Residues and Duality for Schemes and Stacks

Amnon Yekutieli

Department of Mathematics Ben Gurion University

Notes available at http://www.math.bgu.ac.il/~amyekut/lectures

Written: 24 Oct 2012

Amnon Yekutieli (BGU)	Residues	1 / 29
1. Rigid Dualizing Com	plexes over Rings	

1. Rigid Dualizing Complexes over Rings

All rings and algebras in this talk are commutative.

We fix a base ring \mathbb{K} , which is finite dimensional, regular and noetherian (e.g. a field or \mathbb{Z}).

Let A be an essentially finite type \mathbb{K} -algebra. Recall that this means A is a localization of a finite type \mathbb{K} -algebra. So A is noetherian.

We denote by C(Mod A) the category of complexes of A-modules, and by D(Mod A) its derived category.

There is a functor

 $Q:\mathsf{C}(\mathsf{Mod}\,A)\to\mathsf{D}(\mathsf{Mod}\,A)$

which is the identity on objects. The morphisms in $D(\operatorname{\mathsf{Mod}} A)$ are all of the form $Q(\phi) \circ Q(\psi)^{-1}$, where ψ is a quasi-isomorphism.

Outline

- 1. Rigid Dualizing Complexes over Rings
- 2. Rigid Residue Complexes over Rings
- 3. Rigid Residue Complexes over Schemes
- 4. Residues and Duality for Proper Maps of Schemes
- 5. Finite Type DM Stacks

Some of the work discussed here was done with James Zhang several years ago.

Amnon Yekutieli (BGU)	Residues	2 / 29
1. Rigid Dualizing Complexes over Rings		

Inside D(Mod A) there is the full subcategory $D_{f}^{b}(Mod A)$ of bounded complexes with finitely generated cohomology modules.

We defined a functor

$$\operatorname{Sq}_{A/\mathbb{K}}: \mathsf{D}(\mathsf{Mod}\,A) \to \mathsf{D}(\mathsf{Mod}\,A)$$

called the *squaring*.

It is a quadratic functor: if $\phi: M \to N$ is a morphism in $\mathsf{D}(\mathsf{Mod}\,A)$, and $a \in A$, then

$$\operatorname{Sq}_{A/\mathbb{K}}(a\phi) = a^2 \operatorname{Sq}_{A/\mathbb{K}}(\phi).$$

If A is flat over \mathbbm{K} then there is an easy formula for the squaring:

$$\operatorname{Sq}_{A/\mathbb{K}}(M) = \operatorname{RHom}_{A \otimes_{\mathbb{K}} A}(A, M \otimes_{\mathbb{K}}^{\mathbf{L}} M).$$

But in general we have to use DG algebras to define $\operatorname{Sq}_{A/\mathbb{K}}(M)$.

Amnon Yekutieli (BGU)

3 / 29

 $\mathbf{\hat{Q}}$

 \diamond

A rigidifying isomorphism for M is an isomorphism

$$\rho: M \xrightarrow{\simeq} \operatorname{Sq}_{A/\mathbb{K}}(M)$$

in D(Mod A).

If $M \in \mathsf{D}^{\mathsf{b}}_{\mathsf{f}}(\mathsf{Mod}\,A)$, then the pair (M, ρ) is called a *rigid complex over* A relative to \mathbb{K} .

Suppose (N, σ) is another rigid complex. A rigid morphism

$$\phi: (M,\rho) \to (N,\sigma)$$

is a morphism $\phi: M \to N$ in $\mathsf{D}(\mathsf{Mod}\, A)$, such that the diagram

is commutative.

Amnon Yekutieli (BGU)

2. Rigid Residue Complexes over Rings

2. Rigid Residue Complexes over Rings

Residues

The next definition is from [RD].

A complex $M \in \mathsf{D}^{\mathsf{b}}_{\mathrm{f}}(\mathsf{Mod}\,A)$ is called *dualizing* if it has finite injective dimension, and the canonical morphism $A \to \mathrm{RHom}_A(M, M)$ is an isomorphism.

