rigid Residue Complexes over Rings

Let me mention two important functorial properties of rigid residue
complexes.

Suppose A — B is an étale homomorphism of K-algebras. Consider the
rigid residue complexes (K4, pa) and (Kp, pp) of A and B respectively.

There is a unique rigid localization homomorphism

dp/a : Ka — Kp.

The induced homomorphism of complexes
B®aKs— Kp

is bijective.

If B — C is another étale homomorphism, then

dc/A = Y9¢/B°4B/A -

o
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2. Rigid Residue Complexes over Rings

A rigid residue complex over A (relative to K) is a rigid dualizing
complex (K, p), such that for every ¢ there is an isomorphism of

A-modules ‘
K= & Jw.

pESpec A
dimg (p):z

A morphism ¢ : (K, p) — (K, p’) between rigid residue complexes is a
homomorphism of complexes ¢ :  — K’ in C(Mod A), such that
Q(¢) : (K,p) = (K',p') is a morphism in D(Mod A),45 k-

We denote by C(Mod A),s/k the category of rigid residue complexes.

The algebra A has a rigid residue complex (K4, p4). It is unique up to
a unique isomorphism in C(Mod A),¢s/x. So we call it the rigid residue
complex of A.

£
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2. Rigid Residue Complexes over Rings

In this way rigid residue complexes form a quasi-coherent sheaf on the
étale topology of Spec A. This will be important for us.

Now let A — B any homomorphism between essentially finite type
K-algebras.

There is a homomorphism of graded A-modules
Trp JA ' K — Ka

called the rigid trace homomorphism.

It is functorial: if B — C' is another homomorphism, then

TrC/A = TrB/AOTrC/B .

When A — B is a finite homomorphism, then Trp,/4 is a
homomorphism of complexes.

The rigid traces and the rigid localizations commute with each other. Fo
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3. Rigid Residue Complexes over Schemes

3. Rigid Residue Complexes over Schemes

Now we look at a finite type K-scheme X. If U C X is an affine open
set, then A :=T'(U, Ox) is a finite type K-algebra.

Let M be a quasi-coherent O x-module. For any affine open set U,
U, M) is a I'(U, Ox )-module.

If V C U is another affine open set, then
F(U7 Ox) — F(V, OX)

is an étale ring homomorphism.

And there is a homomorphism
rNU,M) —-T(V,M)

of I'(U, O x)-modules. 2
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3. Rigid Residue Complexes over Schemes
Suppose (K, p) and (K, p’) are two rigid residue complexes on X.

A morphism of rigid residue complexes ¢ : (K, p) — K', p’) is a
homomorphism ¢ : K — K’ of complexes of Ox-modules, such that for
every affine open set U, with A :=I'(U, Ox), the induced
homomorphism I'(U, ¢) is a morphism in C(Mod A),¢s/x-

We denote the category of rigid residue complexes by C(QCoh X )¢ /k-

Every finite type K-scheme X has a rigid residue complex (Kx, px);
and it is unique up to a unique isomorphism in C(QCoh X), /K-

£2
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3. Rigid Residue Complexes over Schemes

A rigid residue complex on X is a complex K of quasi-coherent
Ox-modules, together with a rigidifying isomorphism pg for the
complex I'(U, K), for every affine open set U.

There are two conditions:

(i) The pair (I‘(U7 K), pU) is a rigid residue complex over I'(U, Ox)
relative to K.

(ii) For an inclusion V' C U of affine open sets, the canonical
homomorphism
U, K) — T'(V,K)
is the unique rigid localization homomorphism between these rigid

residue complexes.

We denote by p := {py} the collection of rigidifying isomorphisms, and
call it a rigid structure.

£
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3. Rigid Residue Complexes over Schemes
Suppose f: X — Y is any map between finite type K-schemes.

The complex f.(Kx) is a bounded complex of quasi-coherent
Oy -modules.

The rigid traces for rings that we talked about before induce a
homomorphism of graded quasi-coherent Oy-modules

Try: fo(Kx) = Ky, (3.0)
that we also call the rigid trace homomorphism.
It is functorial: if g : Y — Z is another map, then

Tryop = TrgoTry.

It is not hard to see that if f is a finite map of schemes, then Try is a
homomorphism of complexes.

£
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4. Residues and Duality for Proper Maps of Schemes

4. Residues and Duality for Proper Maps of Schemes

Theorem 4.1. (Residue Theorem) Let f: X — Y be a proper map
between finite type K-schemes. Then

Trf : f*(/C)() — ’Cy

18 a homomorphism of complezes.

The idea of the proof (imitating [RD]) is to reduce to the case when
Y = Spec A, A is a local artinian ring, and X = P}4 (the projective
line).

In this case we show that the complex of A-modules I'(X, Kx) has an
induced rigidifying isomorphism. We use this, plus a trick, to prove that

Try: N'X,Kx) — Ky

is a homomorphism of complexes. 2
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4. Residues and Duality for Proper Maps of Schemes

One advantage of our approach — using rigiditiy — is that it is much
cleaner and shorter than the original approach in [RD]. This is because
we can avoid extremely complicated diagram chasing (that was not
actually done in [RD], but rather in follow-up work by Lipman, Conrad
and others).