Grothendieck proved that for a dualizing complex M, the functor

$$\operatorname{RHom}_A(-,M)$$

is a duality (i.e. contravariant equivalence) of $D_{f}^{b}(Mod A)$

We denote by $D(\operatorname{\mathsf{Mod}} A)_{\operatorname{rig}/\mathbb{K}}$ the category of rigid complexes, and rigid morphisms between them.

Here is the important property of rigidity: let (M, ρ) be a rigid complex, such that canonical morphism $A \to \operatorname{RHom}_A(M, M)$ is an isomorphism. Then the only automorphism of (M, ρ) in $\mathsf{D}(\operatorname{\mathsf{Mod}} A)_{\operatorname{rig}/\mathbb{K}}$ is the identity.

The idea of rigid dualizing complex goes back to M. Van den Bergh's paper [VdB] from 1997. More progress (especially the passage from base field to base ring) was done in the papers "YZ" in the references.

Amnon Yekutieli (BGU)	Residues	6 / 29
2. Rigid Residue Com	plexes over Rings	

A rigid dualizing complex over A is a rigid complex (M, ρ) such that M is dualizing.

We know that any essentially finite type K-algebra A has a rigid dualizing complex (M, ρ) .

Moreover, any two rigid dualizing complexes over A are uniquely isomorphic in $D(\operatorname{\mathsf{Mod}} A)_{\operatorname{rig}/\mathbb{K}}$.

If A = K is a field, then its rigid dualizing complex M must be isomorphic to K[d] for an integer d. We define

$$\dim_{\mathbb{K}}(K) := d.$$

If \mathbb{K} is a field then

5 / 29

7 / 29

 $\dim_{\mathbb{K}}(K) = \operatorname{tr.deg}_{\mathbb{K}}(K),$

but in general it could be negative.

For a prime ideal $\mathfrak{p} \in \operatorname{Spec} A$ we define

$$\dim_{\mathbb{K}}(\mathfrak{p}) := \dim_{\mathbb{K}}(\boldsymbol{k}(\mathfrak{p})),$$

where $\boldsymbol{k}(\boldsymbol{\mathfrak{p}})$ is the residue field.

The resulting function

 $\dim_{\mathbb{K}} : \operatorname{Spec} A \to \mathbb{Z}$

is a dimension function (it has the expected property for specialization of primes).

For any $\mathfrak{p} \in \operatorname{Spec} A$ we denote by $J(\mathfrak{p})$ the injective hull of the A-module $k(\mathfrak{p})$. This is an indecomposable injective module.

Amnon Yekutieli (BGU)	Residues	9 / 29
2. Rigid Residue Com	plexes over Rings	

Let me mention two important functorial properties of rigid residue complexes.

Suppose $A \to B$ is an *étale homomorphism* of K-algebras. Consider the rigid residue complexes (\mathcal{K}_A, ρ_A) and (\mathcal{K}_B, ρ_B) of A and B respectively.

There is a unique *rigid localization homomorphism*

$$q_{B/A}: \mathcal{K}_A \to \mathcal{K}_B.$$

The induced homomorphism of complexes

$$B \otimes_A \mathcal{K}_A \to \mathcal{K}_B$$

is bijective.

If $B \to C$ is another étale homomorphism, then

$$\mathbf{q}_{C/A} = \mathbf{q}_{C/B} \circ \mathbf{q}_{B/A} \,.$$

Amnon Yekutieli (BGU)

Residues

A rigid residue complex over A (relative to \mathbb{K}) is a rigid dualizing complex (\mathcal{K}, ρ) , such that for every *i* there is an isomorphism of A-modules

$$\mathcal{K}^{-i} \cong \bigoplus_{\substack{\mathfrak{p} \in \operatorname{Spec} A \\ \dim_{\mathbb{K}}(\mathfrak{p}) = i}} J(\mathfrak{p})$$

A morphism $\phi : (\mathcal{K}, \rho) \to (\mathcal{K}', \rho')$ between rigid residue complexes is a homomorphism of complexes $\phi : \mathcal{K} \to \mathcal{K}'$ in $\mathsf{C}(\mathsf{Mod}\,A)$, such that $Q(\phi) : (\mathcal{K}, \rho) \to (\mathcal{K}', \rho')$ is a morphism in $\mathsf{D}(\mathsf{Mod}\,A)_{\mathrm{rig}/\mathbb{K}}$.

We denote by $C(Mod A)_{res/\mathbb{K}}$ the category of rigid residue complexes.

The algebra A has a rigid residue complex (\mathcal{K}_A, ρ_A) . It is unique up to a unique isomorphism in $C(\operatorname{Mod} A)_{\operatorname{res}/\mathbb{K}}$. So we call it *the rigid residue complex* of A.

Residues	10 / 29
plexes over Rings	
	Residues plexes over Rings

In this way rigid residue complexes form a quasi-coherent sheaf on the étale topology of Spec A. This will be important for us.

Now let $A \to B$ any homomorphism between essentially finite type K-algebras.

There is a homomorphism of graded A-modules

$$\operatorname{Fr}_{B/A}: \mathcal{K}_B \to \mathcal{K}_A$$

called the *rigid trace homomorphism*.

It is functorial: if $B \to C$ is another homomorphism, then

$$\operatorname{Tr}_{C/A} = \operatorname{Tr}_{B/A} \circ \operatorname{Tr}_{C/B}$$

When $A \to B$ is a *finite* homomorphism, then $\text{Tr}_{B/A}$ is a homomorphism of complexes.

The rigid traces and the rigid localizations commute with each other.

Amnon Yekutieli (BGU)

11 / 29

Residues

3. Rigid Residue Complexes over Schemes

Now we look at a finite type K-scheme X. If $U \subset X$ is an affine open set, then $A := \Gamma(U, \mathcal{O}_X)$ is a finite type K-algebra.

Let \mathcal{M} be a quasi-coherent \mathcal{O}_X -module. For any affine open set U, $\Gamma(U, \mathcal{M})$ is a $\Gamma(U, \mathcal{O}_X)$ -module.

If $V \subset U$ is another affine open set, then

$$\Gamma(U, \mathcal{O}_X) \to \Gamma(V, \mathcal{O}_X)$$

is an *étale ring homomorphism*.

And there is a homomorphism

$$\Gamma(U,\mathcal{M})\to\Gamma(V,\mathcal{M})$$

of $\Gamma(U, \mathcal{O}_X)$ -modules.

 Amnon Yekutieli (BGU)
 Residues

 3. Rigid Residue Complexes over Schemes

Suppose (\mathcal{K}, ρ) and (\mathcal{K}', ρ') are two rigid residue complexes on X.

A morphism of rigid residue complexes $\phi : (\mathcal{K}, \rho) \to \mathcal{K}', \rho')$ is a homomorphism $\phi : \mathcal{K} \to \mathcal{K}'$ of complexes of \mathcal{O}_X -modules, such that for every affine open set U, with $A := \Gamma(U, \mathcal{O}_X)$, the induced homomorphism $\Gamma(U, \phi)$ is a morphism in $\mathsf{C}(\mathsf{Mod} A)_{\mathrm{res}/\mathbb{K}}$.

We denote the category of rigid residue complexes by $C(\operatorname{\mathsf{QCoh}} X)_{\operatorname{res}/\mathbb{K}}$.

Every finite type \mathbb{K} -scheme X has a rigid residue complex (\mathcal{K}_X, ρ_X) ; and it is unique up to a unique isomorphism in $C(\operatorname{QCoh} X)_{\operatorname{res}/\mathbb{K}}$. A rigid residue complex on X is a complex \mathcal{K} of quasi-coherent \mathcal{O}_X -modules, together with a rigidifying isomorphism ρ_U for the complex $\Gamma(U, \mathcal{K})$, for every affine open set U.