Another advantage, as we shall see next, is that the rigidity approach
promises to give a useful duality theory for stacks.

£2
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4. Residues and Duality for Proper Maps of Schemes

Theorem 4.2. (Duality Theorem) Let f: X — Y be a proper map
between finite type K-schemes. Then for any M € DE(I\/Iod X) the
morphism

Rfi(RHomo, (M, Kx)) = RHomo, (Rf«(M),Ky)
in D(ModY"), that is induced by
Trf : f*(IC)() — /Cy,
s an isomorphism.

The proof of Theorem 4.2 imitates the proof of the corresponding
theorem in [RD], once we have the Residue Theorem 4.1 at hand.

The proofs of Theorems 4.1 and 4.2 are sketched in the incomplete
preprint [YZ1]. Complete proofs will be available in [Ye2].

£
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5. Finite Type DM Stacks

5. Finite Type DM Stacks

Unfortunately I do not have time to give background on stacks. For
those who do not know about stacks, it is useful to think of a
Deligne-Mumford stack X as a scheme, with an extra structure: the
points of X are clumped into finite groupoids.

Here are some good references on algebraic stacks: [LMB, SP, Ol].
We will only consider noetherian finite type DM K-stacks.

Given a quasi-coherent Ox-module M, and an étale map U — X from a
scheme U, we denote by M|y the corresponding quasi-coherent
Op-module (in the Zariski topology of U).

£
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5. Finite Type DM Stacks

The definition of a rigid residue complex on a stack X relative to K is
very similar to the scheme definition:

A rigid residue complex on X is a complex of quasi-coherent
Ox-modules Ky, together with a rigid structure py = {pr}.

However here the indexing is by étale maps U — X from affine schemes,
and py is a rigidifying isomorphism for the complex I'(U, Kx|y) over
the K-algebra I'(U, Oy ).

The conditions are:

(i) The pair (F(U, Kxlv), pU) is a rigid residue complex over the ring
I'(U, Ox) relative to K.

(ii) For an étale map V — U of affine schemes, the canonical

homomorphism
F(U, IC%‘U) — F(V, /ng‘v)
is the unique rigid localization homomorphism. Q
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5. Finite Type DM Stacks
Similarly we have:
Theorem 5.2. (|Ye2]) Let f: X —2) be a map between finite type
DM K-stacks. Then there is a homomorphism of graded quasi-coherent

Oy-modules
Trf : f*(Kx) — K@

called the rigid trace.

It satisfies, and is uniquely characterized by, these properties:

(i) Functoriality: Tryoy = TrgoTry.
(ii) If X and Q) are schemes, then Try is the rigid trace from equation
(3.0).

o
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5. Finite Type DM Stacks

Theorem 5.1. (|Ye2|) Let X be a finite type DM stack over K. Then
X has a rigid residue complex (Kx, py). It is unique up to a unique
isomorphism in C(QCoh X),¢s/k -

The proof is a standard étale descent argument, using the fact that for
affine schemes the rigid residue complexes are quasi-coherent sheaves in
the étale topology.

£
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5. Finite Type DM Stacks

The obvious question now is: do the Residue Theorem and the Duality
Theorem hold for a proper maps f : X — Q) between stacks?

The answer I can give is not so clear cut.

We know by the Keel-Mori Theorem that a separated finite type DM
stack X has a coarse moduli space w: X — X. The map 7 is proper and
quasi-finite, and X is, in general, an algebraic space.

Let us call X a coarsely schematic stack if its coarse moduli space X is
a scheme.

This appears to be a rather mild restriction: most DM stacks that come
up in examples are of this kind.

A map f:X — 92 is called a coarsely schematic map if for some
surjective étale map V' — %) from an affine scheme V', the stack

36’ =X X9 \%4
is coarsely schematic. 2
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5. Finite Type DM Stacks

Conjecture 5.3. Let f: X — %) be a proper coarsely schematic map
between finite type DM K-stacks. Then

Trf : f*(/Cx) — /CQ)
is a homomorphism of complexes of Oy-modules.

It is not expected that duality will hold in this generality. In fact, there
are easy counter examples. The problem is finite group theory in
positive characteristic!

o
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5. Finite Type DM Stacks

For a DM stack X and a field K, there is a groupoid X(K) where the
automorphism groups of objects are finite.

Following [AOV], the stack X is called tame if for every algebraically
closed field K, the automorphism groups in X(K') have orders prime to
the characteristic of K.

A map f:X — 92 is called a tame map if for some surjective étale map
V' — 9 from an affine scheme V, the stack X' := X xg9 V is tame.

Conjecture 5.4. Let f: X — 9) be a proper, tame, coarsely
schematic map between finite type DM K-stacks. Then Try induces
duality (as in Theorem 4.2).

I believe I have an idea how to prove these conjectures.

It is likely that the “coarsely schematic” could be removed; but I don’t
know how.
- END - Q
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