There are two conditions:

- (i) The pair $(\Gamma(U, \mathcal{K}), \rho_U)$ is a rigid residue complex over $\Gamma(U, \mathcal{O}_X)$ relative to \mathbb{K} .
- (ii) For an inclusion $V \subset U$ of affine open sets, the canonical homomorphism

$$\Gamma(U,\mathcal{K}) \to \Gamma(V,\mathcal{K})$$

is the unique rigid localization homomorphism between these rigid residue complexes.

We denote by $\boldsymbol{\rho} := \{\rho_U\}$ the collection of rigidifying isomorphisms, and call it a *rigid structure*.

Amnon Yekutieli (BGU)	Residues	14 / 29
3. Rigid Residue Comple	exes over Schemes	

Suppose $f: X \to Y$ is any map between finite type K-schemes.

The complex $f_*(\mathcal{K}_X)$ is a bounded complex of quasi-coherent \mathcal{O}_Y -modules.

The rigid traces for rings that we talked about before induce a homomorphism of graded quasi-coherent \mathcal{O}_Y -modules

$$\Gamma r_f : f_*(\mathcal{K}_X) \to \mathcal{K}_Y,$$
 (3.0)

that we also call the *rigid trace homomorphism*.

It is functorial: if $g: Y \to Z$ is another map, then

$$\operatorname{Tr}_{g\circ f} = \operatorname{Tr}_g \circ \operatorname{Tr}_f$$

It is not hard to see that if f is a finite map of schemes, then Tr_f is a homomorphism of complexes.

 \diamond

13 / 29

15 / 29

Residues

4. Residues and Duality for Proper Maps of Schemes

Theorem 4.1. (Residue Theorem) Let $f : X \to Y$ be a proper map between finite type \mathbb{K} -schemes. Then

$$\operatorname{Tr}_f: f_*(\mathcal{K}_X) \to \mathcal{K}_Y$$

is a homomorphism of complexes.

The idea of the proof (imitating [RD]) is to reduce to the case when $Y = \operatorname{Spec} A$, A is a local artinian ring, and $X = \mathbf{P}_A^1$ (the projective line).

In this case we show that the complex of A-modules $\Gamma(X, \mathcal{K}_X)$ has an induced rigidifying isomorphism. We use this, plus a trick, to prove that

$$\operatorname{Tr}_f: \Gamma(X, \mathcal{K}_X) \to \mathcal{K}_Y$$

Residues

is a homomorphism of complexes.

Amnon Yekutieli (BGU)

4. Residues and Duality for Proper Maps of Schemes

One advantage of our approach – using rigiditiy – is that it is much cleaner and shorter than the original approach in [RD]. This is because we can avoid extremely complicated diagram chasing (that was not actually done in [RD], but rather in follow-up work by Lipman, Conrad and others).

Another advantage, as we shall see next, is that the rigidity approach promises to give a useful duality theory for stacks.

$$\mathrm{R}f_*(\mathrm{R}\mathcal{H}om_{\mathcal{O}_X}(\mathcal{M},\mathcal{K}_X)) \to \mathrm{R}\mathcal{H}om_{\mathcal{O}_Y}(\mathrm{R}f_*(\mathcal{M}),\mathcal{K}_Y)$$

in D(Mod Y), that is induced by

$$\operatorname{Tr}_f : f_*(\mathcal{K}_X) \to \mathcal{K}_Y$$

is an isomorphism.

The proof of Theorem 4.2 imitates the proof of the corresponding theorem in [RD], once we have the Residue Theorem 4.1 at hand.

The proofs of Theorems 4.1 and 4.2 are sketched in the incomplete preprint [YZ1]. Complete proofs will be available in [Ye2].

Amnon Yekutieli (BGU) Residues 18 / 29 5. Finite Type DM Stacks

5. Finite Type DM Stacks

Unfortunately I do not have time to give background on stacks. For those who do not know about stacks, it is useful to think of a Deligne-Mumford stack \mathfrak{X} as a scheme, with an extra structure: the points of \mathfrak{X} are clumped into finite groupoids.

Here are some good references on algebraic stacks: [LMB, SP, Ol].

We will only consider noetherian finite type DM K-stacks.

Given a quasi-coherent $\mathcal{O}_{\mathfrak{X}}$ -module \mathcal{M} , and an étale map $U \to \mathfrak{X}$ from a scheme U, we denote by $\mathcal{M}|_U$ the corresponding quasi-coherent \mathcal{O}_U -module (in the Zariski topology of U).

 \diamond

17 / 29

The definition of a rigid residue complex on a stack $\mathfrak X$ relative to $\mathbb K$ is very similar to the scheme definition:

A rigid residue complex on \mathfrak{X} is a complex of quasi-coherent $\mathcal{O}_{\mathfrak{X}}$ -modules $\mathcal{K}_{\mathfrak{X}}$, together with a rigid structure $\boldsymbol{\rho}_{\mathfrak{X}} = \{\rho_U\}$.

However here the indexing is by étale maps $U \to \mathfrak{X}$ from affine schemes, and ρ_U is a rigidifying isomorphism for the complex $\Gamma(U, \mathcal{K}_{\mathfrak{X}}|_U)$ over the \mathbb{K} -algebra $\Gamma(U, \mathcal{O}_U)$.

The conditions are:

- (i) The pair $(\Gamma(U, \mathcal{K}_{\mathfrak{X}}|_U), \rho_U)$ is a rigid residue complex over the ring $\Gamma(U, \mathcal{O}_X)$ relative to \mathbb{K} .
- (ii) For an étale map $V \to U$ of affine schemes, the canonical homomorphism

 $\Gamma(U, \mathcal{K}_{\mathfrak{X}}|_U) \to \Gamma(V, \mathcal{K}_{\mathfrak{X}}|_V)$

 \diamond

23 / 29

is the unique rigid localization homomorphism.

Amnon Yekutieli (BGU)	Residues	21 / 29
5. Finit	e Type DM Stacks	

Similarly we have:

Theorem 5.2. ([Ye2]) Let $f : \mathfrak{X} \to \mathfrak{Y}$ be a map between finite type DM K-stacks. Then there is a homomorphism of graded quasi-coherent $\mathcal{O}_{\mathfrak{Y}}$ -modules

$$\operatorname{Tr}_f: f_*(\mathcal{K}_{\mathfrak{X}}) \to \mathcal{K}_{\mathfrak{Y}}$$

called the rigid trace.

It satisfies, and is uniquely characterized by, these properties:

- (i) Functoriality: $\operatorname{Tr}_{q \circ f} = \operatorname{Tr}_{g} \circ \operatorname{Tr}_{f}$.
- (ii) If X and Y are schemes, then Tr_f is the rigid trace from equation (3.0).

Theorem 5.1. ([Ye2]) Let \mathfrak{X} be a finite type DM stack over \mathbb{K} . Then \mathfrak{X} has a rigid residue complex $(\mathcal{K}_{\mathfrak{X}}, \rho_{\mathfrak{X}})$. It is unique up to a unique isomorphism in $C(\operatorname{QCoh} \mathfrak{X})_{\operatorname{res}/\mathbb{K}}$.

The proof is a standard étale descent argument, using the fact that for affine schemes the rigid residue complexes are quasi-coherent sheaves in the étale topology.

			<u>R</u>
Amnon Yekutieli	(BGU)	Residues	22 / 29
	5. Finite	Type DM Stacks	

The obvious question now is: do the Residue Theorem and the Duality Theorem hold for a proper maps $f : \mathfrak{X} \to \mathfrak{Y}$ between stacks?

The answer I can give is not so clear cut.

We know by the Keel-Mori Theorem that a separated finite type DM stack \mathfrak{X} has a *coarse moduli space* $\pi : \mathfrak{X} \to X$. The map π is proper and quasi-finite, and X is, in general, an *algebraic space*.

Let us call \mathfrak{X} a *coarsely schematic stack* if its coarse moduli space X is a scheme.

This appears to be a rather mild restriction: most DM stacks that come up in examples are of this kind.

A map $f : \mathfrak{X} \to \mathfrak{Y}$ is called a *coarsely schematic map* if for some surjective étale map $V \to \mathfrak{Y}$ from an affine scheme V, the stack

$$\mathfrak{X}' := \mathfrak{X} \times_{\mathfrak{Y}} V$$

Residues

is coarsely schematic.

Amnon Yekutieli (BGU)

Residues

24 / 29

Conjecture 5.3. Let $f : \mathfrak{X} \to \mathfrak{Y}$ be a proper coarsely schematic map between finite type DM K-stacks. Then

$$\operatorname{Tr}_f: f_*(\mathcal{K}_{\mathfrak{X}}) \to \mathcal{K}_{\mathfrak{Y}}$$

is a homomorphism of complexes of $\mathcal{O}_{\mathfrak{Y}}$ -modules.

It is not expected that duality will hold in this generality. In fact, there are easy counter examples. The problem is *finite group theory in positive characteristic*!

References

- [AOV] D. Abramovich, M. Olsson and A. Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier 58, 4 (2008), 1057-1091.
- [LMB] G. Laumon and L. Moret-Bailly, "Champs Algébriques", Springer, 2000.
- [Na] S. Nayak, Compactification for essentially finite-type maps, Advances Math. 222 (2009), 527-546.
- [Ni] F. Nironi, Grothendieck duality for deligne-mumford stacks, eprint arXiv:0811.1955v2.
- [OI] M. Olsson, "An Introduction to Algebraic Spaces and Stacks", book in preparation.

For a DM stack \mathfrak{X} and a field K, there is a groupoid $\mathfrak{X}(K)$ where the automorphism groups of objects are finite.

Following [AOV], the stack \mathfrak{X} is called *tame* if for every algebraically closed field K, the automorphism groups in $\mathfrak{X}(K)$ have orders prime to the characteristic of K.

A map $f : \mathfrak{X} \to \mathfrak{Y}$ is called a *tame map* if for some surjective étale map $V \to \mathfrak{Y}$ from an affine scheme V, the stack $\mathfrak{X}' := \mathfrak{X} \times_{\mathfrak{Y}} V$ is tame.

Conjecture 5.4. Let $f : \mathfrak{X} \to \mathfrak{Y}$ be a proper, tame, coarsely schematic map between finite type DM K-stacks. Then Tr_f induces duality (as in Theorem 4.2).

I believe I have an idea how to prove these conjectures.

It is likely that the "coarsely schematic" could be removed; but I don't know how.

Amnon Yekutieli (BGU) Residues 26 / 29 References

- [RD] R. Hartshorne, "Residues and Duality," Lecture Notes in Math. 20, Springer-Verlag, Berlin, 1966.
- [SP] The Stacks Project, J.A. de Jong (Editor), http: //math.columbia.edu/algebraic_geometry/stacks-git
- [VdB] M. Van den Bergh, Existence theorems for dualizing complexes over non-commutative graded and filtered ring, J. Algebra 195 (1997), no. 2, 662-679.
- [Ye1] A. Yekutieli, Rigid Dualizing Complexes via Differential Graded Algebras (Survey), in "Triangulated Categories", LMS Lecture Note Series 375, 2010.
- [Ye2] A. Yekutieli, Rigidity, residues, and Grothendieck duality for schemes and DM stacks, in preparation.

Residues

27 / 29

- [YZ1] A. Yekutieli and J.J. Zhang, Rigid Dualizing Complexes on Schemes, Eprint math.AG/0405570 at http://arxiv.org.
- [YZ2] A. Yekutieli and J.J. Zhang, Residue complexes over noncommutative rings, J. Algebra 259 (2003) no. 2, 451-493.
- [YZ4] A. Yekutieli and J.J. Zhang, Dualizing complexes and perverse sheaves on noncommutative ringed schemes, Selecta Math. 12 (2006), 137-177.
- [YZ5] A. Yekutieli and J.J. Zhang, Rigid Complexes via DG Algebras, Trans. AMS 360 no. 6 (2008), 3211-3248.
- [YZ6] A. Yekutieli and J.J. Zhang, Rigid Dualizing Complexes over Commutative Rings, Algebras and Representation Theory 12, Number 1 (2009), 19-52

